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Abstract

Logunov A.A., Mestvirishvili M.A. What happens in the vicinity of the Schwarzschild sphere when
nonzero graviton rest mass is present: IHEP Preprint 99-19. — Protvino, 1999. — p. 20, refs.: 3.

In this paper a solution for a static spherically symmetric body is thoroughly considered in the
framework of the Relativistic Theory of Gravitation. By the comparison of this solution with the
Schwarzschild solution in General Relativity their substantial difference is established in the region close
to the Schwarzschild sphere. Just this difference excludes the possibility of collapse to form “black holes”.
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The given problem was considered for the first time in the Relativistic Theory of Gravitation
(RTG) in paper [1], where it was established that in vacuum the metric coefficient g of the
effective Riemannian space was not equal to zero on the Schwarzschild sphere, whereas g;; had
a pole. These changes which have arisen in the theory because of the graviton mass result in a
“bounce” effect of the falling particles and light from a singularity on the Schwarzschild sphere,
and consequently, in the absence of “black holes”.

Later in paper [2] an in-depth study of this problem in the RT'G was conducted which updated
a number of points, but at the same time showed, that the “bounce” took place close to the
Schwarzschild sphere. In view of importance of this problem we again come back to its analysis
with the purpose of showing in a simpler and clearer way that in that point in vacuum where
the metric coefficient of effective Riemannian space g;; has a pole, another metric coefficient gg
will not vanish.

In RTG [3] the gravitational field is considered as a physical field in the Minkowski space.
The source of this field is the universal conserved density of the energy-momentum tensor of
the entire matter including the gravitational field. This circumstance results in the emerging of
the effective Riemannian space because of the presence of the gravitational field. The motion
of matter in the Minkowski space under the influence of the gravitational field proceeds in the
same way as if it moved in the effective Riemannian space. The field approach to gravitation
with necessity requires the introduction of the graviton rest mass.

In RTG, as opposed to the General Relativity Theory (GRT), the inertial reference frames
are present and consequently the acceleration has an absolute meaning. The forces of inertia
and gravity are separated, as they are of completely different nature. The Special Relativity
Principle holds for all the physical fields, including the gravitational one. It follows from this
theory that gravitational forces in the Newtonian approximation are the forces of attraction.
Since a physical field can be described in one coordinate system, it means, that the effective
Riemannian space has a simple topology and is set in one chart. In RT'G the Mach Principle will
be realized — an inertial reference frame is determined by the distribution of matter. In this
theory the Correspondence Principle takes place: after switching off the gravitational field the
curvature of space disappears, and we find ourselves in the Minkowski space in the coordinate
system prescribed earlier.

The RTG equations look like
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Dugw =0. (2)

Here g = \/—gg"”, g = det g,,, R! is the Ricci tensor, k = #2Z G is the gravitational
constant, D, is the covariant derivative in the Minkowski space, 7,, () is the metric tensor of the
Minkowski space in arbitrary curvilinear coordinates. Equations (1) and (2) are covariant under
arbitrary coordinate transformations with a nonzero Jacobian. They are also Lorentz invariant
under transformations from one inertial system in Galilean coordinates to another. Equations
(2) eliminate representations corresponding to spins 1 and 0’ for a tensor field, leaving only the
representations with spins 2 and 0. The equations of motion of matter are the consequents of
equations (1) and (2).

Let us determine now the gravitational field created by a spherically-symmetric static source.
The general form of the interval of the effective Riemannian space for such source looks like

d82 = goodtQ + 2g()1dtd7' + glld’f'Q + gggd@2 + 933d¢2, (3)

Let us introduce the notations

_ _ ey BO)
doo(r) = U(r), gor(r) = B(r), gua(r)= [V( -2 (T)] ,
g2a(1) = —W2(r), gss(r, ©)=—W?(r)sin® ©.

The components of the contravariant metric tensor are as follows:
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The determinant of the metric tensor g, is equal to
g = detg,, = ~-UVW*sin’ O . (6)

For the solution having a physical sense, the following condition should be satisfied:
g<0. (7)

For spherical coordinates g can be equal to zero only at a point 7 = 0. On the base of (5) and
(6) we obtain the components of the metric tensor density

3" =V =gg". ®

They have the form

2 B2 BW?
G0 = —M[;V <V - F) sin®, §% = —\/Z/_Vsin@, gt = —/ %WQ sin ©, 9)
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§*? = —\/UVsin®, §* = —— )
sin ©




All the consideration will be provided for an inertial system in spherical coordinates. The
interval of the Minkowski space looks like

do? = dt* — dr* — r*(d©?* + sin” ©dd?) . (10)

Nonzero Christoffel symbols of the Minkowski space defined by the following formula

1
’Y/i\l/ = §7Aa(8u70u + &/Fyau - 807/11/) (11)

are equal to
Yoy = —T, Yag = —1sin® O, 72, =43, = %, Yoy = —sin@cos O, 73, = cot O . (12)
Let us write equations (2) in the extended form
D,g" = 9,3" +17%,3" =0. (13)
In Galilean coordinates of the Minkowski space they look like

0,

L.g"" =0. (14)
In the case of a static gravitational field we have from (14)
0,6 =0,1=1,2,3. (15)

By using the tensor transformation law it is possible to express components §°° in Cartesian
coordinates through components in spherical coordinates

~ BW? i 1
9" =~ /—Uv'ﬁa\/—_g:r—QVUVWQ- (16)

Here z' are spatial Cartesian coordinates. Supposing in (15) ¥ = 0 and integrating over a
spherical volume after applying the Gauss-Ostrogradskii theorem, we get the integral over a
spherical surface
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Taking into consideration the equality

f (2d5) = 4mr, (18)

we get
BW?

VU
As equation (14) is fair both inside matter, and outside of it equation (19) should be true for

any value of . But as due to equation (7) U,V and W cannot be equal to zero everywhere, it
follows from (19) that

~0. (19)

B=0. (20)



Interval (3) of the effective Riemannian spaces becomes
ds® = Udt* — Vdr* — W?(d©? + sin” ©d®?) . (21)

From equation (20) it follows, that there is no static solution for the Hilbert-Einstein equations
in harmonic coordinates which would have in the interval expression the term like

B(r)dtdr . (22)
The energy-momentum tensor of matter looks like

p p
Tf—<p+c—2>v”v,,—55-c—2. (23)

In expression (23) p is the mass density of matter, p is the isotropic pressure, and

_ dx*

b= 24
v=— (24)

is 4-velocity that meets the condition
gt =1. (25)

From equations (1) and (2) it follows
vT! =0, (26)

where V, is the covariant derivative in the effective Riemannian space with a metric tensor g, .
In case of a static body

. 1
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and consequently
p(r)
R =pr), T =15 =15 =20 om0 ppy. (28)
For interval (21) the nonzero Christoffel symbols are
1 dU 1 dU 1 dV W dw .
01 = T dr 0 = W ilzﬁg , Tay = vV ar I'3; = sin® © - Ty,
(29)
2 3 L dw 2 : 3
I, =rIi, = W I'5;=—sin®cos© , I';; =cotO.
By using the following expression for the Ricci tensor
RH'/ = 8‘7FZV - 8VFZU + FZurg)\ - FZArgu ) thj = gHARAV (30)

and substituting into it the expressions for the Christoffel symbols from (29), it is possible to
reduce equations (1) for functions U, V and W to the following form:
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Equation (13) after taking into account (12), (9) and (20) is as follows:
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(34)

Let us remark that by virtue of the Bianchi identity and equation (2) one of equations (31-33)
is a consequent of the others. Further we shall take equations (31), (32) and (34) as independent.

We shall write equation (26) in the extended form as

vV, T =0,T" +T¢ TO —T,T" =0.

aptv Hr— o

By using expressions (28) and (29) we obtain

2 dr 20 dr’
Taking into consideration identity
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W2 (%) dr |V \Udr Vw2 \ dr VW  dr? W dr dr \V )"’

equation (31) can be written in the following form
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Similarly we transform equation (32):
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dw

We shall write Egs. (34) and (36) as follows:
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Let us proceed to dimensionless variables in equations (38) — (41). Let I be the Schwarzshild
radius of the source which has mass M

2GM
l= 2 (42)
Let us introduce new variables z and z which are equal to
W =lz, r=Iz. (43)
Equations (38-41) become
d T 9 s 1 ,/1 1 o ,
1_%<V(Z—2)Q>+e[x —Z At <ﬁ—v>]—/@xp(x), (38
x d 2 (1 1 ’p(x)
-3 (b)) |
V(Z—Z)Q o n(wU)—l—e[w S-S \gv R (39)

d (x2 g) :22%\/U—, (40"

dz % da

1 dp p\ 1 dU

finiiead 2) = 41’

c2dx <p+02> 2U dzx (41)

Here € is a numerical constant which is equal to
1 [2GMm)\?

= &= Kl 44

€=3 ( - > , k=K (44)

The sum and difference of equations (38’) and (39’) are

d [ T ] T d - P
2— — 5| — >—In(zU) + 2¢(2* — 2°%) = Ra? (p — —> , (45)
dr |V (%) V(&) de c?
d [ T ] T d 1 1 . P
— — — In(2U) — ex? (— — —> = —Rkz? (p + —> . (46)
z 2 z 2
de | v (%) 174 (%) dx u Vv c?
Let us introduce new functions A and #:
1 T
U=——, V= . 47
In these new variables equation (45) becomes
AR o o2 — 22 —ch2< —£> (48)
dz )
Equation (38') can be written in the following form:
dA 22 /1 1
@ 2 2 _(___>_~.2 ‘ 4
T + e(z z)—l—e2 T k- xp(x) (49)



According to the causality condition (see Appendix L)
Y, UFUY =0, (50)
9 U"U" <0, (50")
it is easy to establish the following inequality:
U<v. (51)

In our problem it is possible to limit ourselves by values x and z from the following interval
only:

1 1
I<r K —, 0< 2 K —. 52
o vV 2e vV 2e (52)
These inequalities limit r, W from above by the value
h
r W<« —. (53)
mc
Under such a limitation equation (49) becomes
dA 22 /1 1
— =1l+4+e—(=— =) —ka? : 4
T (U V> Fap(z) (54)
Outside of the matter we have
dA 2 /1 1
= _1 i e 959
dr 2 (U V> (55)

By virtue of the causality condition (51) the following inequality takes place outside of matter

— > 1. 56
der — (56)

Integrating (54) in an interval (0, z) we get

&z

e [ (1 1 ,
A = — 2 - - = /—N/ 2 ! '
(z) w+20/x (U V> dx /<LO x ?p(x')dx (57)

In (57) A(0) is trusted to be equal to zero, as if it was distinct from zero, the function V(z)
would become zero when z tends to zero, that is physically forbidden. On the base of relation
(56) function A(x) monotonically increases with x outside of matter, and therefore it can have
only one root

A(z,) =0, x> xo. (58)

On the base of relation (57) we have

’ 1 1
0



Here we take into account that by selecting [ equal to (42)

IO

k/lep(x’)dw’ =1.

0

The matter is concentrated in the sphere 0 < z < x;.

Because of a graviton mass, zero point of function A is shifted inside the Schwarzshild sphere.
As at z tending to z;, V' (z) is tending to infinity, since A(x) is going to zero, there will be such

neighborhood of a point z;
.’L'l(l—)\l) S.’L’ §$1(1+)\2), )\1 > 0,)\2 > 0,

( A1 and A, receive small fixed values), in which the following inequality will take place

1 S 1
U 1728
In this approximation we obtain

1

6 [ /I
A(w):w—x1+§/dwx25.

Substituting U in the form given by relation (47) into this expression, we shall discover

Alz) =z —xz; + %/dw’x'3n(w’)A(w’).

Z1

If a range of z is in interval (60), then in the integrand it is possible to change z?* for z3:

Alz) =z —z, + gx?{ /n(w’)A(w’)dw’.

Z1

From here we get
dA €
P §$?f77($)14(1’)-

In the approximation considered (52) equation (48) becomes

1
PRSP
dz
Let us introduce a new function 5
z
Flz) = Zn@)A@).
Equation (65) becomes
dA
o = 1+ef(z),
and equation (66) takes the following form
A df dA_
f dxr dx

(60)

(61)

(62)

(67)

(68)

(69)



From equations (68) and (69) we find

7(@) (70)
dz
From expression (67) we get
24f
=——% 71
"0 =~ o ()
Substituting (70) and (71) into (47) we discover
3 af
U=, V=l (72)
2ef fA—ef)(g)
By using these expressions the determinant g can be written in the following form
3df .4
g T1ds” sin® < 0. (73)

212 () (1 —€f)
For fulfilment of condition (7) it is necessary that expressions % and (1 — ef) have opposite

signs. Substituting (70) into (68) we get

d df d 1+e€f df
—In

Y| L mifq—ef)| = 2 9 74
dr  |dx| dz nlf(L—ef) f(l—e€f) dx (74)
From here we find o
d (1—ef)L
—In|—>%d21 =0, 75
dz . f? (75)
Thus o
(1—ef)G
Taking into account that the values (1 — €f) and % should have opposite signs, we obtain
2
a___Gf” (77)
dx (1—e€f)
Substituting this expression in (70) we find
1-— 2 1
Az) = %, A(z;) =0 under f= ot (78)
By taking into account (78) expression (47) for function V' becomes
C
. - — (79)
(1—ef)* (&)
Integrating (77) and allowing for (78) we get
1
CQ-(x—xl):?—l—elne\f\—e. (80)



Relation (80) is obtained in a range of values z determined by inequalities (60), however, it is
also correct in the area where the influence of a graviton mass can be neglected.
According to (60) the range of Cy(z — x1) is confined to limits

— Coz1 A < Co(l' - -%'1) < Col'1)\2a (81)

if f is positive, it satisfies inequalities

~ 1
cC<f< =, (82)
€
By using (80) and according to (81) we have
1
? + Eh'IEf — € S CQIL'l)\Q.
From here it is possible to find C:
1 ~
5 + elneC — e = CQIL'l)\Q. (83)
From expression (83) we can find an approximate value for C:
~ 1
C= . 84
CQIL'l)\Q ( )

For negative values f to a point = z; corresponds the value | f|, determined from the following
equation

1
—— +elnelf|] —e=0. (85)
£l
From here we get
1
f=2 ma=—2 (86)
€
According to (81) the following inequality should to be fulfilled
1
—CQ.’L'l)\l S —m+€1n€‘f‘ — €. (87)
From here it is possible to find the lower limit for | f| = D
1
—CQ.’L'l)\lz—B +€h’l€D—€. (88)
From expression (88) we discover an approximate value for D
1
D= . 89
CQIL'l)\l ( )
It means, that the value of |f| fulfils the following inequality:
fl=2D= (89")
- - CQIL'l)\l '

10



Let us establish now the form of dependence of variable z of z. Substituting (47) in (40)
and allowing for (48), we get

d dz dz P N B p
A% <x%> :22—.%'% [l—l—e(w —z )—5,‘%‘ < —C—2>] . (90)
In approximation (52) outside of matter equation (90) becomes
d dz dz
AS (2E5) 1222 —2r=0. 1
dz <xdx> +xdw #=0 (91)

It is necessary for us to find the regular solution z(x) of equation (91). In equation (91) we
shall proceed from variable z to f. By using relation (80)

x Coxif+1—ef +eflnelf|], (92)

Cof
and allowing for (65), (66) and (83), equation (91) can be presented in the following form

A’z  Coxf+ef —1 dz 22

hdiod -z =0. 93
df? Cof?x df Cyf3z (93)
By a straightforward substitution we can establish that the expression
1
s=5 + gl - ef +ef el (94)

satisfies equation (93) up to the value

(= ¢f +Indf)
Cizfs

(95)

which is extremely small in the neighborhood of the point z;. From expressions (92) and (94)
we find

p=T— (96)

Allowing for this relation and also (79) and (72), we get

x3 Coxf
U=-—L V=—""—. 97
2xf’ (1—¢€f)? (97)

For negative values f the causality condition (51) becomes
(22°Cy — €x3) — 2ex?|f| — 23 < 0. (98)

Inequality (98) is not valid, as it does not fulfil inequality (89’). Thus, the Principle of Causality
is violated in the region of negative values of f. It means that in the area z;(1 — A;) <z < x;
the solution has no physical sense. At zy < x;(1 — A;) the situation arises, when the physical
solution inside a body 0 < x < zy cannot be sewed to the physical solution in the region x > z,
as there is an intermediate region z;(1 — A\;) < z < z;, in which the solution does not satisfy
the Causality Principle. It follows from here with necessity that zo > x;. From the physical
point of view it is necessary to eliminate also the equality zo = x;, as the solution inside a

11



body should continuously pass into the external solution. Therefore, the variable f takes only
positive values, and x, cannot be less than z;. For the values from the region z > z;(1 + Ay)
it is possible to omit the terms with a small parameter e in equations (38") and (39’). Thus, we
shall come to the external Schwarzshild solution

b T — 2w

= (r—w) |14 1 , 99

z (z —w) —|—2wn . (99)
-2

= =1 (100)
(F) (= —2w) z

Here " w " and " b " are some constants, which are determined from the condition of sewing
solutions (96), (97) with the solution (99), (100). The function z from (96) is equal to

1

at the point x = x;(1 4+ \;). At the same point z, is equal to

b oz (1+X) — 2w
s= (1 A) —w] [14+ 1 102
& [xl( + 2) W] |: + 2w . .’L'l(l‘i‘)\g) ( )
From a sewing condition of (101) and (102) we find
w:%, b=0. (103)
The function U from (97) is equal to
3
Uv=—"2 (104)
21’1(1 + )\2)0
at the point z = x1(1 4 \;), as C, according to (84), is equal to
S (105)
- CQII,'l)\Q '
By substituting (105) into (104) we get
C():I:%AQ
e o 106
2(1+ ) (106)
at the same point, with account for (103), U, is equal to
A2
U, = . 107
1+ X (107)
From a sewing condition of (106) and (107) we get
2
Co=—. 108
0 :L? ( )
At the point = (1 + A2) the function V from (97) is equal to
V = Cozy(14+X)C . (109)

12



By substituting the value C' from (105) into (109) we obtain

14+ A
y=_th2 (110)
A2
at the same point V;, with account for (99) and (103), is equal to
14 Ao
Ve = ; 111
= (1)
i.e. the solution for V is sewed to the solution for V;.
Let us consider (92) for values ef, close to unity
1 Y
- T« 112
f e(1+%) e (112)
By substituting this expression into (92) and expanding it over ¥, we obtain
y® = 2eCo(z — 7). (113)

Inequality (112) tells us that the value (z — z;) = 0 < ¢, i.e.

N TNy S g (114)
€ €

By substituting (113) into (112), and then f into (97), we get the following expressions for U

and V :
U— xie + 1/2eCo(x — x1)] V= xle + 1/2eCy(z — x1)] ' (115)
2z 2e(x — xy)
From here we have in the region of variable z, satisfying inequality (114),
2z 2(x — xy)

We see, that the presence of a graviton mass essentially changes the nature of solution in
the region close to the gravitational radius. In that point, where the function V, according
to (116), has a pole, the function U is different from zero, whereas in the General Relativity
Theory (GRT) it is equal to zero. Just by virtue of this circumstance the inevitable gravitational
collapse arises, during which “black holes” appear in GRT. In RT'G “black holes” are impossible.

If we take into account (42), (43), (96) and neglect the second term in (59), expressions (116)
for U and V become

GMm\* 1 eu
U_< m>’v__.71—|_70¢]w’
hc 2 T'—C—2

(117)

which coincides with formulas (18) from paper [1]. Note, that the residue in the pole of the
function V' at € # 0 is equal to GCJQW , whereas at ¢ = 0 it is equal to QCC'Y—QM This is due to the
fact that in case € = 0 the pole of function V' at the point z = z; arises because of the function
f, which has a pole at this point , whereas at € # 0 it occurs because of the function (1 — ef),

which one, according to (92), at the point x = z; comes into zero.
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Let us compare now the nature of motion of test bodies in the effective Riemannian space with
metric (117) and with the Schwarzshild metric. We write the interval (21) of the Riemannian
space as follows:

ds? = Udt? — VdAW? — W?(dO? + sin® Odd?) . (118)
Here V is equal to
~ dr \?
VW)=V |—] . 119
w)=v () (119
The motion of a test body takes place along a geodesic line of the Riemannian space
dov* o
s + 0% =0, (120)
where b
x
b= — 121
v ds ’ (121)

the four-vector of velocity v* meets the following condition:
guvtv” =1. (122)
Let us consider a radial motion, when
v =0v?=0. (123)
By taking into account (29), from equation (120) we find

d® 1 dU

o= 422 =0 124
s U aw’? Y (124)
where IV
- 125
V= (125)
From equation (124) we get
% In(v°U) =0 . (126)

From here we have 0
0 d.’I,' UQ
I = —

@ _ Yo 127
ds U (127)
where U, is a constant of integrating.
Taking into account (127) we see that condition (122) for radial motion becomes
U2 - dW?
0 1=v. (=== . 128
U < ds > (128)

If we accept, the speed of a falling test body at infinity being equal to zero, we shall get Uy = 1.

From (128) is follows
aw 1-U
— ==y —. 12
ds uv (129)
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Taking into consideration (79), (96), (97) and (108), we have

o 2z f
U = —1 V —_ s -
2z f’ x3(1 —€f)?
Substituting these expressions in (129) we get
aw
s
By using (108), (112) and (113) in the neighborhood of the point z; we have

aw 2 |Jz—x
—_— = —— 131
ds T €x1 (131)

Passing from a variable z to W, according to (43) and taking into account (44), we obtain

dW hc? 1% 2GM
- = 1= . 132
ds mGM\/GM <1 c2W > (132)

It is apparent from here that there is a turning point. By differentiating (132) on s we get

2

d*W 1 < he? >

p— 1
ds? 2GM \mGM (133)

In the turning point the acceleration (133) is rather great, and it is positive, i.e. repulsing takes
place. By integrating (132) we obtain

2 1 )

W -GM(s—so) .

:2GM < he? > (134)

c? 2mGM

Formulas (132-134) coincide with the formulas from publication [1]. The presence of the
Planck constant in equation (132) is connected with the wave nature of matter formed, in
our case, of gravitons having a rest mass. From formula (134) it is apparent, that the test
body can never intercept the Schwarzshild sphere. In GRT the situation is rather different.
From the Schwarzshild solution and expression (129) it follows that the test body will cross
the Schwarzshild sphere and a “black hole” will be formed. The test bodies or light can cross
the Schwarzshild sphere only in the inside direction, thus they already can never leave the
Schwarzshild sphere. We shall come to the same result if we proceed to a synchronous system
of freely falling test bodies with the help of transformations

va-u]"”

T:t+/dW [7] : (135)
U

- 1/2

R—t+/dw _V__ (136)
B ul-u)| -
In this case interval (118) becomes

ds® = dr? — (1 — U)dR? — W*(d©? + sin? ©d®?) . (137)
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In such a form singularities of metric coefficients disappear both for the Schwarzshild solution,
when € = 0, and for the solution in our case, when € # 0.
Subtracting from expression (136) expression (135) we get

/dW,/ = (138)

Differentiating equation (138) over 7 we discover the following

aw  [(1-U)
=\ (139)

Thus, we come to the same initial equation (129), around which the formulas (132-134) were
obtained. Thus, it is abundantly clear that the transition to the synchronous falling reference
frame does not eliminate the singularity which arises due to the presence of a graviton mass, i.e.
when € # 0. In case when ¢ = 0, the Schwarzshild singularity of the metric does not influence
the motion of a test body both in the initial coordinate system and in the falling synchronous
system. Thus, the falling particles cross the Schwarzshild sphere in the inside direction only.

Let us calculate now the propagation time for a light signal from a point W, up to the point
W, = QCC'Y—QM For the Schwarzshild solution from expression ds?> = 0 we have

aw 2GM
= 1= 140
it < W > (140)
By integrating this equation we get
sz
Wo—-W + = In W sz =c(t —to) . (141)
Hence it is apparent that to achieve the gravitational radius W; = QCC';M in GRT we need an

infinite time measured by a distant observer clock. In RTG, as we have established earlier,
the Schwarzshild solution takes place up to the point W = W;(1 + A,), and therefore the time
interval to reach this point is equal to

2GM . W, — M
C(t — t()) = WQ — Wl(l + )\2) + G h’l ¢ . (142)

c? )\2 _2021\/1

The propagation time of a light ray from the point W = Wi (1 + \;) up to the point W, can be
computed by using formulas (97) and (108). In this interval we have

aw xl

= e —ep), (143)

Hence after integrating and replacement of a variable we get

1/e
2MG [ xdf
2 7 = C(tl — t) . (144)
!
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According to (84) and (108) the lower limit of integration is equal to

2

f:é:Q—)\Q. (145)

Integral (144) is easily evaluated and with good accuracy results in the following relation:

2GM 2\
G2 In =22, (146)
C €

C(tl — t) = Wl)\g +

On the basis of equations (142) and (146) the time needed for a light signal to pass the distance
from the point W up to the point W; = 2 is equal to the sum of expressions (142) and (146)

c2

2GM | W, — &M
C(tl — t()) = WQ — W1 + In 0 GMC . (147)

2
C o2

€

Thus it is evident that in RT'G, as opposed to GRT, the propagation time of a light ray up to
the Schwarzshild sphere is finite also if measured by a distant observer clock. From formula
(147) it is apparent that the propagation time of a signal does not sharply increase due to the
gravitational field.

From the above it is apparent that in the presence of a graviton mass ¢ # 0 the solu-
tion in RTG differs essentially from the Schwarzshild solution because of the presence of the
Schwarzshild sphere singularity, which cannot be removed by any choice of coordinate system.
For this reason, as we have shown above, the physical solution for a static spherically symmetric
body is possible only in the case, when the point x; is inside the body. This conclusion is also
preserved for the synchronous coordinate system, when the metric coefficients (see (134)) are
functions of time.

Thus, according to RT'G as a field theory of gravitation, the body of any mass cannot contract
unlimitedly, and therefore the gravitational collapse to form a “black hole” is impossible. In
GRT the energy release at a spherically symmetric accretion of matter on a “black hole” is not
enough, as the falling matter carries energy into the “black hole”.

According to RTG, the situation cardinally changes, as at the accretion the falling matter
hits the surface of a body, and therefore the energy release is now considerable. The field
approach to gravitation changes in essence our notions which were formed under the influence
of GRT. In particular, this manifests in the fact that the effective Riemannian space which has
arisen due to the gravitational field, has only simple topology, since the gravitational field in
the Minkowski space, as well as any other physical field, can be described in a single Galilean
coordinate system. In GRT the Riemannian space may have a complicated topology, and it is
described by the atlas of charts.

Further it is noteworthy that the operation of a gravitational field, as well as any other
physical field, does not move the trajectory of motion of a test body outside the causality cone
of the Minkowski space. This circumstance allows one to compensate the three-dimensional
gravitation force by a force of inertia through selection of an accelerated coordinate system.

There is a principal difference between gravitation forces and forces of inertia. The force of
inertia can always be made equal to zero by having selected an inertial system of coordinates,
whereas the gravitation force, which has arisen because of the presence of a gravitational field,
is impossible to be made equal to zero by selection of a coordinate system, even locally.

If GRT asserts that the gravitation is the consequence of the space-time (Riemannian) cur-
vature, then, according to RTG, the effective Riemannian space-time is a consequent of the
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presence of a gravitational field, possessing density of energy-momentum. The source of it is
the energy-momentum tensor density of the entire matter, the gravitational field included. The
space-time was and is the Minkowski space, and all the remaining, including the gravitation, are
physical fields. Just under these notions the basic physical principles — the integral conservation
laws of energy-momentum and angular momentum take place.

The field approach to gravitation with necessity requires the introduction of the graviton
mass, which, in turn, makes the gravitational collapse impossible and results in the cyclical
development of the homogeneous and isotropic Universe. Thus, the homogeneous and isotropic
Universe is “flat”, and the existence of “dark matter” in the Universe is a forecast [3]. It follows
direct from the theory, that present density of matter in the Universe should be equal to

p(7) = pe(T) + g, (148)

where p, is the critical density, determined by the Hubble “constant” H(7) and is equal to

3H?
c - Y 149
Pe= g7 (149)
and p, is determined by the graviton mass m and is equal to
1 me2\”
= — . 150
P~ 167G < n > (150)

Since critical density p. many times exceeds the observable density of matter in the Universe,
then, according to equation (148), there should be a dark matter in the Universe.

References

[1] A.A. Vlasov, A.A. Logunov. Teor. Mat. Fiz. Vol.79, No.3, pp. 323-329, 1989.
[2] Yu.M. Loskutov. Teor. Mat. Fiz. Vol.82, No.2, pp. 304-312, 1990.

[3] A.A. Logunov, M.A. Mestvirishvili. The Relativistic Theory of Gravitation. Moscow,
“Nauka”, 1989.
A.A. Logunov. Uspekhi Fiz. Nauk, Vol.165, No.2, pp. 187-203, 1995. A.A. Logunov. Phys.
Part. Nucl. 29(1), January-February, 1998.

Received April 16, 1999

Appendix A

In spherical coordinates of the Minkowski space the intervals of the Minkowski space and of
the effective Riemannian spaces look like

do? = dt* — dr* — r*(d©?* + sin® ©dd?) , (A1)
ds* = U(r)dt* — V(r)dr®> — W?(r)(d©* + sin® Od®?) . (A.2)
Let us introduce the velocity vector
. dzt . . .
vt = d—i’ vt =wve', (z'=r,0,P). (A.3)
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where €’ is the unit vector defined by the metric of a spatial section of the Minkowski space-time

kiseled =1 .
In general k;; is given as follows
YoiYok
Kik = —Yik + .
Yoo
In case (A.1)
KRik = —Yik-

Condition (A.4) for the metric (A.1) looks like

(e? +r*[(e?)? +sin’0 - (e*)] =1.

Let us define four-vector of velocity by the following equation
v = (1, ve’)
and demand that it should be isotropic in the Minkowski space

V0" =0 .

By substituting (A.8) into (A.9) and accounting for (A.7) we obtain

v=1.
Thus, isotropic four-vector v* is equal to

v = (1,¢€") .

(A.4)

(A.5)

(A.6)

(A.7)

(A.10)

(A.11)

As according to the Special Relativity Theory the motion always takes place inside or on
the boundary of the Minkowski causality cone, the Principle of Causality takes place for the

gravitational field
90" <0,

that is,

U—V(e')? — W?(e?)* + (*)*sin’ 0] < 0.

By taking into account (A.7), expression (A.13) can be written as follows

w2 w2 1\
U—7< —r—2>(6)§0
Let -
V- >0.
T

By virtue of an arbitrariness of 0 < (e')? < 1, inequality (A.14) will be fulfilled only if

W2
U-—<0.
T

From inequalities (A.15) and (A.16) it follows that

uv<v.
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(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)



In case if 72
V- 7 < 0, (A.18)
we shall write inequality (A.14) in the following form:

U-v— (‘f—;—v> (1— (")) <0. (A.19)

By virtue of the arbitrariness of e*, (A.19) will be satisfied for any values of 0 < (e')? < 1 only
in case

U<vVv. (A.20)
Thus, the RT'G Principle of Causality results in all the cases in the inequality

U(r)<v(r). (A.21)
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