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Abstract

Pirogov Yu.F., Zenin O.V. Quark masses and mixings in the standard model with the heavy

vector-like families: IHEP Preprint 99–15. – Protvino, 1999. – p. 16, tables 3, refs.: 11.

The extension of the standard model with pairs of the vector-like families is studied. The quark
mixing matrices for the left- and right-handed charged currents, as well as those for the flavour

changing neutral currents, the Z and Higgs mediated, are found. Both the model independent
parametrization for an arbitrary case and an explicit realization for the case with one pair of

the heavy vector-like families are presented. The extension opens new prospects for studying
deviations from the standard model in the future experiments at high energies.

aNNOTACIQ

pIROGOW ‘.f., zENIN o.w. mASSY I SME[IWANIE KWARKOW W STANDARTNOJ MODELI S TQVELYMI

WEKTOROPODOBNYMI SEMEJSTWAMI: pREPRINT ifw— 99–15. – pROTWINO, 1999. – 16 S., 3 TABL.,
BIBLIOGR.: 11.

rASSMOTRENO RAS[IRENIE STANDARTNOJ MODELI PARAMI WEKTOROPODOBNYH SEMEJSTW. nAJDE-
NY MATRICY SME[IWANIQ KWARKOW DLQ LEWO- I PRAWOSPIRALXNYH ZARQVENNYH TOKOW, A TAK-

VE DLQ NEJTRALXNYH TOKOW S NARU[ENIEM AROMATA, PERENOSIMYH Z I HIGGSOWSKIM BOZONOM.
pREDSTAWLENY MODELXNO-NEZAWISIMAQ PARAMETRIZACIQ DLQ PROIZWOLXNOGO SLUˆAQ I QWNAQ

REALIZACIQ DLQ SLUˆAQ S EDINSTWENNOJ PAROJ TQVELYH WEKTOROPODOBNYH SEMEJSTW. dAN-
NOE RAS[IRENIE OTKRYWAET NOWYE WOZMOVNOSTI DLQ IZUˆENIQ OTKLONENIJ OT STANDARTNOJ

MODELI W BUDU]IH “KSPERIMENTAH PRI WYSOKIH “NERGIQH.
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1. Introduction

At present we know of three quark-lepton chiral families in the standard model (SM).
Their mixing within the present experimental accuracy is well known to be described by
the 3 × 3 unitary matrix [1]. But beyond it, whether there are extra families and, if so,
what their masses and mixings are — this is yet an unsolved problem.

A recent two-loop renormalization group analysis [2] of the SM shows that subject to
the precision experiment restriction on the Higgs mass, MH ≤ 215 GeV at 95% C.L. [3],
the forth chiral family, if alone, is excluded1. In fact, it does not depend on whether
this extra family has the normal chiral structure or the mirror one. But as it is noted in
Ref. [2], a pair of the opposite chirality families with the relatively low Yukawa couplings
evades the SM self-consistency restrictions and could still exist. In order to conform to
observations, these extra families, which otherwise can be considered as the vectorial ones,
should get large direct masses and drop out of the light particle spectrum of the SM in
the decoupling limit. Nevertheless, at not too high masses, say, in the TeV region, such
families could result in observable corrections to the SM interactions through mixing with
the light fermions.

Various vector-like fermions are generic in many extensions of the SM like the super-
string and grand unified theories, composite models, etc. Many issues concerning those
fermions, both the electroweak doublets and singlets, the latter ones of the up and down
types, were considered in the literature [5], [6]. On the other hand, there are numerous
studies of the n > 3 chiral family extensions of the SM [7], [8]. Some topics concerning
the SM extensions with the vector-like families are studied in Ref. [9].

In a previous letter [10] we presented the results for the SM light quark masses and
mixings in the presence of the extra vector-like families. In the current paper we give
the complete results including those for the heavy quarks. In Section 2 we carry out the
model independent analysis for the general case. In Section 3 an explicit realization for
the case with a pair of the heavy vector-like families is presented. In Appendix we give
the technical details of the diagonalization procedure and the explicit form of the mixing
matrices through the elements of the general mass matrices.

1The recent more conservative restrictionsmH ≤ 262 GeV orMH ≤ 300 GeV at 95%C.L., respectively,
from the first and second papers of Ref. [4] render the fourth chiral family only marginally possible.
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2. Model independent analysis

The most general content of the SM families consisting of the SU(2)W×U(1)Y doublets
and singlets is illustrated in Table 1. The notations with a hat sign designate quarks in
the symmetry/electroweak basis where, by definition, the SM symmetry structure is well
stated. “Normal” in the row means the n ≥ 3 chiral families, similar in their chiral
and quantum number structure to three ordinary families of the minimal SM. “Mirror”
means the m ≥ 0 mirror conjugate families with the normal quantum numbers, or in
other terms, the charge conjugate families with the normal chiral structure. We suppose,
for definiteness, that n > m. “Chiral” in the column means the chiral notations, and
“mixed” corresponds to the more traditional left-right notations2.

Table 1. The general content of the SM families.

# Chiral Mixed

Normal n QL = (q̂L, û
c
L, d̂

c
L) (q̂L, ûR, d̂R)

Mirror m Q′R = (q̂′R, û
′c
R, d̂

′c
R) (q̂′R, û

′
L, d̂

′
L)

In general, quarks gain masses from two different physical mechanisms: that of the
SM Yukawa interactions and that of a New Physics resulting in the SM invariant direct
mass terms. Being chirally unprotected the latter ones should naturally be characterized
by a high mass scale M , M � v, with v being the SM Higgs vacuum expectation value.
In the symmetry basis the kinetic, Yukawa and direct mass Lagrangian has the following
most general form:

L = iq̂LD/ q̂L + iûRD/ ûR + id̂RD/ d̂R

+ iq̂′RD/ q̂
′
R + iû

′
LD/ û

′
L + id̂

′
LD/ d̂

′
L

−
(
q̂LY

uûRφ
c + q̂LY

dd̂Rφ+ û
′
LY
u′q̂′Rφ

c† + d̂′LY
d′q̂′Rφ

† + h.c.
)

−
(
q̂LMq̂

′
R + û

′
LM

u′ûR + d̂′LM
d′d̂R + h.c.

)
, (1)

where D/ ≡ γµDµ is the SM covariant derivative, φ is the Higgs doublet and φc is the
charge conjugate one. In Eq. (1), Y and Y ′ are, respectively, the square n×n and m×m
Yukawa matrices; M and M ′ are, respectively, the rectangular n × m and m × n direct
mass matrices. the

Without loss of generality, the matrices M and M ′ can always be brought to the
m×m triangular form with the rest being zero. Now, one can rewrite the Lagrangian (1)
in terms of the m pairs of the Dirac families Q = (QL, Q

′
R), constituting the vector-like

representations of the SM, and the n −m chiral families QL. In neglect of the Yukawa
couplings, the Lagrangian of the Dirac families is explicitly P invariant. Hence, of those

2To be as clear as possible, what we are talking about, say, in terms of the 15-plets of the GUT SU(5)
(15 = 10⊕ 5) is n15L⊕m15R, or n15L⊕m15L. Nevertheless, the scales we have in mind are much lower
than those of the GUT’s, typically O(1− 100) TeV, i.e. rather those of the composite models.
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initial n + m chiral families, the 2m ones transform after mass diagonalization to m
pairs of the heavy vector-like families (VLF’s)3. This is to be expected according to the
survival hypothesis [11] because the chirally conjugate families lose their chiral protection.
The unbalanced n−m families can be considered as the (approximate) pure chiral ones.
In practice, we suppose that the net number of the chiral families is three and hence
n = 3 +m.

We generalize the parameter counting for the chiral families of Ref. [8] to the case with
extra VLF’s. It goes as is shown in Table 2. Here G is the global symmetry of the kinetic
part of the Lagrangian (1). It is broken explicitly by the mass terms, only the residual
symmetry H = U(1) of the baryon number being left in the general case we consider4

Hence, the transformations of G/H can be used to absorb the spurious parameters in
Eq. (1) . leaving only the physical setMphys of them. The last four lines in Table 2 present
the physical parameters for the minimal SM and for the three its simplest extensions: the
traditional one with a normal family, the one with a mirror family and the one with of a
pair of the normal and mirror families5. The last case will be considered in detail in the
next section.

Table 2. Parameter counting in the symmetry/electroweak basis.

Couplings Moduli Phases
and symmetries

Y u, Y d, Y u′, Y d
′
, 2 (n2 +m2) 2 (n2 +m2)

M,Mu′,Md′ +3 nm +3 nm

G = U(n)3 × U(m)3 −3
2
[n(n− 1) +m(m− 1)] −3

2
[n(n+ 1) +m(m+ 1)]

H = U(1) 0 1

Mphys(n,m)
1
2
(n+m)(n+m− 1) 1

2
(n+m− 2)(n+m− 1)

+2 nm+ 2 (n+m) +2 nm

MSM
phys(3, 0) 6 + 3 = 9 1

Mphys(4, 0) 8 + 6 = 14 3

Mphys(3, 1) 8 + 12 = 20 9

Mphys(4, 1) 10 + 18 = 28 14

Further, the kinetic part of the effective Lagrangian with the W , Z and Higgs bosons
being integrated out is

Leff = iuLD/ uL + idLD/ dL + iuRD/ uR + idRD/ dR

−(uLMu
diaguR + dLMd

diagdR + h.c.) , (2)

whereD/ means the covariant derivatives w.r.t. the QED and QCD only; uχ and dχ (χ = L,

R) generically mean the quarks in the mass/flavour basis, and Mu,d
diag are the diagonal

3To be precise we call as VLF the family mass eigenstate which possesses the (approximate) left-right
symmetric SM interactions.
4The degenerate cases leave more residual symmetries and require special consideration.
5The first two cases are practically excluded by the SM self-consistency requirements [2].
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mass matrices defining the basis. The corresponding parameter counting is presented in
Table 3. Due to the absence of the mutual quark transitions, the total residual symmetry
of the mass matricesMu,d

diag is here H = U(1)2(n+m). Table 3 clearly shows the breakdown
of the moduli ofMphys in Table 2 on the physical masses and mixing angles.

Table 3. Parameter counting for the effective Lagrangian.

Couplings Moduli Phases
and symmetries

Mu,Md 2 (n+m)2 2 (n+m)2

G = U(n+m)4 −2(n +m)(n+m− 1) −2(n+m)(n+m+ 1)

H = U(1)2(n+m) 0 2(n+m)

Mu
diag, Md

diag 2(n+m) 0

Let us now redefine collectively quarks in the symmetry basis as κ̂χ = ûχ, d̂χ and
these in the mass basis, i.e. the quark eigenstates withMphys being diagonal, as κχ = uχ,
dχ (χ = L, R). The bases are related by the unitary (n+m)× (n+m) transformations

κ̂χA = (U
κ
χ )
F
A κχF , (3)

with the ensuing bi-unitary mass diagonalization

UκL
†MkUκR =Mκ

diag = diag (m
κ
f ,M

κ
4, . . . ,M

κ
n+m) . (4)

In the equations above, the indices A = AL, AR; AL = 1, . . . , n; AR = n + 1, . . . , n +m
are those in the symmetry basis, and F = f, 4, . . . , n +m; f = 1, 2, 3 are indices in the
mass basis. It is assumed that mκf � M

κ
4, . . . ,M

κ
n+m.

The matrices Uκχ satisfy the unitarity relations

Uκχ U
κ
χ
† = I (5)

and
Uκχ
†ILU

κ
χ + U

κ
χ
†IRU

κ
χ = I , (6)

were IL, IR are the projectors onto the normal and mirror subspaces in the symmetry
basis:

IL = diag ( 1, . . . , 1︸ ︷︷ ︸
n

; 0, . . . , 0︸ ︷︷ ︸
m

) ,

IR = diag ( 0, . . . , 0︸ ︷︷ ︸
n

; 1, . . . , 1︸ ︷︷ ︸
m

) (7)

with IL + IR = I and I
2
χ = Iχ. Let us also introduce their transformation to the mass

basis
Xκχ = U

κ
χ
†IχU

κ
χ . (8)
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(κ = u, d and χ = L, R). Clearly, Xκχ are Hermitian and satisfy the projector condition:
Xκχ

2 = Xκχ (but note that X
κ
L +X

κ
R 
= I in the notations adopted).

Now, the charged current Lagrangian is

−LW =
g√
2
W+
µ

∑
χ

uχγ
µVχdχ + h.c. (9)

and the neutral current one is

− LZ =
g

c
Zµ
∑
κ,χ

κχγ
µNκχ κχ , (10)

where c ≡ cos θW , with θW being the Weinberg mixing angle. The corresponding quark
mixing matrices for the charged currents are

Vχ = U
u
χ
†IχU

d
χ , (11)

and for the neutral currents with the operator T3 − s2Q

Nκχ = T
κ
3X

κ
χ − s2Qκχ . (12)

Here one has for the electroweak isospin: T κ3 = 1/2 at κ = u and −1/2 at κ = d; for the
electric charge: QκL,R ≡ QκI with Qκ = 2/3 at κ = u and −1/3 at κ = d; s ≡ sin θW .

The charged current mixing matrices VL and VR play the role of the generalized CKM
matrices. But contrary to the minimal SM case, they as well as the neutral current mixing
matrices Nκχ are non-unitary. Namely, one gets by the unitarity relations (5)

VχV
†
χ = Xuχ ,

V †χVχ = Xdχ , (13)

where Xκχ (X
κ
χ 
= I in general) are given by Eq. (8). From the considerations above, the

representations for the Vχ follow

Vχ = X
u
χSχ = SχX

d
χ (14)

with the unitary matrices Sχ = U
u
χ
†Udχ and the positive definite Hermitian matrices X

κ
χ ,

only one in a pair with fixed χ being independent, say, Xdχ ≡ S†χXuχSχ. The decomposition
(14) is known to be unique. In a case where there are only the normal families, one gets
XκL = I and X

κ
R = 0, so that VL is unitary, VL = SL, and VR = 0.

It is seen that the neutral current matrices Nκχ are not independent of the charged
current ones Vχ. In fact, one can get convinced that Vχ and the diagonal mass matrices
Mκ
diag suffice to parametrize all the fermion interactions in a general class of the SM

extensions by means of the arbitrary numbers of the vector-like isodoublets and isosin-
glets [6]. Indeed, in the case at hand, using the unitarity relations (6), one gets for the
Yukawa Lagrangian in the unitary gauge

− LY =
H

v

∑
κ

κL
(
XκLMκ

diag − 2XκLMκ
diagX

κ
R +Mκ

diagX
κ
R

)
κR

+
∑
κ

κLMκ
diagκR + h.c. , (15)
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H being the physical Higgs boson. It follows from the above expression and Eqs. (10),
(12) that all the flavour changing neutral currents are induced entirely by the lack of
unitarity of the charged current mixing matrices Vχ. In the case with only the normal
families (XκL = I , X

κ
R = 0) the usual SM expressions for LW , LZ and LY are recovered,

the two latter ones being flavour conserving.
We propose the following prescription for the model independent parametrization of

the Vχ. The problem is that they are non-unitary and thus are difficult to parametrize
directly. So, the idea is to express them in terms of a set of the auxiliary unitary matrices.
First of all, note that in the absence of any restrictions on the Lagrangian the unitary
matrices Uκχ in Eq. (3) would be arbitrary. Now, an arbitrary (n+m)× (n+m) unitary
matrix U can always be uniquely decomposed as U = U |n×n U |m×m U |n×m. Here U |n×n is
a unitary matrix in the n×n subspace. It is built of the n2 generators. Similarly, U |m×m
is the restriction of U onto the m×m subspace, and it is built of the m2 generators. And
finally, U |n×m means a unitary (n + m) × (n + m) matrix built of the 2nm generators
which mix the two subspaces.

Now, by means of the symmetry basis transformations G of Table 2 one can always
put, without loss of generality, the matrices Uκχ to the form

UuL = UuL|n×m ,
UuR = UuR|n×m ,
UdL = UdL|n×n UdL|n×m ,
UdR = UdR|m×m UdR|n×m . (16)

This representation includes six auxiliary unitary matrices. Clearly, they depend on the
[n(n− 1)/2 +m(m− 1)/2 + 4mn] moduli and [n(n+ 1)/2 +m(m+ 1)/2 + 4mn] phases,
and these numbers are redundant. But the nm moduli and the same number of phases
can be eliminated through the n×m matrix constraint

ILU
u
LMu

diagU
u
R
†IR = ILU

d
LMd

diagU
d
R

†
IR . (17)

The latter one follows from the equality of the direct mass matrices M in Eq. (1) for the
up and down quarks, and it includes additionally the 2(n+m) independent moduli which
enterMu

diag andMd
diag. By means of Eq. (17) one can express, e.g., one of the U

κ
χ |n×m in

terms of all other matrices. And finally, the 2(n+m)− 1 phases can be removed via the
residual phase redefinition for the quarks in the mass basis. Putting all together, one can
easily verify that the total number of the independent parameters is precisely as expected
from Table 2.

Having parametrized the auxiliary unitary matrices, one gets for the Vχ

VL = UuL
†|n×m IL UdL|n×n UdL|n×m ,

VR = UuR
†|n×m IR UdR|m×m UdR|n×m (18)

and for the Xκχ
Xκχ = U

κ
χ
†|n×m Iχ Uκχ |n×m . (19)
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When eliminating the 2(n+m)− 1 redundant phases, one can always make such a choice
as to render the diagonal and above-the-diagonal elements of the VL (or VR) to be real
and positive.

This gives a principal solution to the problem. When there are only the normal
families (m = 0), the usual parametrization in terms of just one unitary matrix UdL|n×n
is readily recovered. For the case with a pair of VLF’s (n = 4, m = 1) we got also the
explicit expressions of all the relevant quantities in terms of a minimal common set of the
independent arguments parametrizing the mass matrices (see the next section). It is of
much use at the model independent parametrization to estimate the relative magnitudes
of the various mixing elements in terms of a small quantity ε = v2/M2 � 1. Otherwise,
one has a priori no idea of this.

Finally, under small mixing it is useful to decompose

Vχ = V0χ +∆Vχ , (20)

with the decoupling limit taken as the zeroth order approximation V0χ, and with correc-
tions ∆Vχ vanishing at M � v. To illustrate the behavior in the limit, let us consider
the aforementioned case with a pair of the VLF’s. One gets here

V0L =


 VC 0 0

0 1 0
0 0 0


 (21)

and
V0R = diag (0, 0, 0, 1, 0) , (22)

VC being the usual 3 × 3 charged current matrix of the SM. Hence, for the Xκχ as given
by Eq. (13), one has in the zeroth order

Xu,d0L = diag (1, 1, 1, 1, 0) ,

Xu,d0R = diag (0, 0, 0, 1, 0) . (23)

It follows from Eqs. (21)–(23) that in the limit M � v there are indeed two VLF’s,
the forth and the fifth ones, that interact in the left-right symmetric manner, one of the
VLF’s, the fifth one, being singlet under interactions with the W boson. Besides, as it
follows from Eq. (15), both these families decouple from the Higgs boson in the leading
order of O(M/v), only the Yukawa terms O(M0) being left at most.

3. Explicit realization

The mass/flavour basis parameters, Mu,d
diag and VL,R, are phenomenological by their

very nature. They reflect an obscure mixture of contributions of quite a different physical
origin. In particular, they shed no light on the mixing magnitudes. On the contrary, the
parameters in the symmetry basis, i.e. Yukawa couplings and the direct mass terms M
and Mu′, Md′, have the straightforward theoretical meaning. So, we express the former
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ones in terms of the latter ones. This permits us to expand upon the idea of the relative
magnitude of the various mixing elements in terms of the small quantity v/M .

The asymptotic freedom requirement for the SU(2)W electroweak interactions results
in the restriction that the total number of the electroweak doublets should not exceed 21.
The number of doublets in a chiral family being 4, this is equivalent to the restriction
that the total number of the families is (n + m) ≤ 5. Hence the maximum number of
the extra VLF’s allowed by the asymptotic freedom is two, the case we stick to in what
follows6.

Using here the global symmetriesG of Table 2, one can bring, without loss of generality,
the quark mass matrices in the symmetry basis to the following canonical form

Mκ =



mκgf µκ′f 0

µκg mκ4 M

0 Mκ′ mκ5


 , (24)

where M , Mκ′ are the real scalars and µκf , µκ′f , m
κ
4, m

κ
5 are, in general, complex. Here

the lower case characters generically mean the masses of the Yukawa origin (∼ Y v). Let
us remind that M in Eq. (24) is common for bothMu andMd. The three-dimensional
matrices mκ are Hermitian and positive definite, and one of them, e.g. mu, can always
be chosen diagonal. Under such a choice one can simplify further:

Mκ
0 = U

κ
0
†MκUκ0 , (25)

where

Mκ
0 =




mκ1 0 0 µκ′1 0

0 mκ2 0 µκ′2 0

0 0 mκ3 µκ′3 0

µκ1 µκ2 µκ3 mκ4 M

0 0 0 Mκ′ mκ5




(26)

with a redefinition of µκf and µκ′f , and with the diagonal elements m
κ
f being real and

positive. The matricesMκ
0 have a lot of texture zeros and are easiest to operate. The

corresponding unitary Uκ0 are given by

Uu0 = I ,

Ud0 =

(
VC 0
0 I2

)
, (27)

VC being the 3× 3 CKM matrix and I2 the 2× 2 identity matrix. The mass matrices of
Eq. (26) possess the residual symmetry U(1)6 which is reduced to U(1)5 by the baryon
number conservation. So, one can use the phase redefinitions for two of the light d
quarks which leave just one complex phase in VC in accordance with the decoupling limit
requirement.

6This might be a landmark for the number of the extra families.
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It is seen from Eqs. (26) and (27) that in this parametrization the total number of
the physical moduli is 10 + 15 + 3 = 28, as it should be according to Table 2. As for the
phases, their number is in general 16 + 1 = 17, i.e. three of them are spurious and can
be removed. For example, by means of the residual phase redefinition for the three light
u quarks, one can make µuf or µu′f to be real, or put some other three relations on their
phases. This exhausts the freedom of the phase redefinitions, leaving only the physical
parameters.

The characteristic equations (see Appendix)

det (Mκ
0Mκ

0
† − λκI) = 0 (28)

give for the roots in the first order (i.e. up to the relative corrections O(v2/M2) to the
leading order):

λf ≡ m2f = m2f

(
1−

( |µf |2
M2

+
|µ′f |2
M ′2

))
+
mf

MM ′ (m5µ
fµ′f + h.c.) ,

λ4 ≡M
2
4 = M2 + Σ|µf |2 + |m4|2 + |m5|2

+
M ′2

M2 −M ′2

(
(|m4|2 + |m5|2) +

M

M ′ (m4m5 + h.c.)
)
,

λ5 ≡M
2

5 = M
′2 + Σ|µ′f |2 + |m4|2 + |m5|2

+
M2

M ′2 −M2

(
(|m4|2 + |m5|2) +

M ′

M
(m4m5 + h.c.)

)
(29)

with the superscripts κ = u, d being suppressed7. Here it is supposed that one has, in
general, M ∼M ′ but M 
=M ′ 8.

It is seen that corrections tom2f are proportional tomf themselves, i.e. the light quarks
are still chirally protected. This property drastically reduces the otherwise dangerous
corrections to the masses of the lightest u and d quarks at the moderate M . In the limit
mf → 0 it naturally happens without any fine tuning beyond that of the SM. On the
other hand, it means that within the perturbation theory the masses of the lightest quarks
cannot entirely be induced by an admixture of the vector-like families: if mf = 0 then
mf = 0, too. But at the finite mf one finds for the masses of the light quarks

mf = mf

(
1− 1

2

( |µf |2
M2

+
|µ′f |2

M ′2

))
+
1

2

(m5µfµ′f
MM ′ + h.c.

)
, (30)

and for the validity of perturbative expansion it could require some fine tuning for m5 at
the moderate M .
7Hence, the up and down quarks of the fourth family are always (almost) degenerate, whereas those

of the fifth family are in general not. Nevertheless, because the fifth family does not couple to the W
boson in the zeroth order (see Eqs. (21), (22)) this does not result in the strong coupling ∼ (Mu′−Md′)
of the longitudinalW with the fifth heavy family, as well as with the fourth one.
8The degenerate case M =Mκ′ (for one or both κ = u, d) is to be studied separately. It modifies the

results for heavy families, but fortunately does not influence the validity of those concerning the light
quarks exclusively.
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Once the physical masses are known, one can obtain the matrices Uκ1L and U
κ
1R of the

bi-unitary transformation
Uκ†1LMκ

0U
κ
1R =Mκ

diag . (31)

Obviously, they satisfy the relations

Mκ
0
†Mκ

0U
κ
1R = Uκ1RMκ

diag
2 ,

Mκ
0Mκ

0
†Uκ1L = Uκ1LMκ

diag
2 (32)

which are to be considered as the sets of the independent linear equations for their
columns. Having solved the equations, one can find the elements of Uκ1χ which are given
in Appendix. Finally, one has for the total matrices of the bi-unitary transformations of
Eq. (4)

Uκχ = U
κ
0 U

κ
1χ , (33)

where Uκ0 are given by Eq. (27).
Hereof one gets the mixing matrices Vχ as given by Eqs. (A.9), (A.10) of Appendix and

then the charged current Lagrangian LW as given by Eq. (9). The Z-mediated neutral
current Lagrangian LZ is as given by Eqs. (10), (12) with Xκχ from Eqs. (A.11), (A.12).
The neutral scalar current Lagrangian takes the general form

− LH =
H

v

∑
κ

κL U
κ
L
†(Mκ −Mκ

dir)U
κ
R κR + h.c. (34)

with the direct mass matrices

Mκ
dir =


 O3 0 0

0 0 M
0 Mκ′ 0


 , (35)

where O3 is the 3 × 3 zero matrix. As a consequence of the substraction of the direct
mass terms, the total mass and Yukawa matrices are not diagonalizable simultaneously
in the same basis, at variance with the SM case. In the mass basis, the Higgs interaction
Lagrangian is non-diagonal

−LH =
H

v

∑
κ

κL HκκR + h.c. (36)

with the explicit form of Hκ given by Eqs. (A.13), (A.14) of Appendix.
One should stress that for the light quarks all the off-diagonal components of the

Lagrangian LW (beyond that of the minimal SM), as well as those of the LZ and LH
are suppressed by the ratio v2/M2, and it does not depend on the details of the mass
matrices. Besides, it follows from the above that, among the off-diagonal interactions,
the Higgs mediated interactions are the only ones that do not vanish in the decoupling
limit. Hence, the heavy quarks are expected to decay mainly into the light ones and the
Higgs boson with the natural decay width Γ ∼ |Y |2/4π M . As a result, all the leading
loop corrections to the light quark processes with the internal heavy vector-like quarks
are expected to be mediated by the Higgs boson exchanges. So, the modern SM physics,
i.e. predominantly that of the light fermions and the gauge bosons, may be succeeded by
that of the heavy vector-like fermions and the Higgs boson.

10



4. Conclusions

We have shown that the mere addition of a pair of the VLF’s drastically changes all
the characteristic features of the minimal SM. First of all, the generalized CKM matrix
for the left-handed charged currents ceases to be unitary. Moreover, this non-unitarity
takes place in the whole flavour space but not only in the light quark sector which would
occur for adding only the normal families. Further, there appear the right-handed charged
currents, the flavour changing neutral currents, both the vector and scalar ones, all with
the non-unitary mixing matrices and with a number of CP violating phases.

Due to decoupling relative to the large direct mass terms M , the extended SM defi-
nitely does not contradict experiment in the limit M � v. But at the moderate M > v,
the addition of a pair of the VLF’s would make the model phenomenology, especially that
of the flavour and CP violation, extremely rich. So, the extension opens new prospects
for studying the deviations from the SM in the future experiments at high energies.

Appendix

One has generically (with the indices κ = u, d being omitted)

M0M†
0 =




(m21 + |µ′1|2) µ′1µ
′
2
∗ µ′1µ

′
3
∗ (m1µ

∗
1 + µ

′
1m
∗
4) µ′1M

′

µ′2µ
′
1
∗ (m22 + |µ′2|2) µ′2µ

′
3
∗ (m2µ

∗
2 + µ

′
2m
∗
4) µ′2M

′

µ′3µ
′
1
∗ µ′3µ

′
2
∗ (m23 + |µ′3|2) (m3µ

∗
3 + µ

′
3m
∗
4) µ′3M

′

(m1µ1 (m2µ2 (m3µ3 (M2 + |m4|2 (m4M
′

+µ′1
∗m4) +µ′2

∗m4) +µ′3
∗m4) +Σ|µf |2) +Mm∗5)

µ′1
∗M ′ µ′2

∗M ′ µ′3
∗M ′ (m∗4M

′ +Mm5) (M ′2 + |m5|2)



.

(A.1)

The characteristic equation
det (M0M†

0 − λI) = 0 (A.2)

in the explicit form is

λ5 − λ4
[
M2 +M ′2 + Σ

(
m2f + |µf |2 + |µ′f |2

)
+ |m4|2 + |m5|2

]

+λ3
[
M2M ′2 +M2Σ

(
m2f + |µ′f |2

)
+M ′2Σ

(
m2f + |µf |2

)
−MM ′(m4m5 + h.c.) +m

2
1m
2
2 +m

2
1m
2
3 +m

2
2m
2
3

]

−λ2
[
M2M ′2Σm2f +M

2
(
m21m

2
2 +m

2
1m
2
3 +m

2
2m
2
3

11



+m21(|µ′2|2 + |µ′3|2) +m22(|µ′1|2 + |µ′3|2) +m23(|µ′1|2 + |µ′2|2)
)

+M ′2
(
m21m

2
2 +m

2
1m
2
3 +m

2
2m
2
3

+m21(|µ2|2 + |µ3|2) +m22(|µ1|2 + |µ3|2) +m23(|µ1|2 + |µ2|2)
)

+MM ′
(
(−m4Σm2f + Σmfµfµ′f )m5 + h.c.

)
+m21m

2
2m
2
3

]

+λ
[
M2M ′2

(
m21m

2
2 +m

2
1m
2
3 +m

2
2m
2
3

)
+M2

(
m21m

2
2m
2
3 +m

2
2m
2
3|µ′1|2 +m21m23|µ′2|2 +m21m22|µ′3|2

)
+M ′2

(
m21m

2
2m
2
3 +m

2
2m
2
3|µ1|2 +m21m23|µ2|2 +m21m22|µ3|2

)]

−
[
M2M ′2m21m

2
2m
2
3 +MM

′
(
(−m21m22m23m4 +m1m22m23µ1µ′1

+m21m2m
2
3µ2µ

′
2 +m

2
1m
2
2m3µ3µ

′
3)m5 + h.c.

)]
+ . . . = 0 . (A.3)

Let us rewrite it in terms of the dimensionless quantity x ≡ λ/M2. Then, one can
transform Eq. (A.3) as

[∏
f

(x− x(0)f )
]
(x− x(0)4 )(x− x

(0)
5 ) = εP4(x) , (A.4)

where

ε =
1

M2

(
Σ|µf |2 + Σ|µ′f |2 + |m4|2 + |m5|2

)
(A.5)

is the small paremeter (ε = O(v2/M2)) and x
(0)
f ≡ m2f/M2 = O(ε), x(0)4 = 1, x

(0)
5 =

M ′2/M2 are the zeroth order roots. The fourth power polynomial P4(x) = (x
4 + . . .) has

coefficientsO(1) or less. The dropped out terms corresponding to dots in Eq. (A.3) result
in the relative corrections O(ε2), and hence they can be omitted in our approximation.
Iterating Eq. (A.4), one arrives at the roots of Eq. (29).

The elements of the U1L matrix (with the indices κ = u, d being suppressed) are as
follows:

U1L
f
g = δ

f
g

(
1− 1

2M2
nff

)
+ (δfg − 1)

1

M2
pfg ,

U1L
f
4 =

1

M2
pf4 , U1L

f
5 =

1

M
pf5 ,

U1L
4
f =

1

M2
p4f , U1L

5
f =

1

M
p5f ,

U1L
4
5 =

1

M
p45 , U1L

5
4 =

1

M
p54 ,

U1L
4
4 = 1−

1

2M2
n44 , U1L

5
5 = 1−

1

2M2
n55 ,

(A.6)
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and

U1R
f
g = δ

f
g

(
1− 1

2M ′2n
′f
f

)
+ (δfg − 1)

1

M ′2p
′f
g ,

U1R
f
4 =

1

M ′2 p
′f
4 , U1R

f
5 =

1

M ′ p
′f
5 ,

U1R
4
f =

1

M ′2 p
′5
f , U1R

5
f =

1

M ′ p
′4
f ,

U1R
4
4 =

1

M ′ p
′5
4 , U1R

5
5 =

1

M ′ p
′4
5 ,

U1R
4
5 = 1−

1

2M ′2n
′5
5 , U1R

5
4 = 1−

1

2M ′2n
′4
4 , (A.7)

where

pfg =
µf (m2f − |m5|2)(mfµf

∗
µ′g −mgµg∗µ′f ) + kf (mfµ′g −

mg
mf

M ′

M
µg∗m∗5)

(m2g −m2f)(mfµ′f − M ′

M
m∗5µ

f ∗)
,

pf4 = −kf

(
kf + |µf |2(m2f − |m5|2)

)(
M ′

M
m∗5 +

1
kf
mfµ

fµ′f (m
2
f − |m5|2)

)
mf(mfµ′f − M ′

M
m∗5µ

f ∗)
,

p4f = mfµ
f ∗ −

µ′f (ρ+ |m5|2)
m4 +

M ′

M
m∗5

,

pf5 =
M ′

M
(kf +m

2
f |µf |2)−mfm5µfµ′f

mf(mfµ′f − M ′

M
m∗5µ

f ∗)
, p5f =

M

M ′µ
′
f ,

p45 =
m4m5 − M ′

M
ρ

m4 +
M ′

M
m∗5

, p54 =
MM ′

M ′2 −M2

(
m4 +

M

M ′m
∗
5

)
,

nff =
∣∣∣∣
M ′

M
(kf +m

2
f |µf |2) −mfm5µfµ′f

mf(mfµ
′
f − M ′

M
m∗5µ

f ∗)

∣∣∣∣2 ,
n44 =

∣∣∣∣m4m5 − M ′

M
ρ

m4 +
M ′

M
m∗5

∣∣∣∣2 ,
n55 =

∣∣∣ M ′2

M ′2 −M2
(m4 +

M

M ′m
∗
5)
∣∣∣2 + Σ|µ′f |2 (A.8)

and kf = M
2(m2f − m2f), ρ = M2 + Σ|µf |2 − M2

4. The p
′, n′ are obtained from p, n,

respectively, by substituting µf ↔ µ′f
∗, m4 ↔ m∗4, m5 ↔ m∗5, M ↔ M ′. All these

auxiliary parameters are, in general, of order O(M0). The elements of the matrix U1R
are obtained from those for U1L by the same substitution followed by changing column
indices 4↔ 5 for the matrix elements (U1L)

4
A and (U1L)

5
A.

13



Hereof one gets for the charged current matrix VL = V0L +∆VL

∆VL =




− 1
M2

∑(
pufh

∗
VC
g
h + VC

h
fp
dg
h

)
1
M2

(∑
VC
h
fp
d4
h + p

uf
4

∗) 1
M

∑
VC
h
fp
d5
h

− 1
2M2

(nuff + n
dg
g)VC

g
f

1
M2

(∑
pu4h

∗
VC
g
h + p

dg
4

)
− 1
2M2

(nd
4
4 + n

u4
4)

1
M
pd54

1
M

∑
pu5h

∗
VC
g
h

1
M
pu54

∗ 1
M2

(∑
pu5h

∗
pd5kVC

k
h

+pu54
∗
pd54

)



,

(A.9)

with V0L from Eq. (21) and similarly for VR = V0R + ∆VR with V0R = diag (0, 0, 0, 1, 0)
and

∆VR =




1
Mu′Md′

pu′f5
∗
pd
′g
5

1
Mu′
pu′f5

∗ 1
Mu′Md′

pu′f5
∗
pd
′4
5

1
Md′
pd
′g
5 − 1

2Mu′2
n′u55 − 1

2Md
′2n
′d5
5

1
Md′
pd
′4
5

1
Mu′Md′

pu′
4
5

∗
pd
′g
5

1
Mu′p

u′4
5

∗ 1
Mu′Md′

pu′
4
5

∗
pd
′4
5



.

(A.10)

For the neutral current matrices (κ = u, d being suppressed everywhere below) one gets

XL = X0L −




1
M2
pf5
∗
pg5

1
M2
pf5
∗
p45

1
M
pf5
∗

1
M2
p45
∗
pg5

1
M2
|p45|2 1

M
p45
∗

1
M
pg5

1
M
p45 − 1

M2
n55


 , (A.11)

and

XR = X0R +




1
M ′2
p′f5
∗
p′g5

1
M ′p

′f
5

∗ 1
M ′2
p′f5
∗
p′45

1
M ′p

′g
5 − 1

M ′2
n′55

1
M ′p

′4
5

1
M ′2
p′45
∗
p′g5

1
M ′
p′45
∗ 1

M ′2
|p′45|2


 , (A.12)

with X0L = IL and X0R = diag (0, 0, 0, 1, 0).
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Finally, for the Higgs mediated neutral current matrix H = H0 +∆H one has

H0 =




mfδ
g
f 0 −M ′

M
pf5
∗

− M
M ′p

′g
5 0 −M ′

M
p45
∗ − M

M ′p
′4
5

0 −(p54
∗
+ p′54) 0


 (A.13)

and

∆H =




− 1
MM ′

(
pf4
∗
p′g5 + p

f
5

∗
p′g4

)
− 1
M

(
pf5
∗
p′54 + p

f
4

∗
)

1
MM ′

(
1
2
pf5
∗
n′44 − p

f
4

∗
p′45

)

1
MM ′

(
1
2
n44p

′g
5 − p45

∗
p′g4

)
− 1
2M
(ρ− Σ|µf |2) 1

2MM ′

(
n44p

′4
5 + n

′4
4p
4
5
∗
)

+ 1
2M
n44 +

M
2M ′2

n′55
− 1
M
p45
∗
p′54

− 1
M ′

(
p54
∗
p′g5 + p

′g
4

)
1
2M ′2

n′55p
5
4
∗ − 1

2M ′
(ρ′ − Σ|µ′f |2)

+ 1
2M2
n55p

′5
4 + M ′

2M2
n55 +

1
2M ′n

′4
4

− 1
M ′p

5
4
∗
p′45




,

(A.14)

where ρ is defined above in Appendix, and ρ′ can be obtained from ρ by the usual sub-
stitutions µf ↔ µ′f

∗, m4 ↔ m∗4, m5 ↔ m∗5, M ↔M ′.
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‘.f.pIROGOW, o.w.zENIN

mASSY I SME[IWANIE KWARKOW W STANDARTNOJ MODELI S TQVELYMI WEKTOROPODOBNYMI

SEMEJSTWAMI.
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