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Introduction

I shall start my talk from the end with the short answer to the question in the title. The
study of the inclusive reactions in the region of diffraction dissociation at high energies provides

a unique possibility to learn on a new type of interactions between elementary particles or a new
type of fundamental forces, which the three-body forces are. What was the beginning on?

In 1994 the CDF group at Fermilab published new results on the measurements of pp̄ single
diffraction dissociation at

√
s = 546 and 1800 GeV . They observed that a popular supercritical

Pomeron model did not describe new measured values. The statement, made in [1], is as follows:
The value of σpp̄sd = (7.89 ± 0.33) mb, measured at

√
s = 546 GeV , is extrapolated by the

supercritical Pomeron model to σpp̄sd = (13.9± 0.9) mb at
√
s = 1800 GeV , while the measured

value at this energy is equal to σpp̄sd = (9.45± 0.44) mb. The ratio of the measured σpp̄sd to that

obtained by extrapolation is

σpp̄sd(experimental)

σpp̄sd(extrapolation)
(
√
s = 1800 GeV ) = 0.68± 0.05. (1)

Moreover, at
√
s = 20 GeV the experimental σpp̄sd = (4.9 ± 0.55) mb is 4.5 times larger than

the value σpp̄sd = (1.1± 0.17) mb, obtained by the extrapolation of the measured value of σpp̄sd at√
s = 546 GeV down to

√
s = 20 GeV with the help of the supercritical Pomeron model. So, the

latest experimental measurement of pp̄ single diffraction dissociation at c.m.s. energies
√
s = 546

and 1800 GeV , carried out by the CDF group at the Fermilab Tevatron collider, has shown that

the popular model of supercritical Pomeron does not describe the existing experimental data.
We called the emerged situation as a supercrisis for the supercritical Pomeron model

(SCPM)1 . The supercrisis is illustrated on Fig. 1 extracted from paper [3].
The attempts undertaken in Refs. [3,4] to save the SCPM are also shown on this figure.

Unfortunately GLM paper [4] contains a crude mathematical mistake. The mistake was observed
by B.V. Struminsky and E.S. Martynov from Kiev [5]. Besides, in our opinion, an eikonalization

procedure cannot be considered as a saving ring for SCPM because this procedure is outside
the original Regge ideology. The idea of renormalized Pomeron flux proposed by Goulianos is
a good physical idea for an experimentalist, but this idea cannot be a satisfactory one for a

theorist because the idea is not grounded by the underlying Regge theory.

1Recent experimental results from HERA [2] lead us to the same conclusion. The soft Pomeron phenomenology
as currently developed cannot incorporate the HERA data on structure function F2 at small x and total γ∗p cross
section from F2 measurements as a function of W 2 for different Q2.
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Obviously, the foundations of the Pomeron model require a further theoretical study and the
construction of newer, more general phenomenological framework, which would enable one to

remove the discrepancy between the model predictions and the experiment.
Although nowadays we have in the framework of local quantum field theory a gauge model

of strong interactions formulated in terms of the known QCD Lagrangian, its relations to the
so called “soft” (interactions at large distances) hadronic physics are far from desired. The

understanding of this physics is high interest because it has an intrinsically fundamental nature.
In 1970 the experiments at the Serpukhov accelerator revealed that the K+p total cross

section increased with energy. The increase of the pp total cross section was discovered at the
CERN ISR and then the effect of rising total cross sections was confirmed at the Fermilab
accelerator.

In spite of more than 25 years after the formulation of QCD we still cannot obtain from the
QCD Lagrangian the answer to the question why all the hadronic total cross-sections grow with

energy. We cannot predict total cross-sections in an absolute way starting from the fundamental
QCD Lagrangian as well mainly because it is not a perturbative problem.

It is well known, e.g., that nonperturbative contributions to the gluon propagator influence
the behaviour of “soft” hadronic processes and the knowledge of the infrared behaviour of

QCD is certainly needed to describe the “soft” hadronic physics in the framework of QCD.
Unfortunately, today we don’t know the whole picture of the infrared behaviour of QCD, we

have some fragments of this picture though (see e.g. Ref. [6]).
At the same time it is more or less clear now that the rise of the total cross-sections is just

the shadow (not antishadow!) of particle production.

Through the optical theorem the total cross-section is related to the imaginary part of the
elastic scattering amplitude in the forward direction. That is why the theoretical understanding

of elastic scattering has the fundamental importance.
From the unitarity relation it follows that the imaginary part of the elastic scattering am-

plitude contains the contribution of all possible inelastic channels in two-particle interaction. It
is clear therefore that we cannot understand the elastic scattering without understanding the

inelastic interaction.
Among all the possible inelastic interactions there is a special class of processes which are

called a single diffraction dissociation. The single diffraction dissociation is the scattering process
where one of two particles in the initial state breaks up during the interaction producing a system
of particles in a limited region of (pseudo)rapidity2 .

Good and Walker have shown [7] that the single diffraction dissociation is predicted by the
basic principles of quantum mechanics. However both the elastic scattering and single diffraction

dissociation cannot correctly be calculated in QCD due to the non-perturbative nature of the
interactions.

The popular Regge phenomenology represents elastic and diffractive scattering by the ex-
change of the Pomeron, a color singlet Reggeon with quantun numbers of the vacuum. It should

be noted that the definition of the Pomeron as Reggeon with the highest Regge trajectory αP (t),
carrying the quantum numbers of the vacuum, is not the only one.3 There are many other def-

initions of the Pomeron: Pomeron is a gluon “ladder” [8]; Pomeron is a bound state of two

2Pseudorapidity is defined as η = − ln tan(θ/2) where θ is the polar angle of the produced particle with respect
to the beam direction. Pseudorapidity is frequently used as an approximation to rapidity.

3For supercritical Pomeron αP (0)− 1 = ∆� 1, ∆ > 0 is responsible for the growth of hadronic cross-sections
with energy.
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reggezied gluons – BFKL-Pomeron [9]; soft and hard Pomerons [10,11]; etc.4 This leapfrog is
because of the exact nature of the Pomeron and its detailed substructure remains such as that

no one knows what it is. The difficulty of establishing the true nature of the Pomeron in QCD
is almost obviously related to the calculations of non-perturbative gluon exchange.

Nevertheless in the near past simple formulae of the Regge phenomenology provided good
parameterization of experimental data on “soft” hadronic physics and pragmatic application of

Pomeron phenomenology had been remarkably successful (see e.g. the latest issue of the Review
of Particles Properties).

That was the case before the appearance of the above-mentioned CDF data on single diffrac-

tive dissociation and recent results from HERA. Of course, it is good that we have a simple and
compact form for representing a great variety of data for different hadronic processes, but it

is certainly bad that power behaved total cross-sections violate unitarity. Often and often
encountered claim, that the model with power behaved total cross-sections is valid in the non-

asymptotic domain which has been explored up today, is not correct because the supercritical
Pomeron model is an asymptotic one by definition.

We suggested another approach to the dynamical description of one-particle inclusive re-
actions [12]. The main point of our approach is that new fundamental three-body forces are

responsible for the dynamics of particle production processes of inclusive type. Our considera-
tion revealed several fundamental properties of one-particle inclusive cross-sections in the region
of diffraction dissociation. In particular, it was shown that the slope of the diffraction cone in pp̄

single diffraction dissociation is related to the effective radius of three-nucleon forces in the same
way as the slope of the diffraction cone in elastic pp̄ scattering is related to the effective radius of

two-nucleon forces. It was also demonstrated that the effective radii of two- and three-nucleon
forces, which are the characteristics of elastic and inelastic interactions of two nucleons, define

the structure of the pp̄ total cross-sections in a simple and physically clear form. I’ll touch upon
these properties later on.

First of all let me tell you a few words what I mean by three-body forces about.

1. Three-body forces in relativistic quantum theory

Using the LSZ or the Bogoljubov reduction formulae in quantum field theory [13] we can
easily obtain the following cluster structure for 3→ 3 scattering amplitude (see diagram below)

F123 = F12 +F23 + F13 +FC123 (2)

where Fij, (i, j = 1, 2, 3) are 2 → 2 scattering amplitudes, FC123 is called the connected part of

the 3→ 3 scattering amplitude.

��
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In the framework of single-time formalism in quantum field theory [14] we construct the

3→ 3 off energy shell scattering amplitude T123(E) with the same (cluster) structure as (2)

T123(E) = T12(E) + T23(E) + T13(E) + TC123(E). (3)

4At the Workshop I heard new definition of Pomeron from N.N. Nikolaev: Pomeron is (neither more nor less!)
a label of diffraction.
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Following the tradition we’ll call the kernel describing the interaction of three particles as the
three particle interaction quasipotential. The three particle interaction quasipotential V123(E)

is related to the off-shell 3 → 3 scattering amplitude T123(E)by the Lippmann-Schwinger type
equation

T123(E) = V123(E) + V123(E)G0(E)T123(E). (4)

There exists the same transformation between two particle interaction quasipotentials Vij and

off energy shell 2→ 2 scattering amplitudes Tij

Tij(E) = Vij(E) + Vij(E)G0(E)Tij(E). (5)

It can be shown that in the quantum field theory the three particle interaction quasipotential
has the following structure [15]

V123(E) = V12(E) + V23(E) + V13(E) + V0(E). (6)

The quantity V0(E) is called the three-body forces quasipotential. The V0(E) represents the de-
fect of three particle interaction quasipotential over the sum of two particle interaction quasipo-
tentials and describes the true three-body interactions. The three-body forces quasipotential

is an inherent connected part of total three particle interaction quasipotential which cannot be
represented by the sum of pair interaction quasipotentials.

The three-body forces scattering amplitude is related to the three-body forces quasipotential
by the equation

T0(E) = V0(E) + V0(E)G0(E)T0(E). (7)

It should be stressed that the three-body forces appear as a result of consistent consideration

of three-body problem in the framework of local quantum field theory.

2. Global analyticity of the three-body forces

Let us introduce the following useful notations

< p′1p
′
2p
′
3|S − 1|p1p2p3 >= 2πiδ4(

3∑
i=1

p′i −
3∑
j=1

pj)F123(s; ê′, ê), (8)

s = (
3∑
i=1

p′i)
2 = (

3∑
j=1

pj)
2.

The ê′, ê ∈ S5 are two unit vectors on five-dimensional sphere describing the configuration of

three-body system in the initial and final states (before and after scattering).
We will denote the quantity T0 restricted on the energy shell as

T0 |on energy shell= F0.

The unitarity condition for the quantity F0 with account for the introduced notations can be
written in form [16,17]

ImF0(s; ê′, ê) =

= πA3(s)

∫
dΩ5(ê

′′)F0(s; ê′, ê′′)
∗
F0 (s; ê, ê′′) +H0(s; ê

′, ê), (9)
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ImF0(s; ê′, ê) =
1

2i

[
F0(s; ê′, ê)−

∗
F 0 (s; ê, ê′)

]
,

where

A3(s) = Γ3(s)/S5,

Γ3(s) is the three-body phase-space volume, S5 is the volume of unit five-dimensional sphere.

H0 defines the contribution of all the inelastic channels emerging due to three-body forces.
Let us introduce a special notation for the scalar product of two unit vectors ê′ and ê

cosω = ê
′ · ê. (10)

We will use the other notation for the three-body forces scattering amplitude as well

F0(s; ê′, ê) = F0(s; η, cosω),

where all other variables are denoted through η.
Now we are able to go to the formulation of our basic assumption on the analytical properties

for the three-body forces scattering amplitude [16,17].
We will assume that for physical values of the variable s and fixed values of η the amplitude

F0(s; η, cosω) is an analytical function of the variable cosω in the ellipse E0(s) with the semi-

major axis

z0(s) = 1 +
M2
0

2s
(11)

and for any cosω ∈ E0(s) and physical values of η it is polynomially bounded in the variable s.

M0 is some constant having mass dimensionality.
Such analyticity of the three-body forces amplitude was called a global one. The global

analyticity may be considered as a direct geometric generalization of the known analytical
properties of two-body scattering amplitude strictly proved in the local quantum field theory

[18,19,20,21,22].
At the same time the global analyticity results in the generalized asymptotic bounds.

GLOBAL ANALYTICITY & UNITARITY

⇓

GENERALIZED ASYMPTOTIC BOUNDS

For example the generalized asymptotic bound for O(6)-invariant three-body forces scatter-
ing amplitude looks like [16,17]

ImF0(s; ...)≤ Const s3/2(
ln s/s′0
M0

)
5

= Const s3/2R50(s), (12)

where R0(s) is the effective radius of the three-body forces introduced according to [22] where

the effective radius of two-body forces has been defined,

R0(s) =
Λ0

Π(s)
=
r0
M0

ln
s

s′0
, Π(s) =

√
s

2
, s→∞, (13)
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r0 is defined by the power of the amplitude F0 growth at high energies [17], M0 defines the semi-
major axis of the global analyticity ellipse (11), Λ0 is the effective global orbital momentum,

Π(s) is the global momentum of three-body system, s′0 is a scale defining unitarity saturation of
three-body forces.

It is well known that the Froissart asymptotic bound [23] can be experimentally verified,
because with the help of the optical theorem we can connect the imaginary part of 2 → 2
scattering amplitude with the experimentally measurable quantity which is the total cross-

section. So, if we want to have a possibility for the experimental verification of the generalized
asymptotic bounds (n ≥ 3), we have to establish a connection between the many-body forces

scattering amplitudes and the experimentally measurable quantities. For this aim we have
considered the problem of high energy particle scattering from deuteron and on this way we

found the connection of the three-body forces scattering amplitude with the experimentally
measurable quantity which is the total cross-section for scattering from deuteron [24]. Moreover

the relation of the three-body forces scattering amplitude to one-particle inclusive cross-sections
has been established [25].

I shall briefly sketch now the basic results of our analysis of high-energy particle scattering
from deuteron.

3. Scattering from deuteron

The problem of scattering from two-body bound states was treated in [24,25] with the help

of dynamic equations obtained on the basis of single-time formalism in QFT [15]. As has been
shown in [24,25], the total cross-section in the scattering from deuteron can be expressed by the
formula

σtothd (s) = σtothp (ŝ) + σtothn (ŝ)− δσ(s), (14)

where σhd, σhp, σhn are the total cross-sections in scattering from deuteron, proton and neutron,

δσ(s) = δσG(s) + δσ0(s), (15)

δσG(s) =
σtothp (ŝ)σtothn (ŝ)

4π(R2d +Bhp(ŝ) + Bhn(ŝ))
≡
σtothp (ŝ)σtothn (ŝ)

4πR2eff(s)
, ŝ =

s

2
, (16)

BhN (s) is the slope of the forward diffraction peak in the elastic scattering from nucleon, 1/R2d
is defined by the deuteron relativistic formfactor

1

R2d
≡ q
π

∫
d*∆Φ(*∆)

2ωh(*q + *∆)
δ
[
ωh(*q + *∆)− ωh(*q )

]
,

s

2Md
∼= q ∼=

ŝ

2MN
, (17)

δσG is the Glauber correction or shadow effect. The Glauber shadow correction originates from
elastic rescatterings of an incident particle on the nucleons inside the deuteron.

The quantity δσ0 represents the contribution of the three-body forces to the total cross-
section in the scattering from deuteron. The physical reason for the appearance of this quantity

is directly connected with the inelastic interactions of an incident particle with the nucleons of
deuteron. Paper [25] provides for this quantity the following expression:

δσ0(s) = −(2π)3

q

∫
d*∆Φ(*∆)

2Ep(*∆/2)2En(*∆/2)
ImR(s;−

*∆

2
,
*∆

2
, *q;
*∆

2
,−
*∆

2
, *q), (18)
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where q is the incident particle momentum in the lab system (rest frame of deuteron), Φ(*∆) is
the deuteron relativistic formfactor, normalized to unity at zero,

EN(*∆) =

√
*∆2 +M2

N N = p, n,

MN is the nucleon mass. The function R is expressed via the amplitude of the three-body forces

T0 and the amplitudes of elastic scattering from the nucleons ThN by the relation

R = T0 +
∑
N=p,n

(T0G0ThN + ThNG0T0). (19)

In [24] the contribution of three-body forces to the scattering amplitude from deuteron was
related to the processes of multiparticle production in the inelastic interactions of the incident

particle with the nucleons of deuteron. This was done with the help of the unitarity equation.
The character of the energy dependence of δσ0 was shown to be governed by the energy behaviour

of the corresponding inclusive cross-sections.
Here, for simplicity, let us consider the model where the imaginary part of the three-body

forces scattering amplitude has the form

ImF0(s; *p1, *p2, *p3; *q1, *q2, *q3) = f0(s) exp

{
−R

2
0(s)

4

3∑
i=1

(*pi − *qi)2
}
, (20)

where f0(s), R0(s) are free parameters which, in general, may depend on the total energy of
three-body interaction. Note that the quantity f0(s) has the dimensionality [R2].

In case of unitarity saturation of the three-body forces, we have from the generalized asymp-
totic theorems

f0(s) ∼ Const s3/2
( ln s/s′0
M0

)5
= Const s3/2R50(s), (21)

R0(s) =
r0
M0

ln s/s′0 s→∞. (22)

In the model all the integrals can be calculated in the analytical form. As a result, we obtain

for the quantity δσ0 [25]

δσ0(s) =
(2π)6f0(s)

sMN

{
σhN (s/2)

2π[BhN(s/2) +R20(s)− R40(s)/4(R20(s) + R2d)]
− 1

}

× 1

[2π(R2d +R20(s))]
3/2
. (23)

If the condition

R20(s) � BhN (s/2)� R2d (24)

is realized, then we obtain from expression (23)

δσ0(s) = (2π)9/2
f0(s)χ(s)

sMNR3d
, (25)

where

χ(s) =
σtothN (s/2)

2π[BhN(s/2) +R20(s)]
− 1, (26)
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and we suppose that asymptotically

Bhp = Bhn ≡ BhN , σtothp = σtothn ≡ σtothN .

It follows from the Froissart theorem and generalized asymptotic bounds (12) that the fol-

lowing asymptotic behaviour is admitted for the χ(s):

χ(s) ∼ 1√
sln3s

, s→∞. (27)

4. Three-body forces in single diffraction dissociation

From the analysis of the problem of high-energy particle scattering from deuteron we have
derived the formula connecting one-particle inclusive cross-section with the imaginary part of

the three-body forces scattering amplitude. This formula looks like

2EN(*∆)
dσhN→NX

d*∆
(s, *∆) = −(2π)3

I(s)
ImF scr0 (s̄;−*∆, *∆, *q; *∆,−*∆, *q ) , (28)

ImF scr0 (s̄;−*∆, *∆, *q; *∆,−*∆, *q ) = ImF0(s̄;−*∆, *∆, *q; *∆,−*∆, *q )−

−4π

∫
d*∆′

δ
[
EN(*∆− *∆′) + ωh(*q + *∆′)− EN(*∆)− ωh(*q)

]
2ωh(*q + *∆′)2EN(*∆− *∆′)

×

ImFhN(ŝ; *∆, *q; *∆− *∆′, *q + *∆′ )ImF0(s̄;−*∆, *∆− *∆′, *q + *∆′; *∆,−*∆, *q ), (29)

EN(*∆) =
√
*∆2 +M2

N , ωh(*q) =
√
*q 2 +m2h,

I(s) = 2λ1/2(s,m2h,M
2
N), ŝ =

s̄ +m2h − 2M2
N

2
,

s̄ = 2(s+M2
N )−M2

X , t = −4*∆2.

I’d like to draw the attention to the minus sign in the R.H.S. of Eq. (28). The simple model

for the three-body forces considered above (see Eq. (20)) gives the following result for the
one-particle inclusive cross-section in the region of diffraction dissociation

s

π

dσhN→NX
dtdM2

X

=
(2π)3

I(s)
χ(s̄)ImF0(s̄;−*∆, *∆, *q; *∆,−*∆, *q )

=
(2π)3

I(s)
χ(s̄)f0(s̄) exp

[
R20(s̄)

2
t

]
(30)

where

χ(s̄) =
σtothN (s̄/2)

2π[BhN(s̄/2) + R20(s̄)]
− 1.
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The configuration of particles momenta and kinematical variables are shown in Fig. 2. The
variable s̄ in the R.H.S. of Eq. (30) is related to the kinematical variables of one-particle

inclusive reaction by the equation

s̄ = 2(s+M2
N )−M2

X , (31)

t = −4∆2.

There is a temptation to call the quantity I(s)χ−1(s̄) a renormalized flux. However, it should
be pointed out that in our case we have a flux of real particles and function χ(s) has quite a
clear physical meaning. The function χ(s) originates from initial and final states interactions

and describes the effect of screening the three-body forces by two-body ones [25].
If we take the usual parameterization for one-particle inclusive cross-section in the region of

diffraction dissociation
s

π

dσ

dtdM2
X

= A(s.M2
X) exp[b(s,M2

X)t], (32)

then we obtain for the quantities A and b

A(s,M2
X) =

(2π)3

I(s)
χ(s̄)f0(s̄), b(s,M2

X) =
R20(s̄)

2
. (33)

Eq. (33) shows that the effective radius of three-body forces is related to the slope of

diffraction cone for inclusive diffraction dissociation processes in the same way as the effective
radius of two-body forces is related to the slope of diffraction cone in elastic scattering processes.
Moreover, it follows from the expressions

R0(s̄) =
r0
M0

ln s̄/s′0, s̄ = 2(s+M2
N )−M2

X

that the slope of diffraction cone for inclusive diffraction dissociation processes at fixed energy
decreases with the growth of missing mass. This property agrees well qualitatively with the
experimentally observable picture.

Hence physically tangible notion of the effective radius of three-body forces introduced pre-
viously provides a clear physical interpretation that helps one to create a visual picture and

representation for inclusive diffraction dissociation processes at the same level as one can under-
stand and represent elastic scattering processes at high energies. Besides, relation (28) together

with linear equation (7) for the three-body forces scattering amplitude may be the basis of pow-
erful dynamic apparatus for constructing the dynamical models for the theoretical description

of the inclusive reactions.
In the case of unitarity saturation of the three-body forces, we have from generalized asymp-

totic theorems

f0(s) ∼ s3/2
(

ln s/s′0
M0

)5
, χ(s) ∼ 1

√
sln3s

, s→∞.

This means that

A(s,M2
X) ∼ ln2

s̄

s′0
, s→∞ . (34)
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On the other hand, comparing formulae (25) and (33) we see that one and the same combi-
nation χf0 enters in the equations. Therefore, we can extract this combination and express it

through experimentally measurable quantities. We have in this way

A(s,M2
X) =

s̄MNR
3
d

(2π)3/2I(s)
δσ0(s̄). (35)

In that case it would be very desirable to think about the creation of accelerating deuterons
beams instead of proton ones at the now working accelerators and colliders.

5. On the structure of hadronic total cross-sections

Let’s rewrite the equation for χ(s)

χ(s) =
σtothN (s/2)

2π[BhN (s/2) +R20(s)]
− 1

in the form

σtothN (s) = 2π
[
BhN (s) +R20(2s)

]
(1 + χ) . (36)

From the Froissart and generalized asymptotic bounds we have

χ(s) = O

(
1√
s ln3 s

)
, s→∞.

We also know that [20]

σtothN (s, s0) ∼ ln2(s/s0) =⇒ BhN (s, s0) ∼ ln2(s/s0), (37)

and Eq. (36) gives

R20(2s, s
′
0) ∼ ln2(2s/s′0) ∼ ln2(s/s0), s→∞.

Therefore, we come to the following asymptotic consistency condition:

s′0 = 2s0 . (38)

The asymptotic consistency condition tells us that we have not any new scale. The scale defining

unitarity saturation of three-body forces is unambiguously expressed by the scale which defines
unitarity saturation of two-body forces. In that case we have

R20(2s, s
′
0) = R20(s, s0)

and

σtothN(s) = 2π
[
BhN (s) +R20(s)

]
(1 + χ(s)) (39)

with a common scale s0.
Reminding the relation between the effective radius of two-body forces and the slope of

diffraction cone in elastic scattering

BhN (s) =
1

2
R2hN (s), (40)

10



we obtain
σtothN (s) = πR2hN(s) + 2πR20(s), s→∞. (41)

Equations (39) and (41) define a new nontrivial structure of hadronic total cross-section. It

should be emphasized that the coefficients staying in the R.H.S. of Eq. (41) in front of effective
radii of two- and three-body forces are strongly fixed.

It is useful to compare the new structure of total hadronic cross-section with the known
structure. We have from unitarity

σtothN (s) = σelhN(s) + σinelhN (s). (42)

If we put

σelhN (s) = πRel
2

hN(s), σinelhN (s) = 2πRinel
2

hN (s), (43)

then we come to the similar formula

σtothN (s) = πRel
2

hN(s) + 2πRinel
2

hN (s). (44)

But it should be borne in mind

R2hN(s) �= Rel 2hN(s), R20(s) �= Rinel
2

hN (s). (45)

In fact, we have

σelhN (s) =
σtot

2

hN (s)

16πBhN(s)
=
σtot

2

hN (s)

8πR2hN(s)
, (46)

σinelhN (s) = σtothN (s)

[
1− σtothN(s)

8πR2hN(s)

]
. (47)

Of course, Eqs. (43) are the definitions of RelhN and RinelhN . The definition of RelhN corresponds

to our classical imagination, the definition of RinelhN corresponds to our knowledge of quantum
mechanical problem for scattering from the black disk. Let us suppose that

σtothN (sm) ∼= πR2hN(sm), sm ∈M,
(
R20(sm)� R2hN (sm)

)
, (48)

then we obtain

σelhN (sm) =
1

8
πR2hN(sm), σinelhN (sm) =

7

8
πR2hN(sm). (49)

This simple example shows that the new structure of total hadronic cross-sections is quite

different from that given by Eq. (42). The reason is that the structure (39) is of the dynamical
origin. We have mentioned above that the coefficients, staying in the R.H.S. of Eq. (41) in front

of effective radii of two- and three-body forces, are strongly fixed. In fact, we found here the
answer to the old question: Why the constant (π/m2π ≈ 60mb) staying in the Froissart bound

is too large in the light of the existing experimental data. The constant in the R.H.S. of Eq.
(41), staying in front of effective radius of hadron-hadron interaction, is 4 times smaller than
the constant in the Froissart bound. But this is too small to correspond to the experimental

data. The second term in the R.H.S. of Eq. (41) fills an emerged gap.
It is a remarkable fact that the quantity R20, which has the clear physical interpretation,

at the same time, is related to the experimentally measurable quantity which the total cross-
section is. This important circumstance gives rise to the new nontrivial consequences which are

discussed in the next section.
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We made an attempt to check up the structure (39) on its correspondence to the existing
experimental data and I’d like to present the preliminary results here.

At the first step, we made a weighted fit to the experimental data on the proton-antiproton
total cross-sections in the range

√
s > 10GeV . The data were fitted with the function of the

form predicted by Froissart bound in the spirit of our approach5

σtotasmpt = a0 + a2 ln2(
√
s/
√
s0) (50)

where a0, a2,
√
s0 are free parameters. We accounted for experimental errors δxi (statistical and

systematic errors added in quadrature) by fitting to the experimental points with the weight
wi = 1/(δxi)

2. Our fit yielded

a0 = (42.0479± 0.1086)mb, a2 = (1.7548± 0.0828)mb, (51)

√
s0 = (20.74± 1.21)GeV. (52)

The fit result is shown in Fig. 3.
After that we made a weighted fit to the experimental data on the slope of diffraction cone

in elastic pp̄ scattering. The experimental points and the references, where they have been
extracted from, are listed in [26]. The fitted function of the form

B = b0 + b2 ln2(
√
s/20.74), (53)

which is also suggested by the asymptotic theorems of local quantum field theory, has been used.
The value

√
s0 has been fixed by (52) from the fit to the pp̄ total cross-sections data. Our fit

yielded
b0 = (11.92± 0.15)GeV −2, b2 = (0.3036± 0.0185)GeV−2. (54)

The fitting curve is shown in Fig. 4.
At the final stage we build a global (weighted) fit to all the data on proton-antiproton total

cross-sections in a whole range of energies available up today. The global fit was made with the
function of the form

σtotpp̄ (s) = σtotasmpt(s)

[
1 +

c√
s− 4m2NR

3
0(s)

(
1 +

d1√
s

+
d2
s

+
d3
s3/2

)]
(55)

where mN is proton (nucleon) mass,

R20(s) =
[
0.40874044σtotasmpt(s)(mb)−B(s)

]
(GeV −2), (56)

σtotasmpt(s) = 42.0479 + 1.7548 ln2(
√
s/20.74), (57)

B(s) = 11.92 + 0.3036 ln2(
√
s/20.74), (58)

c, d1, d2, d3 are free parameters. Function (55) corresponds to the structure given by Eq. (39).

In fact, we have for the function χ(s) in the R.H.S. of Eq. (39) theoretical expression in the
form

χ(s) =
C

κ(s)R30(s)
(59)

5Recently, from a careful analysis of the experimental data and a comparative study of the known characteristic
parameterizations, Bueno and Velasco have shown (Phys. Lett. B380, 184 (1996)) that statistically a “Froissart-
like” type parameterization for proton-proton and proton-antiproton total cross-sections is strongly favoured.
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where

κ4(s) =
1

2π

∫ b
a

dx
√

(x2 − a2)(b2− x2)[(a+ b)2 − x2], (60)

a = 2mN , b =
√

2s+m2N −mN .

It can be proved that κ(s) has the following asymptotics6

κ(s) ∼
√
s, s→∞,

κ(s) ∼
√
s− 4m2N , s→ 4m2N .

We used at the moment the simplest function staying in the R.H.S. of Eq. (55) which described
these two asymptotics.

Our fit yielded

d1 = (−12.12± 1.023)GeV, d2 = (89.98± 15.67)GeV 2,

d3 = (−110.51± 21.60)GeV 3, c = (6.655± 1.834)GeV −2. (61)

The fitting curve is shown in Figs. 5, 6.

The experimental data on proton-proton total cross-sections display a more complex struc-
ture at low energies than the proton-antiproton ones. To describe this complex structure we, of

course, have to modify formula (55) without destroying the general structure given by Eq. (39).
The modified formula looks like

σtotpp (s) = σtotasmpt(s)×[
1 +

(
c1√

s− 4m2NR
3
0(s)
− c2√

s − sthrR30(s)

)
(1 + d(s)) +Resn(s)

]
, (62)

where σtotasmpt(s) is the same as in proton-antiproton case (Eq. (57)) and

d(s) =
8∑
k=1

dk
sk/2

, Resn(s) =
8∑
i=1

CiRs
i
RΓiR

2√
s(s− 4m2N )[(s− siR)2 + siRΓiR

2
]
. (63)

Compared to Eq. (55) we introduced here an additional term Resn(s) describing diproton
resonances which have been extracted from [27,28]. The positions of resonances and their widths

are listed in Table I.

Table I: Diproton resonances extracted from [27,28].

mR(MeV ) ΓR(MeV ) CR(GeV 2)

1937± 2 7± 2 0.0722± 0.0235

1955± 2 9± 4 0.1942± 0.0292

1965± 2 6± 2 0.1344± 0.0117

1980± 2 9± 2 0.3640± 0.0654

2008± 3 4± 2 0.3234± 0.0212

2106± 2 11± 5 −0.2958± 0.0342

2238± 3 22± 8 0.4951± 0.0559

2282± 4 24± 9 0.0823± 0.0319

6Integral in R.H.S. of Eq.(60) can be expressed in terms of the Appell function.
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The c1, c2, sthr, di, C
i
R(i = 1, ..., 8) were considered as free fit parameters. The fitted param-

eters obtained by fit are listed below (see CiR in Table I.)

c1 = (192.85± 1.68)GeV −2, c2 = (186.02± 1.67)GeV −2,

sthr = (3.5283± 0.0052)GeV 2,

d1 = (−2.197± 1.134)102GeV, d2 = (4.697± 2.537)103GeV 2,

d3 = (−4.825± 2.674)104GeV 3, d4 = (28.23± 15.99)104GeV 4,

d5 = (−98.81± 57.06)104GeV 5, d6 = (204.5± 120.2)104GeV 6,

d7 = (−230.2± 137.3)104GeV 7, d8 = (108.26± 65.44)104GeV 8. (64)

The fitting curve is shown in Figs. 7-10. It should be pointed out that our fit revealed that

the resonance with the mass mR = 2106MeV should be odd parity. Our fit indicates that
this resonance is strongly confirmed by the set of experimental data on proton-proton total

cross-sections. That is why a further study of diproton resonances is very desirable.
Figures 4-11 display a very good correspondence of theoretical formula (39) to the existing

experimental data on proton-proton and proton-antiproton total cross-sections.
I’d like to emphasize the following attractive features of formula (39). This formula represents

hadronic total cross-section in a factorized form. One factor describes high-energy asymptotics of

total cross-section and it has the universal energy dependence predicted by the Froissart theorem.
Other factor is responsible for the behaviour of total cross-section at low energies and this factor

has also a universal asymptotics at the elastic threshold. It is a remarkable fact that the low-
energy asymptotics of total cross-section at the elastic threshold is dictated by the high-energy

asymptotics of three-body (three-nucleon in that case) forces. This means that we undoubtedly
faced very deep physical phenomena here. The appearance of new threshold sthr = 3.5283GeV 2

in proton-proton channel, which is near to the elastic threshold, is a nontrivial fact too. It’s
clear that the difference of two identical terms with different thresholds in the R.H.S. of Eq. (62)

is a tail of crossing symmetry which was not actually taken into account in our consideration.
What physical entity does this new threshold correspond to? This interesting question is still
open.

Anyway we have established that simple theoretical formula (39) described the global struc-
ture of pp and pp̄ total cross-sections in the whole range of energies available up today. Of course,

our results concerning a global description of hadronic total cross-sections are to be considered
as preliminary ones. We know the ways how they can be refined later on.

6. On the slope of diffraction cone in single diffraction dissociation

We have shown above that the slope of diffraction cone in the single diffraction dissociation
is related to the effective interaction radius for three-body forces

bSD(s,M2
X) =

1

2
R20(s̄, s

′
0), (65)

s̄ = 2(s+M2
N )−M2

X , s′0 = 2s0.

Let us define the slope of diffraction cone in the single diffraction dissociation at a fixed point
over the missing mass

Bsd(s) = bSD(s,M2
X)|M2

X
=2M2

N
. (66)
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Now taking into account Eqs. (40,41) where the effective interaction radius for three-body forces
can be extracted from

R20(2s, 2s0) = R20(s, s0) =
1

2π
σtot(s)−Bel(s), (67)

and the equation

σel(s) =
σtot

2

(s)

16πBel(s)
, (ρ = 0) (68)

we come to the fundamental relation between the slopes in the single diffraction dissociation
and elastic scattering

Bsd(s) = Bel(s)

(
4X − 1

2

)
, (69)

where

X ≡ σel(s)

σtot(s)
. (70)

The quantity X has a clear physical meaning, it has been introduced in the papers of C.N. Yang
and his collaborators [29,30].

We found X = 0.25 at
√
s = 1800GeV (see the CDF paper mentioned in Introduction).

Hence, in that case we have Bsd = Bel/2 which is confirmed not so badly in the experimental

measurements.
In the limit of the black disk (X = 1/2) we obtain

Bsd =
3

2
Bel , (71)

and

Bsd = Bel, at X =
3

8
= 0.375 . (72)

So, we observe that there is quite a nontrivial dynamics in the slopes of diffraction cone in
the single diffraction dissociation and elastic scattering processes. In particular, we can study an

intriguing question on the black disk limit not only in the measurements of total hadronic cross-
sections compared with elastic ones but in the measurements of the slopes in single diffraction

dissociation processes together with elastic scattering ones.
There is a more general formula which can be derived with account of the real parts for the

amplitudes. This formula looks like

Bsd(s) = Bel(s)

(
4X

1− ρel(s)ρ0(s)
1 + ρ2el(s)

− 1

2

)
. (73)

If ρel = 0 or ρ0 = −ρel, then we come to Eq. (69). In the case when ρel �= 0, we can rewrite Eq.
(73) in the form

ρ0 =
1

ρel

[
1− 1 + ρ2el

8X

(
1 +

2Bsd

Bel

)]
. (74)

Eq. (74) can be used for the calculation of the new quantity ρ0. Anyway, the measurements of
real parts for the amplitudes seem to play an important role in the future high energy hadronic

physics.
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7. On total single diffractive dissociation cross-section

For the total single diffractive dissociation cross-section defined as

σsd(s) = 2π

∫ 0.1s
M2
min

dM2
X

s

∫ t+(M2
X)

t−(M2
X
)

dtA(s,M2
X) exp[b(s,M2

X)t] (75)

we obtained the following asymptotic formula

σsd(s) =
A0 +A2 ln2(

√
s/
√
s0)

c0 + c2 ln2(
√
s/
√
s0)

, (76)

where c0, c2 are related to effective interaction radius for three-body forces

R20(s) = c0 + c2 ln2(
√
s/
√
s0),

and A0, A2 to be found from the fit to the experimental data on σsd. The experimental values
for pp̄ single diffraction dissociation cross-sections, which were used, are listed in Table II.

Table II: Data on pp̄ single diffraction dissociation cross-sections.

√
s (GeV ) σpp̄sd(mb) References

20 4.9± 0.55 [1]

200 4.8± 0.9 [32]

546 5.4± 1.1 [33]

546 7.89± 0.33 [1]

546 9.4± 0.7 [34]

900 7.8± 1.2 [34]

1800 9.46± 0.44 [1]

1800 11.7± 2.3 [35]

1800 8.1± 1.7 [35]

Our fit yielded [26,31]

A0 = 23.395± 2.664mbGeV−2, A2 = 4.91± 0.26mbGeV−2.

The fit result is shown in Fig. 11. As you can see, the fitting curve goes excellently over the

experimental points of the CDF group at Fermilab.
Thus, we have shown that from the generalized asymptotic theorems a là Froissart there

follows a simple formula which allows one to match the experimental data on pp̄ single diffraction
dissociation cross-sections at high energies including lower energies as well. At present only the

suggested approach allows one to quantitatively describe the observed behaviour of pp̄ single
diffraction dissociation cross-sections.

Some time ago many high energy physicists thought that the increase of total cross-sections

was due to the same increase of single diffraction dissociation cross-sections. Now we know that
this thought is wrong and, moreover, we understand why this is the case.

As it has been shown above the phenomenon of exceedingly moderate energy dependence
of single diffraction dissociation cross-sections on s observed by CDF at Fermilab is a man-

ifestation of unitarity saturation of three-nucleon forces at Fermilab Tevatron energies. This
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phenomenon is confirmed in the dynamics consistent with unitarity becoming apparent in the
effect of screening of three-body forces by two-body ones. It is to be compared with the dis-

covery of the increase of pp total cross-sections at CERN ISR and of the growth of K+p total
cross-sections revealed at Serpukhov accelerator. In this context, the CDF data are the ones of

the most significant experimental results obtained in the last years.
In fact, we have found the bound (like Froissart bound!)

σsd(s) < Const, s→∞ . (77)

I’d like especially to point out that analyticity and unitarity together with the dynamic
apparatus of single-time formalism in QFT provide the clear answers to the asymptotic behaviour

both the elastic scattering and single diffraction dissociation at high energies, which correspond
to the experimentally observable picture.

It is very nice that the understanding of “soft” physics based on general principles of QFT,

such as analyticity and unitarity, is so fine confirmed by the experimentally observable picture
compared to the models where the general principles have been broken down.

I hope that it will be possible to test the obtained results at higher energies, such as those
of the LHC collider and even higher ones.

8. On the forms of strong interaction dynamics

Conditionally there are two forms of strong interaction dynamics: t-channel form and s-

channel one.

t-channel form

The fundamental quantity here is some set of Regge trajectories:

t− channelform ⇐⇒ αR(t). (78)

Here subscript R enumerates different Regge trajectories which are the poles in the t-channel

partial wave amplitudes for the given process. There are a lot of people who work in the field
of t-channel dynamics of strong interactions.

Some part of scientific community works in the field of s-channel form of strong interaction
dynamics.

s-channel form

The fundamental quantity here is an effective interaction radius of fundamental forces:

s− channelform ⇐⇒ Rα(s). (79)

Here subscript α enumerates different types of hadrons and fundamental forces acting between
them. The s-channel form of dynamics allows one to create a physically transparent and visual

geometric picture of strong interactions for hadrons. I’d like to emphasize the attractive features
of this form of strong interaction dynamics.

• Universality (existence of pion with mπ �= 0):

Rα(s) ∼
rα
mπ

ln
s

s0
, s→∞ .
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• Compatibility with the general principles of relativistic quantum theory.
• Fine mathematical structures are given by the global analyticity together with single-time

formalism in QFT.

That is why, in our opinion, the s-channel form of strong interaction dynamics is more preferable

than the t-channel one.
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represents our fit to the data. Statistical and systematic errors added in quadrature.
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Figure 5: The total proton-antiproton cross-section versus
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s compared with formula (55). Solid line

represents our fit to the data.
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Solid line represents our fit to the data.
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