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Abstract

Pirogov Yu.F., Zenin O.V. Quark masses and mixings in the standard model with the heavy
vector-like families: IHEP Preprint 99-15. — Protvino, 1999. — p. 16, tables 3, refs.: 11.

The extension of the standard model with pairs of the vector-like families is studied. The quark
mixing matrices for the left- and right-handed charged currents, as well as those for the flavour
changing neutral currents, the Z and Higgs mediated, are found. Both the model independent
parametrization for an arbitrary case and an explicit realization for the case with one pair of
the heavy vector-like families are presented. The extension opens new prospects for studying
deviations from the standard model in the future experiments at high energies.

AuHOTanmsa

TTuporos FO.®., 3enun O.B. Macco u cmemuBanue KBAPKOB B CTAHIAPTHON MOIENH C TAXKEJIBIMU
BekTOpononobubIMu ceMericTBamu: IIpenpuat UPBO 99-15. — IIporsuno, 1999. — 16 c., 3 Tabi.,
6ubmauorp.: 11.

PaccMoTpeno paciiupenne cTaHmapTHON MOIEIN MTapaMu BEKTOPOIOMOOHBIX ceMeicTs. Hatime-
HBI MATPUIBI CMEIINBAHUS KBAPKOB [JIS JIEBO- ¥ MPABOCIUPAJIBEHBIX 3aPSIXKEHHBIX TOKOB, & TaK-
JKe IIJIST HeATPAJIbHBIX TOKOB C HAPYIIIEHUEM apoMaTa, MEPEHOCUMBIX Z U XUTTCOBCKUM GO30HOM.
IIpencrasmenbr MOOEMBLHO-HE3ABUCAMASL TTAPAMETPU3ANMUSI I IIPOU3BOIILHOIO CIydYas W sBHAS
peanm3amnus I CIydas ¢ eMUHCTBEHHOW MAapORl TSKEJIBIX BEKTOPOMOmOOHBIX cemencTB. Jlan-
HO€e paCIINpPEHNE OTKPLIBAET HOBBIE BO3MOXKHOCTU IJISI M3YYEHUST OTKJIOHEHUU OT CTaHOAPTHOU
Mozenu B OyIyIIMX SKCIIEPUMEHTAaX IIPU BBICOKMAX DHEPIUSX.

(© State Research Center of Russia
Institute for High Energy Physics, 1999



1. Introduction

At present we know of three quark-lepton chiral families in the standard model (SM).
Their mixing within the present experimental accuracy is well known to be described by
the 3 x 3 unitary matrix [1]. But beyond it, whether there are extra families and, if so,
what their masses and mixings are — this is yet an unsolved problem.

A recent two-loop renormalization group analysis [2] of the SM shows that subject to
the precision experiment restriction on the Higgs mass, My < 215 GeV at 95% C.L. [3],
the forth chiral family, if alone, is excluded!. In fact, it does not depend on whether
this extra family has the normal chiral structure or the mirror one. But as it is noted in
Ref. [2], a pair of the opposite chirality families with the relatively low Yukawa couplings
evades the SM self-consistency restrictions and could still exist. In order to conform to
observations, these extra families, which otherwise can be considered as the vectorial ones,
should get large direct masses and drop out of the light particle spectrum of the SM in
the decoupling limit. Nevertheless, at not too high masses, say, in the TeV region, such
families could result in observable corrections to the SM interactions through mixing with
the light fermions.

Various vector-like fermions are generic in many extensions of the SM like the super-
string and grand unified theories, composite models, etc. Many issues concerning those
fermions, both the electroweak doublets and singlets, the latter ones of the up and down
types, were considered in the literature [5], [6]. On the other hand, there are numerous
studies of the n > 3 chiral family extensions of the SM [7], [8]. Some topics concerning
the SM extensions with the vector-like families are studied in Ref. [9].

In a previous letter [10] we presented the results for the SM light quark masses and
mixings in the presence of the extra vector-like families. In the current paper we give
the complete results including those for the heavy quarks. In Section 2 we carry out the
model independent analysis for the general case. In Section 3 an explicit realization for
the case with a pair of the heavy vector-like families is presented. In Appendix we give
the technical details of the diagonalization procedure and the explicit form of the mixing
matrices through the elements of the general mass matrices.

I The recent more conservative restrictions mg < 262 GeV or My < 300 GeV at 95% C.L., respectively,
from the first and second papers of Ref. [4] render the fourth chiral family only marginally possible.



2. Model independent analysis

The most general content of the SM families consisting of the SU(2)w x U(1)y doublets
and singlets is illustrated in Table 1. The notations with a hat sign designate quarks in
the symmetry/electroweak basis where, by definition, the SM symmetry structure is well
stated. “Normal” in the row means the n > 3 chiral families, similar in their chiral
and quantum number structure to three ordinary families of the minimal SM. “Mirror”
means the m > 0 mirror conjugate families with the normal quantum numbers; or in
other terms, the charge conjugate families with the normal chiral structure. We suppose,
for definiteness, that n > m. “Chiral” in the column means the chiral notations, and
“mixed” corresponds to the more traditional left-right notations?.

Table 1. The general content of the SM families.

# Chiral Mixed
Normal | n QLZ(QLJIE,C{E) (QLaaRaC{R)
Mirror | m | Q= (@, @5, d5) | (G, . ds)

In general, quarks gain masses from two different physical mechanisms: that of the
SM Yukawa interactions and that of a New Physics resulting in the SM invariant direct
mass terms. Being chirally unprotected the latter ones should naturally be characterized
by a high mass scale M, M > v, with v being the SM Higgs vacuum expectation value.
In the symmetry basis the kinetic, Yukawa and direct mass Lagrangian has the following
most general form:

L = iGDis+iarDig +ideDdr
+i@r i + i Py, + idy Ddy,
— (@Y ard® + qY drd + WY dnd! + dp YV g’ + hoc.)
— (@M + WM g + dy M7 dp + b | 1)

where ) = v#D,, is the SM covariant derivative, ¢ is the Higgs doublet and ¢ is the
charge conjugate one. In Eq. (1), Y and Y” are, respectively, the square n x n and m x m
Yukawa matrices; M and M’ are, respectively, the rectangular n x m and m x n direct
mass matrices. the

Without loss of generality, the matrices M and M’ can always be brought to the
m x m triangular form with the rest being zero. Now, one can rewrite the Lagrangian (1)
in terms of the m pairs of the Dirac families Q = (Qr,Q%), constituting the vector-like
representations of the SM, and the n — m chiral families (). In neglect of the Yukawa
couplings, the Lagrangian of the Dirac families is explicitly P invariant. Hence, of those

2To be as clear as possible, what we are talking about, say, in terms of the 15-plets of the GUT SU(5)
(15=10 695) is 157, ®mlbg, or n15;, @ m15.. Nevertheless, the scales we have in mind are much lower
than those of the GUT’s, typically O(1 — 100) TeV, i.e. rather those of the composite models.



initial n + m chiral families, the 2m ones transform after mass diagonalization to m
pairs of the heavy vector-like families (VLF’s)3. This is to be expected according to the
survival hypothesis [11] because the chirally conjugate families lose their chiral protection.
The unbalanced n — m families can be considered as the (approximate) pure chiral ones.

In practice, we suppose that the net number of the chiral families is three and hence

n=3+m.

We generalize the parameter counting for the chiral families of Ref. [8] to the case with

extra VLE’s. It goes as is shown in Table 2. Here G is the global symmetry of the kinetic

part of the Lagrangian (1). It is broken explicitly by the mass terms, only the residual
symmetry H = U(1) of the baryon number being left in the general case we consider
Hence, the transformations of G/H can be used to absorb the spurious parameters in
Eq. (1) . leaving only the physical set M5 of them. The last four lines in Table 2 present
the physical parameters for the minimal SM and for the three its simplest extensions: the
traditional one with a normal family, the one with a mirror family and the one with of a
pair of the normal and mirror families®. The last case will be considered in detail in the

next section.

Table 2. Parameter counting in the symmetry /electroweak basis.

Couplings Moduli Phases
and symmetries
ye,ye yw vy, 2 (n? +m?) 2 (n? + m?)
M, M, M +3 nm +3 nm
G=Un)?*xUm)* | —2n(n—1)+m(m—1)] | =2[n(n+1) +m(m+1)]
H=0U() 0 1
Mpnys (n, m) s(n+m)(n+m—1) | j(n+m—=2)(n+m-1)
+2 nm+ 2 (n+m) +2 nm
MM (3,0) 6+3=09 1
Mhys(4,0) 8+6=14 3
Mohys(3,1) 8+12=20 9
Mohys(4,1) 10 + 18 = 28 14

Further, the kinetic part of the effective Lagrangian with the W, Z and Higgs bosons

being integrated out is

Lepr =

where J) means the covariant derivatives w.r.t. the QED and QCD only; u,, and d, (x = L,
R) generically mean the quarks in the mass/flavour basis, and M;‘;zg are the diagonal

wrPug +id, Pdp + iugPur + idrPdr

_(ﬁMgiaguR + EMgiang + hC) )

=

3To be precise we call as VLF the family mass eigenstate which possesses the (approximate) left-right

symmetric SM interactions.

4The degenerate cases leave more residual symmetries and require special consideration.
>The first two cases are practically excluded by the SM self-consistency requirements [2].



mass matrices defining the basis. The corresponding parameter counting is presented in
Table 3. Due to the absence of the mutual quark transitions, the total residual symmetry
of the mass matrices M;‘;zg is here H = U(1)2("*™), Table 3 clearly shows the breakdown
of the moduli of M,,s in Table 2 on the physical masses and mixing angles.

Table 3. Parameter counting for the effective Lagrangian.

Couplings Moduli Phases
and symmetries

M, M 2 (n+m)? 2 (n+m)?
G=Umn+m)* | =2(n+m)(n+m—1) | =2(n+m)(n+m+1)
H =U(1)2+m) 0 2(n+m)

giag’ Mgiag 2(n + m) 0

Let us now redefine collectively quarks in the symmetry basis as &, = 4, cZX and
these in the mass basis, i.e. the quark eigenstates with M,,s being diagonal, as k, = u,,
dy (x = L, R). The bases are related by the unitary (n +m) x (n + m) transformations

/%XA = (U;)Z Bxp s (3)
with the ensuing bi-unitary mass diagonalization
Ut MEUg = M3, = diag (M, My, ..., M i) - (4)

In the equations above, the indices A = Ay, Ag; A =1,...,n; Ag=n+1,....n+m
are those in the symmetry basis, and F' = f,4,...,n+m; f = 1,2,3 are indices in the
mass basis. It is assumed that m" < My M i,

The matrices U} satisfy the unitarity relations

UsUst =1 (5)

and
U ILUS + USTIRUS = 1, (6)

were I, Ir are the projectors onto the normal and mirror subspaces in the symmetry
basis:

I, = diag(1,...,1;0,...,0),
—_——— ——

Ir = diag(0,...,0;1,...,1) (7)
—_— —

with I, +Ig = I and Ii = I,. Let us also introduce their transformation to the mass
basis
X5 =USLUE . (8)



(k =wu, dand x = L, R). Clearly, X7 are Hermitian and satisfy the projector condition:
XF? = X7 (but note that X + X3 # I in the notations adopted).
Now, the charged current Lagrangian is

9 _
— Ly = EW: EX: Y Vid, + h.c. 9)

and the neutral current one is

~ Lz =22, 3 mA Ny (10)
Ky X

where ¢ = cos fy, with Oy being the Weinberg mixing angle. The corresponding quark
mixing matrices for the charged currents are

V, = U LU, (11)
and for the neutral currents with the operator 75 — s2Q
Ny =T X7 — SQQ; . (12)

Here one has for the electroweak isospin: 75 = 1/2 at kK = v and —1/2 at k = d; for the
electric charge: Qf p = Q"I with Q" =2/3 at k = u and —1/3 at k = d; s = sin Oy .

The charged current mixing matrices Vz and Vg play the role of the generalized CKM
matrices. But contrary to the minimal SM case, they as well as the neutral current mixing
matrices Nf are non-unitary. Namely, one gets by the unitarity relations (5)

VI = Xx¥,
viv, = Xx¢, (13)

where X (X} # I in general) are given by Eq. (8). From the considerations above, the
representations for the V, follow

Ve = X!S, = S, X (14)

with the unitary matrices S, = U;(‘TU;I and the positive definite Hermitian matrices X7,
only one in a pair with fixed y being independent, say, Xg = S;X;(‘SX. The decomposition
(14) is known to be unique. In a case where there are only the normal families, one gets
X7 =1 and X7 =0, so that V; is unitary, Vz = S, and Vi = 0.

It is seen that the neutral current matrices N are not independent of the charged
current ones V). In fact, one can get convinced that V, and the diagonal mass matrices
MG, suffice to parametrize all the fermion interactions in a general class of the SM
extensions by means of the arbitrary numbers of the vector-like isodoublets and isosin-
glets [6]. Indeed, in the case at hand, using the unitarity relations (6), one gets for the
Yukawa Lagrangian in the unitary gauge

H
— Ly = ; ZK_L(XEMgiag o 2XEM§WQXE + MZWQXE) KR

—i—ZFL_LMgngLR +h.ec., (15)



H being the physical Higgs boson. It follows from the above expression and Egs. (10),
(12) that all the flavour changing neutral currents are induced entirely by the lack of
unitarity of the charged current mixing matrices V,. In the case with only the normal
families (X} = I, X§ = 0) the usual SM expressions for Ly, Lz and Ly are recovered,
the two latter ones being flavour conserving.

We propose the following prescription for the model independent parametrization of
the V). The problem is that they are non-unitary and thus are difficult to parametrize
directly. So, the idea is to express them in terms of a set of the auxiliary unitary matrices.
First of all, note that in the absence of any restrictions on the Lagrangian the unitary
matrices Uf in Eq. (3) would be arbitrary. Now, an arbitrary (n +m) x (n +m) unitary
matrix U can always be uniquely decomposed as U = U |nxn Ulmxm Ulnxm. Here Ulpxy is
a unitary matrix in the n x n subspace. It is built of the n? generators. Similarly, U | mxcm
is the restriction of U onto the m x m subspace, and it is built of the m? generators. And
finally, Ul,xm means a unitary (n +m) X (n + m) matrix built of the 2nm generators
which mix the two subspaces.

Now, by means of the symmetry basis transformations G of Table 2 one can always
put, without loss of generality, the matrices U] to the form

Up = Uﬂnxm )

Ug = Uglaxm

Ug = U1€f|nxn U1€f|nxm )

Ugﬂ = Ug|m><m Ué|n><m . (16)

This representation includes six auxiliary unitary matrices. Clearly, they depend on the
n(n—1)/2 4+ m(m —1)/2 4+ 4mn] moduli and [n(n + 1)/2 + m(m + 1)/2 + 4mn| phases,
and these numbers are redundant. But the nm moduli and the same number of phases
can be eliminated through the n x m matrix constraint

Uity = UMY, UL T, . (17)

diag

ILUE thiag
The latter one follows from the equality of the direct mass matrices M in Eq. (1) for the
up and down quarks, and it includes additionally the 2(n+m) independent moduli which
enter M, and MY, .. By means of Eq. (17) one can express, e.g., one of the US|, in
terms of all other matrices. And finally, the 2(n + m) — 1 phases can be removed via the
residual phase redefinition for the quarks in the mass basis. Putting all together, one can
easily verify that the total number of the independent parameters is precisely as expected
from Table 2.

Having parametrized the auxiliary unitary matrices, one gets for the V)

VL = Uz”nxm IL Ug|n><n Ug|n><m 5
VR = U}%T|n><m IR U}%|m><m U}%|n><m (18)
and for the X7
XE = UMnxm I Uglnsm - (19)



When eliminating the 2(n +m) — 1 redundant phases, one can always make such a choice
as to render the diagonal and above-the-diagonal elements of the Vj, (or Vi) to be real
and positive.

This gives a principal solution to the problem. When there are only the normal
families (m = 0), the usual parametrization in terms of just one unitary matrix U¢|,x,,
is readily recovered. For the case with a pair of VLEF’s (n = 4, m = 1) we got also the
explicit expressions of all the relevant quantities in terms of a minimal common set of the
independent arguments parametrizing the mass matrices (see the next section). It is of
much use at the model independent parametrization to estimate the relative magnitudes
of the various mixing elements in terms of a small quantity ¢ = v?/M? < 1. Otherwise,
one has a priori no idea of this.

Finally, under small mixing it is useful to decompose

Vi = Vo + AV, (20)

with the decoupling limit taken as the zeroth order approximation V4,, and with correc-
tions AV, vanishing at M > v. To illustrate the behavior in the limit, let us consider
the aforementioned case with a pair of the VLF’s. One gets here

Ve 0 0
Vor, = 0 10 (21)
0 00
and
Vor = diag (0,0,0,1,0) , (22)

Vo being the usual 3 x 3 charged current matrix of the SM. Hence, for the X} as given
by Eq. (13), one has in the zeroth order

X5t = diag(1,1,1,1,0)
X4 = diag(0,0,0,1,0) . (23)

It follows from Egs. (21)—(23) that in the limit M > v there are indeed two VLF’s,
the forth and the fifth ones, that interact in the left-right symmetric manner, one of the
VLEF’s, the fifth one, being singlet under interactions with the W boson. Besides, as it
follows from Eq. (15), both these families decouple from the Higgs boson in the leading
order of O(M/v), only the Yukawa terms O(M?) being left at most.

3. Explicit realization

The mass/flavour basis parameters, M;‘;zg and Vi g, are phenomenological by their
very nature. They reflect an obscure mixture of contributions of quite a different physical
origin. In particular, they shed no light on the mixing magnitudes. On the contrary, the
parameters in the symmetry basis, i.e. Yukawa couplings and the direct mass terms M
and M™', M% have the straightforward theoretical meaning. So, we express the former



ones in terms of the latter ones. This permits us to expand upon the idea of the relative
magnitude of the various mixing elements in terms of the small quantity v/M.

The asymptotic freedom requirement for the SU(2)w electroweak interactions results
in the restriction that the total number of the electroweak doublets should not exceed 21.
The number of doublets in a chiral family being 4, this is equivalent to the restriction
that the total number of the families is (n +m) < 5. Hence the maximum number of
the extra VLF’s allowed by the asymptotic freedom is two, the case we stick to in what
follows®.

Using here the global symmetries G of Table 2, one can bring, without loss of generality,
the quark mass matrices in the symmetry basis to the following canonical form

m"“;’c ,u""f 0
ME=1 u* mry M , (24)
0 MH/ m"‘5

where M, M*' are the real scalars and p*/, ,u""f, m”4, m"~y are, in general, complex. Here
the lower case characters generically mean the masses of the Yukawa origin (~ Yv). Let
us remind that M in Eq. (24) is common for both M* and M¢. The three-dimensional
matrices m"* are Hermitian and positive definite, and one of them, e.g. m", can always
be chosen diagonal. Under such a choice one can simplify further:

Mg = U MPUg, (25)
where
m 0 0 wY 0
0 my 0 p% O
M = 0 0 mfy p'y 0 (26)

pE ot ™ omiy M
0 0 0 M ms

with a redefinition of ;*/ and ,u""f, and with the diagonal elements m"; being real and
positive. The matrices Mf have a lot of texture zeros and are easiest to operate. The
corresponding unitary U[ are given by

Uy = 1,
Ve 0
Uy = (00 b), (27)

Ve being the 3 x 3 CKM matrix and I the 2 x 2 identity matrix. The mass matrices of
Eq. (26) possess the residual symmetry U(1)% which is reduced to U(1)® by the baryon
number conservation. So, one can use the phase redefinitions for two of the light d
quarks which leave just one complex phase in V¢ in accordance with the decoupling limit
requirement.

6This might be a landmark for the number of the extra families.



It is seen from Egs. (26) and (27) that in this parametrization the total number of
the physical moduli is 10 + 15 + 3 = 28, as it should be according to Table 2. As for the
phases, their number is in general 16 + 1 = 17, i.e. three of them are spurious and can
be removed. For example, by means of the residual phase redefinition for the three light
u quarks, one can make %/ or ,u"’f to be real, or put some other three relations on their
phases. This exhausts the freedom of the phase redefinitions, leaving only the physical
parameters.

The characteristic equations (see Appendix)

det (MEMET — X*T) =0 (28)

give for the roots in the first order (i.e. up to the relative corrections O(v?/M?) to the
leading order):

_ WP gl m
A\ =m; = m?(l—( + )>—i— d (mspf 1y + hoc.)

M? M2 M M
M=T = M2+ Sl + ff? +
M/2 M
s (maf o [ms ) + T (mams + hic.)) |
=2 ’
A5 = M5 = M2 —|—E|Iu/f|2+ |m4|2 + |m5|2
M? M
+m((|m4|2 + |m5|2) + M(m4m5 + h.c.)) (29)

with the superscripts k = u, d being suppressed’. Here it is supposed that one has, in
general, M ~ M’ but M # M’ 8.

It is seen that corrections to m?c are proportional to m; themselves, i.e. the light quarks
are still chirally protected. This property drastically reduces the otherwise dangerous
corrections to the masses of the lightest u and d quarks at the moderate M. In the limit
my — 0 it naturally happens without any fine tuning beyond that of the SM. On the
other hand, it means that within the perturbation theory the masses of the lightest quarks
cannot entirely be induced by an admixture of the vector-like families: if my = 0 then
mys = 0, too. But at the finite m one finds for the masses of the light quarks

I O W O SN s
=1 5+ ) ) + 5 (g ). (&0

and for the validity of perturbative expansion it could require some fine tuning for ms at
the moderate M.

"Hence, the up and down quarks of the fourth family are always (almost) degenerate, whereas those
of the fifth family are in general not. Nevertheless, because the fifth family does not couple to the W
boson in the zeroth order (see Eqs. (21), (22)) this does not result in the strong coupling ~ (M — M4
of the longitudinal W with the fifth heavy family, as well as with the fourth one.

8The degenerate case M = M*' (for one or both k = u, d) is to be studied separately. It modifies the
results for heavy families, but fortunately does not influence the validity of those concerning the light
quarks exclusively.



Once the physical masses are known, one can obtain the matrices Uy}, and Uiy of the
bi-unitary transformation
UrfMGUs = Mg - (31)
Obviously, they satisfy the relations

MGMGUR = UiaMii,”

MEMGIUT, = Ui Mi,,” (32)
which are to be considered as the sets of the independent linear equations for their
columns. Having solved the equations, one can find the elements of UT, which are given
in Appendix. Finally, one has for the total matrices of the bi-unitary transformations of
Eq. (4)

Ui =Uy Up

Iy (33)
where Uf are given by Eq. (27).

Hereof one gets the mixing matrices V, as given by Egs. (A.9), (A.10) of Appendix and
then the charged current Lagrangian Ly as given by Eq. (9). The Z-mediated neutral
current Lagrangian Lz is as given by Eqgs. (10), (12) with X7 from Eqgs. (A.11), (A.12).

The neutral scalar current Lagrangian takes the general form

H
— Ly =— S RLUFH(MF — M5, U kg + hec. (34)
with the direct mass matrices
O3 O 0
MG, = 0 0 M , (35)
0 M* 0

where Os is the 3 x 3 zero matrix. As a consequence of the substraction of the direct
mass terms, the total mass and Yukawa matrices are not diagonalizable simultaneously
in the same basis, at variance with the SM case. In the mass basis, the Higgs interaction
Lagrangian is non-diagonal

H
_['H = ;ZK_L HKHR—l—h.C. (36)

with the explicit form of H" given by Egs. (A.13), (A.14) of Appendix.

One should stress that for the light quarks all the off-diagonal components of the
Lagrangian Ly (beyond that of the minimal SM), as well as those of the £; and Ly
are suppressed by the ratio v?/M?, and it does not depend on the details of the mass
matrices. Besides, it follows from the above that, among the off-diagonal interactions,
the Higgs mediated interactions are the only ones that do not vanish in the decoupling
limit. Hence, the heavy quarks are expected to decay mainly into the light ones and the
Higgs boson with the natural decay width T' ~ |[Y'|?/4r M. As a result, all the leading
loop corrections to the light quark processes with the internal heavy vector-like quarks
are expected to be mediated by the Higgs boson exchanges. So, the modern SM physics,
i.e. predominantly that of the light fermions and the gauge bosons, may be succeeded by
that of the heavy vector-like fermions and the Higgs boson.

10



4. Conclusions

We have shown that the mere addition of a pair of the VLF’s drastically changes all
the characteristic features of the minimal SM. First of all, the generalized CKM matrix
for the left-handed charged currents ceases to be unitary. Moreover, this non-unitarity
takes place in the whole flavour space but not only in the light quark sector which would
occur for adding only the normal families. Further, there appear the right-handed charged
currents, the flavour changing neutral currents, both the vector and scalar ones, all with
the non-unitary mixing matrices and with a number of C'P violating phases.

Due to decoupling relative to the large direct mass terms M, the extended SM defi-
nitely does not contradict experiment in the limit M > v. But at the moderate M > v,
the addition of a pair of the VLF’s would make the model phenomenology, especially that
of the flavour and C'P violation, extremely rich. So, the extension opens new prospects
for studying the deviations from the SM in the future experiments at high energies.

Appendix

One has generically (with the indices kK = u, d being omitted)

MM =
(mi+ml?)  php” Ty (maps; + pymy) i M’
popy”  (ma+|pel?)  paus” (mapss + pymy) iy M’
pspy” papy” (M3 |psl?)  (maps + pymy) pis M’
(mipm (mape (msps (M2 + [ma* (ma M’
i ma) ) ) +2[uf ") +Mm2)
py M piy" M py" M (mEM 4+ Mms) (M + |ms|?)
(A1)
The characteristic equation
det (MM} — AI) =0 (A.2)

in the explicit form is
N\ [MQ + M2 (i P )+ mal + |m5|2]
2 2
A [MQM’ + M8 (m} + |ufl?) + MPS(mF + |u]?)
—~MM' (myms +h.c.) + m2m3 +m3im3 + m%mg]

N [MQM’QEm? - M2 (m3md -+ mim3 + mim

11



+mi () + 1]?) + m3 (| + b [?) + m3 (] + b))
+M"? (mfm% + mimj + mim;

i (|paf* + s ]?) + m3 (| + al®) + m3(m]” + |al))
—i—MM’((—mJ]m?c + Smppd ply)ms + h.c.) - mfm%mg]

A [MQM’Q (mim3 + mm? + m3m?)

M2 (ki + m3mal [+ i s + i3] s )
M (g + mdmda + mimd sl + mimd o )|

22, 2 2 2 1 2 2 2 2 2
—[M M"mimsms; + MM ((—m1m2m3m4+m1m2m3,u1,u1

+mImama oty + mimams s iy )ms 4 h.c.)] +...=0. (A.3)
Let us rewrite it in terms of the dimensionless quantity x = \/M?2. Then, one can
transform Eq. (A.3) as
@ — )@ — i) (@ — i) = ePi(x) . (A4)
!
where
= W(E|Mf|2+2|,u’f|2+|m4|2—|—|m5|2) (A.5)

is the small paremeter (¢ = O(v?/M?)) and x}o) = m3/M* = O(e), 20 =1, 2V =
M"?/M? are the zeroth order roots. The fourth power polynomial Py(z) = (z*+ ...) has
coefficients O(1) or less. The dropped out terms corresponding to dots in Eq. (A.3) result
in the relative corrections O(e?), and hence they can be omitted in our approximation.
Iterating Eq. (A.4), one arrives at the roots of Eq. (29).

The elements of the Uy, matrix (with the indices £ = u, d being suppressed) are as
follows:

1 1
Vg =8} (1= gnf) + @] ~ D0
1 1
Ui = Wpic , Uil = Mpg :
1, 5 1L 5
UlLf = MQPf ) UlLf = Mpf )
1 1
Uirs Mpg , Uij Mpi :
1 1
UlLi—l 2M2n4 s Ung—l 2M2'ﬂ,g s

(A.6)
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and

1 1
Ur} = M,gp/f: , Ul = Mp’f—f ;
1 5 1 4
Uir} = Mlzp/f » Uiry = Mp/f ;
1 5 1 4
Uiry = MP'4 , Uips = Mpls ,
1 1 4
Ule =1- W”ls ) UlRZ = 1= Wn/zx ) (A-7)
where
o W md = ms ) (mpnd "y — mopt ) + by (g — 250" my)
p = / * * )
! (m2 —m?)(mppy — Srmip™)
p (et Pl — ) (4 + o ()
p4 = - f ’ * * )
my(myppy — Semips™)
/ 2
. o (e + Ims|?)
= m - .
Pi a my + %mg
o = 57 (kg + m3 e |?) — mymsp 1) 5 = %M'
5 — / * * 9 - Y
my(mygpy — Homzps™) Tt
M’ !
1 mams — 3P s_ MM M.
bs = ma + %/mg y Pa = M/Q Y (m4+ M/m5) )
b ARk + m3p P) — mymspd 2
nf - 1 M’ % f* )
myg(myppl — Srmapd”)
nt = m4m5_/%f’ ’
4 m4+ %mg )
M"? M 2
ng = U2 M2 (ma + Mms) + B (A-8)

and ky = M?*(m; —m3), p = M* + S|pf” - Mi. The p/, n/ are obtained from p, n,
respectively, by substituting pu/ < pe, my < my, ms < mg, M < M. All these
auxiliary parameters are, in general, of order O(M?). The elements of the matrix U g
are obtained from those for U;;, by the same substitution followed by changing column
indices 4 < 5 for the matrix elements (Uy1)% and (Uyyr)5,.
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Hereof one gets for the charged current matrix V; = Vo, + AV

AV =
—MLZ p i Vci + Vo?pd%) (Ve +l) Ve
) 1 (pd?* ud 1
C’h+p 2M2(n4+n4) Mp4 ’
L p Ve, Lpuy” ﬁ(Zp Y Ve

+p“fi*pdfi)
(A.9)

with Vp; from Eq. (21) and similarly for Vg = Vo + AVg with Vo = diag (0,0,0,1,0)

and
AVp =
u/f d/g wrf* u/f* d/4
Mu/ d/p Mu/p Mu/ d/p
(A.10)
1 d'9 1 jup 1 sds 1t
Md/p 5 _2Mu/2n 5_2Md/2n 5 Md/p 5
wd* g9 1 urd* 1 wrd* gt
eyl 5 Ps M P s ey 5 Ps

For the neutral current matrices (k = u, d being suppressed everywhere below) one gets

and

XL :XOL_

Xp = Xor +

ol Pl el Tt L
ﬁpg*pg m2 |p5|2 MpzsL J (A.11)
ﬁpg ﬁps —#ng
Lol pe Sl el
P —kanl pd ’ (A.12)
=P s =l

with Xor = I, and Xop = diag (0,0,0,1,0).
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Finally, for the Higgs mediated neutral current matrix H = Ho + AH one has

mﬂi? 0 —%pg
Ho = —%p’g 0 —%p‘é* — %p’g (A.13)
0 —(pi" +7pd) 0
and
AH =
* * * 5 * * 4 * o4
— (pi p'e+pl p’i) —ﬁ(p?—f P +pl > W(%pg n'y — pj p’5>
* 4 4 *
NP (%nip’g —ph p’i) —s7(0 =2 ?) (nip’s + n/yp} >
+ﬁni + 2]\]\445/2 n/g 9
—ﬁpg p'4
* 5 p*
(e rl) | e — i = Sl )
+5iEnip's + oz + g
1 5% /4
—wuPi Ps

(A.14)

where p is defined above in Appendix, and p’ can be obtained from p by the usual sub-
stitutions pf <+ ", my <> mj, ms <> mi, M < M.
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FO.®.ITuporos, O.B.3enun
Macchl u cMelnuBaHue KBAPKOB B CTAHIAPTHON MOMIEIN C TSIXKEIBIMI BEKTOPOIONOGHBIMUI
CceMeliCTBaMU.

Opurusan-MakeT HOOTOTOBIIEH ¢ HOMOMIBIO cucTeMbl IATRX.
Penaxtop E.H.I'opusna. Texanueckuit penaxrop H.B.Opiosa.

Tlogmucano k mewaTn 26.03.99. dopmar 60 x 84/8. OdceTnast meyaTs.
Ileu.1. 2,00.  Yu.-umsma. 1,536.  Tupax 180. 3axka3z 80. Wunekc 3649.
JIP Ne020498 17.04.97.

THII P® NucturyT Qusukum BHICOKUX SHEPTUI
142284, TIporBuro MockoBckoit 061.
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