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Introduction

It is a well known fact that at energies above
√
s ∼ 20GeV all hadronic total cross-sections

rise with the growth of energy. In 1970 the experiments at the Serpukhov accelerator revealed
that the K+p total cross-section increased with energy [1]. Increase of the pp total cross-section
has been discovered at the CERN ISR [2] and then the effect of rising total cross-sections was

confirmed at the Fermilab accelerator [3].
Although nowadays we have in the framework of local quantum field theory a gauge model

of strong interactions formulated in terms of the known QCD Lagrangian its relations to the so
called “soft” (interactions at large distances) hadronic physics are far from desired. Obviously

the understanding of this physics is of high interest because it has intrinsically fundamental
nature. In spite of more than 25 years after the formulation of QCD, we cannot still obtain from

the QCD Lagrangian the answer to the question why all hadronic total cross-sections grow with
energy. We cannot predict total cross-sections in an absolute way starting from the fundamental

QCD Lagrangian as well mainly because it is not a perturbative problem. We know e.g. that
nonperturbative contributions to the gluon propagator influence the behaviour of “soft” hadronic
processes and the knowledge of the infrared behaviour of QCD is certainly needed to describe

the “soft” hadronic physics in the framework of QCD. Unfortunately, today we don’t know the
whole picture of the infrared behaviour of QCD, we have some fragments of this picture though

(see e.g. Ref. [4]).
At the same time it is more or less clear now that the rise of the total cross-sections is just

the shadow (not antishadow!) of particle production.
Through the optical theorem the total cross-section is related to the imaginary part of the

elastic scattering amplitude in the forward direction. That is why the theoretical understanding
of elastic scattering is of the fundamental importance. From the unitarity relation it follows

also that the imaginary part of the elastic scattering amplitude contains the contribution of
all possible inelastic channels in two-particle interaction. It is clear therefore that we cannot

understand elastic scattering without understanding inelastic interaction.
A variety of different approaches to the dynamics of “soft” hadronic processes can condition-

ally be divided into two groups corresponding to different forms of strong interaction dynamics:

t-channel form and s-channel one.
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In the framework of t-channel form of the dynamics the popular Regge phenomenology
represents elastic and inelastic diffractive scattering by the exchange of the Pomeron, a color

singlet Reggeon with quantum numbers of the vacuum. It should be noted, that the definition
of the Pomeron as Reggeon with the highest Regge trajectory αP (t), that carries the quantum

numbers of the vacuum, is not only one 1. There are many other definitions of the Pomeron:
Pomeron is a gluon “ladder” [5]; Pomeron is a bound state of two reggezied gluons – BFKL-

Pomeron [6]; soft and hard Pomerons [7,8], etc. This leapfrog is because of the exact nature of
the Pomeron and its detailed substructure remains such as that anyone doesn’t know what it

is. The difficulty of establishing the true nature of the Pomeron in QCD is almost obviously
related to the calculations of non-perturbative gluon exchange.

Nevertheless in the near past simple formulae of the Regge phenomenology provided good

parameterization of experimental data on “soft” hadronic physics and pragmatic application of
Pomeron phenomenology had been remarkably successful (see e.g. last issue of the Review of

Particles Properties).
That was the case before the appearance of CDF data on single diffractive dissociation

[9,10] and recent results from HERA [11], which had shown that a popular model of super-
critical Pomeron did not describe new experimental data. Obviously, the foundations of the

Pomeron model require further theoretical study and the construction of newer, more general
phenomenological framework, which would enable one to remove the discrepancy between the

model predictions and the experiment. Of course it is good that we have simple and compact
form for representing a great variety of data for different hadronic processes, but it is certainly
bad that power behaved total cross-sections violate unitarity. Often and often encountered

claim, that the model with power behaved total cross-sections is valid in the non-asymptotic
domain which has been explored up today, is not correct because supercritical Pomeron model

is an asymptotic one by definition.
We suggested a new approach to the dynamical description of one-particle inclusive reactions

[12]. The main point of our approach is that new fundamental three-body forces are responsible
for the dynamics of particle production processes of inclusive type. Our consideration revealed

several fundamental properties of one-particle inclusive cross-sections in the region of diffraction
dissociation. In particular, it was shown that the slope of the diffraction cone in pp̄ single

diffraction dissociation was related to the effective radius of three-nucleon forces in the same
way as the slope of the diffraction cone in elastic pp̄ scattering was related to the effective
radius of two-nucleon forces. It was also demonstrated that the effective radii of two- and three-

nucleon forces, which were the characteristics of elastic and inelastic interactions of two nucleons,
defined the structure of the total cross-sections in a simple and physically clear form. We made

an attempt to check up the structure on its correspondence to the existing experimental data
on proton-proton and proton-antiproton total cross-sections. It is a remarkable fact, which is

presented in this paper, that there is a very good correspondence.
First of all it should be elucidated what the three-body forces are. It will be made in the

next sections.

1For the supercritical Pomeron αP (0) − 1 = ∆ � 1, ∆ > 0 is responsible for the growth of hadronic cross-
sections with energy.
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1. Three-body forces in relativistic quantum theory

Using the LSZ or the Bogoljubov reduction formulae in quantum field theory [13], we can
easily obtain the following cluster structure for 3→ 3 scattering amplitude (see Fig. 1)

F123 = F12 +F23 + F13 +FC
123 (1)

where Fij, (i, j = 1, 2, 3) are 2 → 2 scattering amplitudes, FC
123 is called the connected part of

the 3→ 3 scattering amplitude.
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Fig. 1

In the framework of single-time formalism in quantum field theory [14] we construct the
3→ 3 off energy shell scattering amplitude T123(E) with the same (cluster) structure as (1)

T123(E) = T12(E) + T23(E) + T13(E) + TC
123(E). (2)

Following the tradition we’ll call the kernel describing the interaction of three particles as the
three particle interaction quasipotential. The three particle interaction quasipotential V123(E)
is related to the off-shell 3→ 3 scattering amplitude T123(E) by the Lippmann-Schwinger type

equation
T123(E) = V123(E) + V123(E)G0(E)T123(E). (3)

There exists the same transformation between two particle interaction quasipotentials Vij and
off energy shell 2→ 2 scattering amplitudes Tij

Tij(E) = Vij(E) + Vij(E)G0(E)Tij(E). (4)

It can be shown that in the quantum field theory the three particle interaction quasipotential
has the following structure [15]:

V123(E) = V12(E) + V23(E) + V13(E) + V0(E). (5)

The quantity V0(E) is called the three-body forces quasipotential. The V0(E) represents the de-

fect of three particle interaction quasipotential over the sum of two particle interaction quasipo-
tentials and describes the true three-body interactions. Three-body forces quasipotential is

an inherent connected part of total three particle interaction quasipotential which can not be
represented by the sum of pair interaction quasipotentials.

The three-body forces scattering amplitude is related to the three-body forces quasipotential

by the equation
T0(E) = V0(E) + V0(E)G0(E)T0(E). (6)

It should be stressed that the three-body forces appear as a result of consistent consideration
of three-body problem in the framework of local quantum field theory.
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2. Global analyticity of the three-body forces

Let us introduce the following useful notations:

< p′1p
′
2p
′
3|S − 1|p1p2p3 >= 2πiδ4(

3∑
i=1

p′i −
3∑

j=1

pj)F123(s; ê′, ê), (7)

s = (
3∑

i=1

p′i)
2 = (

3∑
j=1

pj)
2.

ê′, ê ∈ S5 are two unit vectors on five-dimensional sphere describing the configuration of three-
body system in initial and final states (before and after scattering).

We will denote the quantity T0 restricted on the energy shell as

T0 |on energy shell = F0.

The unitarity condition for the quantity F0 with account for the introduced notations can be
written in form [16,17]

ImF0(s; ê′, ê) =

= πA3(s)

∫
dΩ5(ê

′′)F0(s; ê′, ê′′)
∗
F0 (s; ê, ê′′) +H0(s; ê

′, ê), (8)

ImF0(s; ê′, ê) =
1

2i

[
F0(s; ê′, ê)−

∗
F 0 (s; ê, ê′)

]
,

where

A3(s) = Γ3(s)/S5,

Γ3(s) is the three-body phase-space volume, S5 is the volume of unit five-dimensional sphere.

H0 defines the contribution of all inelastic channels emerging due to three-body forces.
Let us introduce a special notation for the scalar product of two unit vectors ê′ and ê

cosω = ê
′ · ê. (9)

We will use the other notation for the three-body forces scattering amplitude as well

F0(s; ê′, ê) = F0(s; η, cosω),

where all other variables are denoted through η.

Now we are able to go to the formulation of our basic assumption on the analytical properties
for the three-body forces scattering amplitude [16,17].

We will assume that for physical values of the variable s and fixed values of η the amplitude
F0(s; η, cosω) is an analytical function of the variable cosω in the ellipse E0(s) with the semi-

major axis

z0(s) = 1 +
M2
0

2s
(10)

and for any cosω ∈ E0(s) and physical values of η it is polynomially bounded in the variable s.

M0 is some constant having mass dimensionality.
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Such analyticity of the three-body forces amplitude was called a global one. The global
analyticity may be considered as a direct geometric generalization of the known analytical

properties of two-body scattering amplitude strictly proved in the local quantum field theory
[18,19,20,21,22].

At the same time the global analyticity results in the generalized asymptotic bounds. For
example, the generalized asymptotic bound for O(6)-invariant three-body forces scattering am-

plitude looks like [16,17]

ImF0(s; ...)≤ Const s3/2(
ln s/s′0
M0

)
5
= Const s3/2R50(s), (11)

where R0(s) is the effective radius of the three-body forces introduced according to [22], where
the effective radius of two-body forces has been defined

R0(s) =
Λ0
Π(s)

=
r0
M0

ln
s

s′0
, Π(s) =

√
s

2
, s→∞, (12)

r0 is defined by the power of the amplitude F0 growth at high energies [17], M0 defines the semi-
major axis of the global analyticity ellipse (10), Λ0 is the effective global orbital momentum,

Π(s) is the global momentum of three-body system, s′0 is a scale defining unitarity saturation of
three-body forces.

It is well known that the Froissart asymptotic bound [23] can be experimentally verified

because with the help of the optical theorem we can connect the imaginary part of 2 → 2
scattering amplitude with the experimentally measurable quantity which is the total cross-

section. So, if we want to have a possibility for the experimental verification of the generalized
asymptotic bounds (n ≥ 3) we have to establish a connection between the many-body forces

scattering amplitudes and the experimentally measurable quantities. For this aim we have
considered the problem of high-energy particle scattering from deuteron and on this way we

found the connection of the three-body forces scattering amplitude with the experimentally
measurable quantity which is the total cross-section for scattering from deuteron [24]. Moreover,

the relation of the three-body forces scattering amplitude to one-particle inclusive cross-sections
has been established [25].

We shall briefly sketch now the basic results of our analysis of high-energy particle scattering

from deuteron.

3. Scattering from deuteron

The problem of scattering from two-body bound states was treated in works [24,25] with the

help of dynamic equations obtained on the basis of single-time formalism in QFT [15]. As has
been shown in [24,25], the total cross-section in scattering from deuteron can be expressed by

the formula
σtot
hd (s) = σtot

hp (ŝ) + σtot
hn (ŝ)− δσ(s), (13)

where σhd, σhp, σhn are the total cross-sections in scattering from deuteron, proton and neutron,

δσ(s) = δσG(s) + δσ0(s), (14)

δσG(s) =
σtot
hp (ŝ)σ

tot
hn (ŝ)

4π(R2d +Bhp(ŝ) + Bhn(ŝ))
≡

σtot
hp (ŝ)σ

tot
hn (ŝ)

4πR2eff(s)
, ŝ =

s

2
, (15)
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BhN (s) is the slope of the forward diffraction peak in the elastic scattering from nucleon, 1/R2d
is defined by the deuteron relativistic formfactor

1

R2d
≡ q

π

∫
d%∆Φ(%∆)

2ωh(%q + %∆)
δ
[
ωh(%q + %∆)− ωh(%q )

]
,

s

2Md

∼= q ∼= ŝ

2MN

, (16)

δσG is the Glauber correction or shadow effect. The Glauber shadow correction originates from
elastic rescatterings of an incident particle on the nucleons inside the deuteron.

The quantity δσ0 represents the contribution of the three-body forces to the total cross-
section in scattering from deuteron. The physical reason for the appearance of this quantity

is directly connected with the inelastic interactions of an incident particle with the nucleons of
deuteron. Paper [25] provides for this quantity the following expression:

δσ0(s) = −
(2π)3

q

∫
d%∆Φ(%∆)

2Ep(%∆/2)2En(%∆/2)
ImR(s;−

%∆

2
,
%∆

2
, %q;

%∆

2
,−

%∆

2
, %q), (17)

where q is the incident particle momentum in the lab system (rest frame of deuteron), Φ(%∆) is

the deuteron relativistic formfactor, normalized to unity at zero,

EN(%∆) =

√
%∆2 +M2

N N = p, n,

MN is the nucleon mass. The function R is expressed via the amplitude of the three-body forces
T0 and the amplitudes of elastic scattering from the nucleons ThN by the relation

R = T0 +
∑

N=p,n

(T0G0ThN + ThNG0T0). (18)

In [24] the contribution of three-body forces to the scattering amplitude from deuteron was
related to the processes of multiparticle production in the inelastic interactions of the incident
particle with the nucleons of deuteron. This was done with the help of the unitarity equation.

The character of the energy dependence of δσ0 was shown to be governed by the energy behaviour
of the corresponding inclusive cross-sections.

Here for simplicity let us consider the model where the imaginary part of the three-body
forces scattering amplitude has the form

ImF0(s; %p1, %p2, %p3; %q1, %q2, %q3) = f0(s) exp

{
−R20(s)

4

3∑
i=1

(%pi − %qi)
2

}
, (19)

where f0(s), R0(s) are free parameters which in general may depend on the total energy of

three-body interaction. Note that the quantity f0(s) has the dimensionality [R2]. The model
assumption (19) is not significant for our main conclusions but allows one to make some calcu-

lations exactly in a closed form.
In case of unitarity saturation of the three-body forces, we have from the generalized asymp-

totic theorems

f0(s) ∼ Const s3/2
( ln s/s′0

M0

)5
= Const s3/2R50(s), (20)

R0(s) =
r0
M0

ln s/s′0 s→∞. (21)
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In the model all the integrals can be calculated in the analytical form. As a result we obtain
for the quantity δσ0 [25]

δσ0(s) =
(2π)6f0(s)

sMN

{
σhN (s/2)

2π[BhN(s/2) +R20(s)− R40(s)/4(R
2
0(s) + R2d)]

− 1

}

× 1

[2π(R2d +R20(s))]3/2
. (22)

If the condition

R20(s) � BhN (s/2)� R2d (23)

is realized, then we obtain from expression (22)

δσ0(s) = (2π)9/2
f0(s)χ(s)

sMNR3d
, (24)

where

χ(s) =
σtot
hN (s/2)

2π[BhN(s/2) +R20(s)]
− 1, (25)

and we suppose that asymptotically

Bhp = Bhn ≡ BhN , σtot
hp = σtot

hn ≡ σtot
hN .

In the 50th Bogoljubov proposed the idea to describe stable compound systems by local
fields. Bogoljubov’s idea has brilliantly been realized by Zimmermann in his famous paper [26].
Zimmermann’s construction for local deuteron field looks like

Bd(X) = lim
x→0

T
(
Φp(X + 1

2
x)Φn(X − 1

2
x)
)

< 0|T
(
Φp(

1
2
x)Φn(−12x)

)
|d >

. (26)

It has been proved [26] that Bd(X) satisfies microlocal causality. Moreover, the asymptotic

deuteron fields constructed with the Yang–Feldman procedure fulfil the commutation relations
of Fock representation. The hadron–deuteron scattering amplitude can be presented by LSZ
reduction formula in the form

< %Pd%ph|S − 1| %Qd%qh >=

∫∫
dXdx

∫∫
dY dy

∗
fMd;�Pd

(X)
∗
fmh;�ph(x)×

→
K

Md

X

→
K

mh

x < 0|T (Bd(X)Φh(x)Bd(Y )Φh(y)) |0 >
←
K

Md

Y

←
K

mh

y fMd;�Qd
(Y )fmh;�qh(y) (27)

where Km
x ≡ x +m2 is Klein-Gordon-Fock differential operator,

fm;�p (x) = (2π)−3/2exp(−ipx), p0 = E(%p,m) =
√

%p 2 +m2.

Of course the construction of local interpolating Heisenberg fields is not a unique procedure.
There are equivalence classes of different fields (Borchers’s classes [27]), which have the same

asymptotic fields and give rise to the same S-matrix. Anyway Zimmermann’s construction allows
us to use the local quantum field theory Causality-Spectrality–Analyticity-Unitarity (CS–AU)

machine [13] and prove the Froissart theorem for hadron–deuteron elastic scattering amplitude as
well and, as a consequence, obtain the Froissart bound for total cross-section in hadron–deuteron

interaction.
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First two terms in Eq. (13) fulfil the Froissart bound. The quantity δσG meets a stronger
bound than the Froissart one because we know that

σtot
hN (s, s0) ∼ ln2(s/s0) =⇒ BhN (s, s0) ∼ ln2(s/s0),

and, therefore, we have from Eq. (15)2

δσG(s) < 2σel
hN (ŝ), (σel

hN(s) =
σtot
hN (s)

2

16πBhN(s)
, ρel = 0).

From expression (24) for the correction δσ0 then it follows that

δσ0(s) < C0 ln
2s (C0 < CF

hN = π/m2π) s→∞

if and only if the asymptotic bound

χ(s) <
C√
sln3s

, s→∞. (28)

is valid.

4. Global structure of hadronic total cross-sections

Let’s rewrite the equation for χ(s)

χ(s) =
σtot
hN (s/2)

2π[BhN (s/2) +R20(s)]
− 1

in the form

σtot
hN (s) = 2π

[
BhN (s) +R20(2s)

]
(1 + χ) . (29)

From the Froissart and generalized asymptotic bounds we have

χ(s) = O

(
1√

s ln3 s

)
, s→∞.

We also know that [20]

σtot
hN (s, s0) ∼ ln2(s/s0) =⇒ BhN (s, s0) ∼ ln2(s/s0), (30)

and Eq. (29) gives
R20(2s, s

′
0) ∼ ln2(2s/s′0) ∼ ln2(s/s0), s→∞.

Therefore we come to the following asymptotic consistency condition

s′0 = 2s0 . (31)

2The bound δσG(s) < 2σelhN (ŝ) is also true when ρel �= 0.
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The asymptotic consistency condition tells us that we have not any new scale. The scale defining
unitarity saturation of three-body forces is unambiguously expressed by the scale which defines

unitarity saturation of two-body forces. In that case we have

R20(2s, s
′
0) = R20(s, s0)

and

σtot
hN(s) = 2π

[
BhN (s) +R20(s)

]
(1 + χ(s)) (32)

with a common scale s0.
Reminding the relation between the effective radius of two-body forces and the slope of

diffraction cone in elastic scattering

BhN (s) =
1

2
R2hN(s) (33)

we obtain
σtot
hN (s) = πR2hN(s) + 2πR20(s), s→∞. (34)

Equations (32) and (34) define new nontrivial structure of hadronic total cross-section. It should

be emphasized that the coefficients staying in the R.H.S. of Eq. (34) in front of effective radii
of two- and three-body forces are strongly fixed.

It is useful to compare the new structure of total hadronic cross-section with the known one.
We have from unitarity

σtot
hN (s) = σel

hN(s) + σinel
hN (s). (35)

If we put
σel
hN (s) = πRel 2

hN(s), σinel
hN (s) = 2πRinel 2

hN (s), (36)

then we come to the similar formula

σtot
hN (s) = πRel 2

hN(s) + 2πRinel 2

hN (s). (37)

But it should be borne in mind

R2hN(s) �= Rel 2

hN(s), R20(s) �= Rinel 2

hN (s). (38)

In fact we have

σel
hN (s) =

σtot 2

hN (s)

16πBhN(s)
=

σtot 2

hN (s)

8πR2hN(s)
, (39)

σinel
hN (s) = σtot

hN (s)

[
1− σtot

hN(s)

8πR2hN(s)

]
. (40)

Of course Eqs. (36) are the definitions of Rel
hN and Rinel

hN . The definition of Rel
hN corresponds

to our classical imagination, the definition of Rinel
hN corresponds to our knowledge of quantum

mechanical problem for scattering from a black disk. Let us suppose that

σtot
hN (sm)

∼= πR2hN(sm), sm ∈M,
(
R20(sm)� R2hN (sm)

)
, (41)

then we obtain

σel
hN (sm) =

1

8
πR2hN(sm), σinel

hN (sm) =
7

8
πR2hN(sm). (42)
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This simple example shows that the new structure of total hadronic cross-sections is quite
different from that given by Eq. (35). The reason is that structure (32) is of dynamical origin.

We have mentioned above that the coefficients, staying in R.H.S. of Eq. (34) in front of effective
radii of two- and three-body forces, are strongly fixed. In fact, we found here the answer to the

old question: Why the constant (π/m2π ≈ 60mb) staying in the Froissart bound is too large in
the light of existing experimental data. The constant in R.H.S. of Eq. (34), staying in front

of the effective radius of hadron-hadron interaction, is 4 times smaller than the constant in the
Froissart bound. But this is too small to correspond to the experimental data. The second term

in R.H.S. of Eq. (34) fills an emerged gap. Besides from the Froissart bound

σtot
hN (s) ≤ 4πR2hN(s)

we obtain the bound for the effective radius of three-body forces

R20(s) ≤
3

2
R2hN (s). (43)

It is a remarkable fact that the quantity R20, which has the clear physical interpretation, at the
same time, is related to the experimentally measurable quantity which the total cross-section is.

This important circumstance gives rise to the nontrivial consequences [28].
We made an attempt to check up the structure (32) on its correspondence to the existing

experimental data. Our results are presented below.
At the first step, we made a weighted fit to the experimental data on the proton-antiproton

total cross-sections in the range
√
s > 10GeV . The data were fitted with the function of the

form predicted by the Froissart bound in the spirit of our approach3

σtot
asmpt = a0 + a2 ln

2(
√
s/
√
s0) (44)

where a0, a2,
√
s0 are free parameters. We accounted for the experimental errors δxi (statistical

and systematic errors added in quadrature) by fitting to the experimental points with the weight

wi = 1/(δxi)
2. Our fit yielded

a0 = (42.0479± 0.1086)mb, a2 = (1.7548± 0.0828)mb, (45)

√
s0 = (20.74± 1.21)GeV. (46)

The fit result is shown in Fig. 2.

After that we made a weighted fit to the experimental data on the slope of diffraction cone
in elastic pp̄ scattering. The experimental points and the references, where they have been

extracted from, are listed in [30]. The fitted function of the form

B = b0 + b2 ln
2(
√
s/20.74), (47)

which is also suggested by the asymptotic theorems of local quantum field theory, has been used.

The value
√
s0 was fixed by (46) from the fit to the pp̄ total cross-sections data. Our fit yielded

b0 = (11.92± 0.15)GeV −2, b2 = (0.3036± 0.0185)GeV−2. (48)

The fitting curve is shown in Fig. 3.

3Recently, from a careful analysis of the experimental data and comparative study of the known characteristic
parameterizations, Bueno and Velasco have shown that statistically a “Froissart-like” type parameterization for
proton-proton and proton-antiproton total cross-sections is strongly favoured [29].
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At the final stage we build a global (weighted) fit to the all data on proton-antiproton total
cross-section in a whole range of energies available up today. The global fit was made with the

function of the form

σtot
pp̄ (s) = σtot

asmpt(s)

[
1 +

c√
s− 4m2NR30(s)

(
1 +

d1√
s
+

d2
s

+
d3
s3/2

)]
(49)

where mN is proton (nucleon) mass,

R20(s) =
[
0.40874044σtot

asmpt(s)(mb)−B(s)
]
(GeV −2), (50)

σtot
asmpt(s) = 42.0479+ 1.7548 ln2(

√
s/20.74), (51)

B(s) = 11.92+ 0.3036 ln2(
√
s/20.74), (52)

c, d1, d2, d3 are free parameters. Function (49) corresponds to the structure given by Eq. (32).
In fact we have for the function χ(s) in the R.H.S. of Eq. (32) the theoretical expression in

the form

χ(s) =
C

κ(s)R30(s)
, (53)

where

κ4(s) =
1

2π

∫ b

a

dx
√
(x2 − a2)(b2− x2)[(a+ b)2 − x2], (54)

a = 2mN , b =
√
2s+m2N −mN .

It can be proved that κ(s) has the following asymptotics4

κ(s) ∼
√
s, s→∞,

κ(s) ∼
√

s− 4m2N , s→ 4m2N .

We used at the moment the simplest function staying in R.H.S. of Eq. (49) which described

these two asymptotics.
Our fit yielded

d1 = (−12.12± 1.023)GeV, d2 = (89.98± 15.67)GeV 2,

d3 = (−110.51± 21.60)GeV 3, c = (6.655± 1.834)GeV −2. (55)

The fitting curve is shown in Figs. 4, 5.
The experimental data on proton-proton total cross-sections display a more complex struc-

ture at low energies than the proton-antiproton ones. To describe this complex structure we of
course have to modify formula (49) without destroying the general structure given by Eq. (32).

Modified formula looks like
σtot
pp (s) = σtot

asmpt(s)×[
1 +

(
c1√

s− 4m2NR30(s)
− c2√

s − sthrR
3
0(s)

)
(1 + d(s)) +Resn(s)

]
, (56)

4Integral in R.H.S. of Eq.(54) can be expressed in terms of the Appell function.
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where σtot
asmpt(s) is the same as in the proton-antiproton case (Eq. (51)) and

d(s) =
8∑

k=1

dk
sk/2

, Resn(s) =
8∑
i=1

Ci
Rs

i
RΓ

i
R

2√
s(s− 4m2N )[(s− siR)

2 + siRΓ
i
R

2
]
. (57)

Compared to Eq. (49) we introduced here an additional term Resn(s) describing diproton

resonances which have been extracted from [31,32]. The positions of resonances and their widths
are listed in Table I.

Table I: Diproton resonances extracted from [31,32].

mR(MeV ) ΓR(MeV ) CR(GeV 2)

1937± 2 7± 2 0.0722± 0.0235

1955± 2 9± 4 0.1942± 0.0292

1965± 2 6± 2 0.1344± 0.0117

1980± 2 9± 2 0.3640± 0.0654

2008± 3 4± 2 0.3234± 0.0212

2106± 2 11± 5 −0.2958± 0.0342

2238± 3 22± 8 0.4951± 0.0559

2282± 4 24± 9 0.0823± 0.0319

The c1, c2, sthr, di, C
i
R(i = 1, ..., 8) were considered as free fit parameters. Fitted parameters

obtained by fit are listed below (see Ci
R in Table I)

c1 = (192.85± 1.68)GeV −2, c2 = (186.02± 1.67)GeV −2,

sthr = (3.5283± 0.0052)GeV 2,

d1 = (−2.197± 1.134)102GeV, d2 = (4.697± 2.537)103GeV 2,

d3 = (−4.825± 2.674)104GeV 3, d4 = (28.23± 15.99)104GeV 4,

d5 = (−98.81± 57.06)104GeV 5, d6 = (204.5± 120.2)104GeV 6,

d7 = (−230.2± 137.3)104GeV 7, d8 = (108.26± 65.44)104GeV 8. (58)

The fitting curve is shown in Figs. 6-9. It should be pointed out that our fit revealed the fact
that the resonance with the mass mR = 2106MeV should be odd parity. Our fit indicates

that this resonance is strongly confirmed by the set of experimental data on proton-proton total
cross-sections. That is why a further study of diproton resonances is very desirable.

Figures 4-9 display a very good correspondence of theoretical formula (32) to the existing

experimental data on proton-proton and proton-antiproton total cross-sections.

5. Conclusion

In conclusion we’d like to emphasize the following attractive features of formula (32). This

formula represents hadronic total cross-section in a factorized form. One factor describes high-
energy asymptotics of total cross-section and it has the universal energy dependence predicted

by the Froissart theorem. The other factor is responsible for the behaviour of total cross-section
at low energies and this factor has also the universal asymptotics at elastic threshold. It is

a remarkable fact that the low-energy asymptotics of total cross-section at elastic threshold is

12



dictated by high-energy asymptotics of three-body (three-nucleon in that case) forces. This
means that we undoubtedly faced very deep physical phenomena here. The appearance of new

threshold sthr = 3.5283GeV 2 in the proton-proton channel, which is near the elastic threshold,
is nontrivial fact too. It’s clear that the difference of two identical terms with different thresholds

in R.H.S. of Eq. (56) is a tail of the crossing symmetry which is not actually taken into account in
our consideration. What physical entity does this new threshold correspond to? This interesting
question is still open.

Anyway we have established that simple theoretical formula (32) described the global struc-
ture of pp and pp̄ total cross-sections in the whole range of energies available up today. We

have shown that this formula follows from the generalized asymptotic theorems a là Froissart.
It is very nice that the understanding of “soft” physics based on general principles of QFT, such

as analyticity and unitarity, together with the dynamic apparatus of single-time formalism in
QFT, corresponds so fine to the experimentally observable picture. Of course, our results are

preliminary ones and we know the ways how they can be refined later on.
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Figure 2: The total proton-antiproton cross-section versus
√
s compared with formula (44). Solid line

represents our fit to the data. Statistical and systematic errors added in quadrature.
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Figure 3: Slope B of diffraction cone in pp̄ elastic scattering. Solid line represents our fit to the data.
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Figure 4: The total proton-antiproton cross-section versus
√
s compared with formula (49). Solid line

represents our fit to the data.
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Figure 5: The total proton-antiproton cross-section versus
√
s compared with formula (49) in the range√

s < 10GeV (fragment of Fig. 4). Solid line represents our fit to the data.
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Figure 6: The total proton-proton cross-section versus
√
s compared with formula (56). Solid line repre-

sents our fit to the data. Statistical and systematic errors added in quadrature.
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Figure 7: The total proton-proton cross-section (vs
√
s) including point from cosmic rays experiment [33]

compared with formula (56). Solid line represents our fit to the data.
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Figure 8: The total proton-proton cross-section in the range
√
s < 30GeV compared with formula (56).

Solid line represents our fit to the data.
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Figure 9: The total proton-proton cross-section at low energies compared with formula (56). Solid line
represents our fit to the data.
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