

ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ ФЕДЕРАЦИИ

ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

ИФВЭ 99-46 ОУ-У70

В.Г. Карташева

ИЗУЧЕНИЕ ИНКЛЮЗИВНЫХ СПЕКТРОВ И ШИРОКИХ ПАРНЫХ КОРРЕЛЯЦИЙ ВТОРИЧНЫХ ПРОТОНОВ И ПИОНОВ С МАЛЫМИ КИНЕТИЧЕСКИМИ ЭНЕРГИЯМИ В π^- А-ВЗАИМОДЕЙСТВИЯХ ПРИ 43 ГэВ/с

(Сотрудничество СИГМА-АЯКС)

Направлено в $\mathcal{A}\Phi$

Протвино 1999

Аннотация

Карташева В.Г. Изучение инклюзивных спектров и широких парных корреляций вторичных протонов и пионов с малыми кинетическими энергиями в π^- А-взаимодействиях при 43ГэВ/с.: Препринт ИФВЭ 99–46. – Протвино, 1999. – 23 с., 9 рис., 13 табл., библиогр.: 34.

В работе представлены измеренные в π^- Ве-, Al-, Cu-взаимодействиях при импульсе налетающего π^- -мезона $p_{bm}=43\,\Gamma$ эВ/с инклюзивные инвариантные сечения образованных под углами $\theta = 90^\circ$ и $\theta = 60^\circ$ протонов и образованных под углом $\theta = 90^\circ$ пионов обоих знаков заряда. Исследованы форма инклюзивных спектров вторичных адронов, A-зависимость их сечений, а также величины корреляционных функций пар одноимённо заряженных вторичных адронов при больших углах разлёта этих адронов. Изученная кинематическая область соответствовала значениям кинетической энергии $T \approx 0, 16-0, 70\,\Gamma$ эВ для вторичных протонов и значениям $T \approx 0, 20-0, 76\,\Gamma$ эВ для вторичных пионов. Углы разлёта Ψ адронов пар удовлетворяли соотношению соз $\Psi < -0, 5$.

Abstract

Kartasheva V.G. Study of Inclusive Spectra of Secondary Protons and Pions with Small Kinetic Energies and Their Wide Pair Correlations in π^-A -interactions at 43 GeV/c: IHEP Preprint 99–46. – Protvino, 1999. – p. 23, figs. 9, tables 13, refs.: 34.

The study results of inclusive spectra, cross section A-dependences and wide pair correlations of secondary hadrons, produced in π^- Be-, Al-, Cu-interactions at initial momentum of 43 GeV/c are presented. The investigated kinetic energy region of inclusive spectra corresponded to the values of $T \approx 0, 20-0, 76 \text{ GeV}$ for secondary π^{\pm} -mesons, produced at angle $\theta = 90^{\circ}$, and the values of $T \approx 0, 16-0, 70 \text{ GeV}$ for secondary protons, produced at angles $\theta = 90^{\circ}$ and $\theta = 60^{\circ}$. The flight angles of identically charged secondary hadrons of investigated pairs satisfied the condition $\cos \Psi < -0, 5$.

> © Государственный научный центр Российской Федерации
> Институт физики высоких энергий, 1999

ВВЕДЕНИЕ

Настоящая работа завершает представление результатов изучения данных последней экспозиции выполненного на установке СИГМА-АЯКС эксперимента [1] по поиску процессов образования дибарионов с разделённым цветом в области фрагментации мишени. В ней приведены результаты исследования в π^- Ве-, Аl-, Сu-взаимодействиях при импульсе налетающего π^- -мезона $p_{bm} = 43 \Gamma_{2} B/c$ инклюзивных спектров образованных под углами 90° и 60° вторичных протонов, зарегистрированных двухплечевым магнитным спектрометром (ДМС) установки в области импульсов 0.5 эВ/с, и образованных подуглом 90° вторичных пионов обоих знаков заряда, зарегистрированных ДМС в области импульсов 0,3< p <1 ГэВ/с, а также корреляций пар одноимённо заряженных вторичных адронов при больших углах разлёта этих адронов. Изученная кинематическая область соответствовала значениям кинетической энергии $T \approx 0, 16-0, 70 \Gamma$ эВ для вторичных протонов и значениям $T \approx 0, 20-0, 76 \Gamma$ эВ для вторичных пионов. Данные эксперимента являются новыми измерениями. То, что они получены в ходе одной экспозиции, обеспечивает высокий уровень достоверности выводов как при сравнении формы инклюзивных спектров вторичных адронов, так и при сопоставлении величин корреляционных функций для различных пар адронов.

Исследование взаимодействий высокоэнергичных адронов с ядрами показало, что данные об инклюзивных спектрах вторичных адронов с небольшими импульсами в широкой кинематической области "можно интерпретировать в рамках представлений о двух параллельно идущих процессах: квазисвободном взаимодействии налетающей частицы с её последующей фрагментацией и... процессе фрагментации ядра" [2] — процессе глубоконеупругого ядерного взаимодействия. Так как для изученных в эксклюзивных экспериментах квазиупругих и квазисвободных реакций, идущих на периферии ядра, характерна гораздо более слабая зависимость от массового числа А ядра-мишени, чем для глубоконеупругих реакций, относительный вклад квазисвободного взаимодействия вымирает на тяжёлых ядрах [3,4]. Неоднократно отмечалось, что изучение процесса ядерной фрагментации в области переменных за пределами кинематики столкновения налетающего адрона с нуклоном позволяет исследовать кварк-партонную структурную функцию ядра [5]. В результате выполненного в ИТЭФ изучения корреляций некоторых пар вторичных адронов в адрон-ядерных взаимодействиях при импульсах налетающих π^+ -мезонов и протонов $p_{bm}=3$ и 7,5 ГэВ/с [6-8] было показано, что характер широких корреляций пар одноимённо заряженных адронов, т.е. корреляций при больших углах разлёта адронов этих пар, чувствителен к механизму их образования, так как при больших углах разлёта несущественны интерференционные эффекты и взаимодействие частиц в конечном состоянии, обоснованность пренебрежением которых возрастает с увеличением энергии налетающих частиц [9]. Поэтому изучение широких парных корреляций позволяет проверить независимым образом представления о процессах образования адронов, складывающиеся при изучении их инклюзивных спектров [6].

Несмотря на большое количество имеющихся экспериментальных данных по образованию вторичных частиц в кинематически запрещённой для взаимодействия налетающего адрона с одним нуклоном ядра мишени области, называемой областью кумулятивного рождения [10], на сегодня не достигнуто всестороннее понимание механизма адрон-ядерных взаимодействий и влияния структуры ядра на процессы образования вторичных частиц в области фрагментации мишени. Сравнительное изучение полученных в ходе одной экспозиции на различных ядерных мишенях инклюзивных спектров образованных под углом 90° протонов и пионов обоих знаков заряда, а также корреляций разлетающихся под большими углами пар одноименно заряженных вторичных адронов даёт новую информацию для проверки существующих в настоящее время многочисленных моделей образования частиц в процессах ядерной фрагментации.

1. ЭКСПЕРИМЕНТ И ОБРАБОТКА ДАННЫХ

Установка СИГМА-АЯКС была расположена на канале 2Б ускорителя ИФВЭ. Состав используемой в изучаемой экспозиции эксперимента аппаратуры установки приведен в работах [11,12]. Падающий на мишень пучок отрицательно заряженных частиц с импульсом $p_{bm} = 43 \Gamma$ эВ/с состоял из π^- -мезонов ($\approx 97, 9\%$), K^- -мезонов ($\approx 1, 9\%$) и антипротонов ($\approx 0, 2\%$). В качестве мишени использовались диски из Ве, Al и Cu диаметром 40 мм и толщиной по пучку 70 мм, 23 мм и 3,86 мм, соответственно.

Двухплечевой магнитный спектрометр установки состоял из двух почти симметричных относительно оси пучка плеч. Правым плечом ДМС положительно заряженные вторичные адроны с малыми кинетическими энергиями для всех мишеней регистрировались при углах вылета, для которых $-0, 15 < \cos \theta < 0, 35$, а левым плечом ДМС — при углах вылета, для которых $0, 30 < \cos \theta < 0, 75$ (и наоборот для отрицательно заряженных частиц), где θ — угол вылета вторичного адрона в лабораторной системе.

Для $\approx 60\%$ статистики триггерная логика отбирала события с вылетом вторичных частиц в оба плеча ДМС (триггер LR, соответствующий корреляционной выборке LR). По $\approx 20\%$ статистики соответствовали триггерному условию на срабатывание аппаратуры только в одном плече ДМС (триггеры L и R, соответствующие инклюзивным выборкам L и R).

Изложение методов анализа информации от различных групп трековых детекторов установки в изучаемой экспозиции эксперимента, процедуры идентификации вторичных заряженных частиц, зарегистрированных ДМС в ходе экспозиции, и результатов этой идентификации для π^- Ве-взаимодействий даны в работах [11,13].

При исследовании инклюзивных спектров вторичных адронов расчёты эффективностей регистрации частиц, импульсных и угловых разрешений для них были выполнены при помощи пакета GEANT [14]. Результаты этих расчётов достаточно хорошо согласуются с приведенными в работе [11] результатами аналогичных расчётов по упрощённой программе с учётом ионизационных потерь и многократного кулоновского рассеяния, выполненными при изучении установки. Оценки неэффективностей детекторов и реконструкции событий даны в работах [11–13,15]. Из-за малого аксептанса ДМС по азимутальному углу максимальная величина геометрической эффективности регистрации, например, протона двухплечевым магнитным спектрометром не превышала 2,7%.

На рис. 1 приведены рассчитанные при помощи пакета GEANT [14] зависимости от кинетической энергии T функций ε_R^p (верхний ряд гистограмм) и ε_L^p (нижний ряд гистограмм) точности восстановления T для вторичных протонов, экспериментально зарегистрированных в π^- Be-, Al-, Cu-взаимодействиях правым (R) плечом ДМС в угловой области $-0, 15 \leq \cos \theta < 0, 15$ и левым (L) плечом ДМС в угловой области $0, 45 \leq \cos \theta < 0, 60,$ соответственно. Сплошными кривыми на рис. 1 представлены вычисленные значения соответствующих функций, пунктиром обозначены верхние границы их значений с учётом опиобок. Значения аналогичных функций для пионов в изучаемой кинематической области не превышали 7%.

Рис. 1. Зависимости от кинетической энергии T функций ε_R^p (верхний ряд гистограмм) и ε_L^p (нижний ряд гистограмм) точности восстановления T для вторичных протонов, зарегистрированных в π^- Ве-, Аl-, Сu-взаимодействиях правым (R) плечом ДМС в угловой области $-0, 15 \le \cos \theta < 0, 15$ и левым (L) плечом ДМС в угловой области $0, 45 \le \cos \theta < 0, 60$.

2. АНАЛИЗ ИНКЛЮЗИВНЫХ СПЕКТРОВ ВТОРИЧНЫХ ПРОТОНОВ И ПИОНОВ

Расчёты величин вкладов в измеренные сечения от каскадных процессов в мишени были выполнены с помощью генератора адронных ливней FLUKA [16] пакета GEANT [14] ($\approx 20\%$ в π^- Ве–взаимодействиях и $\approx 11\% - 15\%$ в π^- Al-, Cu-взаимодействиях) и учтены введением поправочных коэффициентов. При представлении сечений инклюзивного образования зарегистрированных адронов на рис. 2, 3 и 6, 7 приведены статистические ошибки. Систематические ошибки определения сечений образования адронов в π^- Вевзаимодействиях оценены в 13% для протонов, зарегистрированных под углом 90°, в 16% для протонов, зарегистрированных под углом 60° и в 15% для пионов, зарегистрированных под углом 90°. Дополнительная систематическая ошибка определения измеренного левым плечом ДМС сечения образования на ядрах Al и Cu протонов не превышала 5%, пионов — 7%. Дополнительная систематическая ошибка определения измеренных правым плечом ДМС сечений образования протонов и пионов на ядрах Al составила 5%, на ядрах Cu возросла до 9% для протонов и до 15% для пионов.

Значения нормированных на один нуклон ядра мишени инвариантных дифференциальных сечений инклюзивного образования адронов рассчитывались в соответствии с определением

$$f_A = (E/A) \cdot (d^3\sigma/d^3p) = (1/pA) \cdot (d^2\sigma/dTd\Omega)$$

где А — массовое число ядра мишени, E, p, T — энергия, импульс, кинетическая энергия вторичной частицы, Ω — телесный угол, σ — сечение её образования.

При расчёте величин f_A были использованы сечения, экспериментально измеренные в интервале углов $\Delta \theta$, не превышающем 10°. Значения кумулятивного числа n_k для вторичных адронов определялись по формуле $n_k = (E - p \cdot \cos \theta)/M_p$, где E – энергия частицы с импульсом p, M_p – масса протона. Аппроксимация спектров зависимостью

$$f_A = f_{A0} \cdot \exp\left(-T/T_0\right) \tag{1}$$

была выполнена с помощью пакета MINUIT [17]. В табл. 1 и 2 приведены значения параметра T_0 , полученные при изучении формы спектров вторичных частиц для различных областей их кинетических энергий T. Отмеченные звездочками в этих таблицах значения T_0 получены в результате аппроксимации зависимостью (1) инклюзивных спектров вторичных адронов при разбиениях энергетической шкалы, представленных на рис. 2, 3 и 6, 7. Прямые линии на этих рисунках — результат соответствующих аппроксимаций. В каждом конкретном фите *i*, результат которого приведен в табл. 1 и 2, значение $\chi^2_{N_i}$ не превосходило 1 ($\chi^2_{N_i}$ — нормированная на количество степеней свободы сумма квадратов отклонений величин экспериментально измеренных сечений от значений аппроксимирующей функции в каждом из N_i энергетических интервалов этого фита).

Следует отметить, что хотя инклюзивное образование кумулятивных адронов в адронядерных взаимодействиях широко изучалось экспериментально, данные по образованию в π^{-} А-взаимодействиях протонов и пионов под углами $\theta = 90^{\circ}$ и $\theta = 60^{\circ}$ в сравнимой с изучаемой в настоящей работе области кинетических энергий вторичных частиц отсутствуют.

Зависимости инвариантных дифференциальных сечений инклюзивного образования протонов от их кинетической энергии, измеренные в эксперименте правым плечом ДМС под углом $\theta = 90^{\circ}$ и левым плечом ДМС под углом $\theta = 60^{\circ}$ в π^- Ве-, Al-, Си-взаимодействиях при $p_{bm} = 43 \, \Gamma$ эВ/с, представлены на рис. 2 для $\theta =$ 90° и рис. 3 для $\theta = 60^{\circ}$. Результаты аналогичных измерений при $p_{bm} = 5 \Gamma \cdot B/c [18]$ также показаны на этих рисунках. Значения кумулятивного числа n_k для протонов, образованных под углом $\theta = 90^{\circ}$, изменялись в интервале n_k $\approx 1, 1 - 1, 9$ при изменении T от 0,16 до 0,54 ГэВ, а для протонов, образованных под углом $\theta = 60^{\circ}$, — в интервале $n_k \approx 0, 8-1, 1$ при изменении T от 0,16 до 0,7ГэВ. Таким образом, протоны, рождённые под углом $\theta = 90^{\circ}$, являлись преимущественно кумулятивными. Протоны, образованные в процессе глубоконеупругого ядерного взаимодействия, должны также составлять значительную часть рождённых под углом $\theta = 60^{\circ}$ протонов [3]. В табл. 1 приведены значения параметра T₀, полученные при аппроксимации зависимостью (1) инвариантных сечений инклюзивного образования протонов под обоими углами. Не отмеченные звездочками значения T_0 были получены при разбиении для данного фита изучаемой области Т на максимально возможное число энергетических интервалов N_i одинакового размера. В табл. 1 приведены также значения

Рис. 2. Зависимости от кинетической энергии T инвариантных сечений образования протонов f_A^p под углом $\theta = 90^o$ в π^-Be -, Al- и Сu-взаимодействиях при импульсе 43Γ эB/с. Размерность $f_A^p - [f^p] =$ мб· Γ эB⁻²·c³· сp⁻¹/нуклон.

 T_0 , полученные при аппроксимации зависимостью (1) инклюзивных спектров протонов в π^- Be- и π^- Cu-взаимодействиях при $p_{bm} = 5 \Gamma \beta B/c$ для соответствующих углов в области 0, 09 $< T < 0, 23 \Gamma \beta B$ [18]. Исследование формы инклюзивных протонных спектров показало, что экспериментальные спектры протонов хорошо аппроксимировались зависимостью (1), причём значения параметра T_0 слабо менялись в широком интервале кинетических энергий.

На рис. 4, 5 приведены вычисленные с помощью генераторов адронных ливней FLUKA [16] и HEISHA [19] пакета GEANT [14] сечения образования протонов под углами $\theta = 90^{\circ}$ и $\theta = 60^{\circ}$ при прохождении π^- -мезонов с импульсом $43\Gamma_{9}B/c$ через ядерные мишени, представляющие собой диски радиусом 1 мм и толщиной ≈ 1 мм для Ве и Al и ≈ 0.7 мм для Cu, когда эффектами, связанными с размером мишени, можно пренебречь. Для привязки к экспериментально измеренным сечениям в виде прямых линий показаны результаты такой же аппроксимации экспериментально измеренных сечений, как и на рис. 2, 3, представляющих эти сечения. Степень согласия с экспериментально измеренными сечениями рассчитанных с помощью генератора адронных ливней FLUKA [16] пакета GEANT [14] сечений образования протонов под углом $\theta = 90^{\circ}$ (рис. 4) возрастала

с ростом массового числа A ядер мишени. Рассчитанные с помощью генератора адронных ливней HEISHA [19] спектры рождённых под углом $\theta = 90^{\circ}$ протонов значительно отличались по форме и величине как от экспериментальных, так и от вычисленных с помощью генератора FLUKA [16] распределений, особенно для легкого ядра Ве. Следует отметить сближение между собой результатов расчёта с помощью этих генераторов сечений образования протонов под углом $\theta = 60^{\circ}$ (рис. 5).

Рис. 3. Зависимости от кинетической энергии T инвариантных сечений образования протонов $f_A{}^p$ под углом $\theta = 60^\circ$ в π^- Be-, Al- и Си-взаимодействиях при импульсе 43 ГэB/с, • — результаты аналогичных измерений при $p_{bm} = 5$ ГэB/с из работы [18]. Размерность $f_A{}^p - [f^p] = M6 \cdot \Gamma$ эB⁻² · с³ · с p^{-1} /нуклон.

Таблица 1.Значения параметра T_0 при аппроксимации зависимостью (1) инвариантных диф-
ференциальных сечений инклюзивного образования протонов под углами $\theta = 90^\circ$ и
 $\theta = 60^\circ$ в π^- А-взаимодействиях при $p_{bm}=43\,\Gamma$ эВ/с

	Be	Al		Cu	
$T\left(\Gamma ight) extbf{B} ight)$	<i>T</i> ₀ (МэВ)	$T\left(\Gamma ight) extbf{B} ight)$	<i>T</i> ₀ (МэВ)	$T\left(\Gamma ight) extbf{B} ight)$	<i>T</i> ₀ (МэВ)
		прото	он (90°)		
$0,\!16\!-\!0,\!54$	$56,7{\pm}2,6$ *	$0,\!18\!-\!0,\!56$	$61,7{\pm}2,7$ *	$0,\!18-\!0,\!54$	$62,3{\pm}3,0$ *
_ " _	$56,1{\pm}2,6$	_ " _	$59,3{\pm}2,6$	_ " _	$61,4{\pm}2,9$
$0,\!09\!-\!0,\!23$	$56,3{\pm}1,0$ [18]			0,09-0,23	$59,0{\pm}1,0$ [18]
протон (60°)					
$0,\!16\!-\!0,\!64$	$101,2{\pm}2,9$ *	$0,\!16\!-\!0,\!70$	$96,9{\pm}3,1$ *	0,16-0,64	$92,4{\pm}3,8$ *
_ " _	$98,9\pm 2,8$	_ " _	$94,3{\pm}2,9$	_ " _	$91,3{\pm}3,7$
0,09-0,23	$97,2\pm 2,6$ [18]			0,09-0,23	$84,9{\pm}1,8$ [18]

Рис. 4. Зависимости от кинетической энергии T инвариантных сечений образования протонов $f_A{}^p$ под углом $\theta = 90^{\circ}$, вычисленные при моделировании с помощью генераторов адронных ливней FLUKA (\circ) и HEISHA (\triangle) пакета GEANT процессов их образования в π^- Be-, Al-и Си-взаимодействиях при импульсе 43 ГэВ/с. Прямая линия — приведенный на рис. 2 результат параметризации экспериментально измеренных сечений. Размерность $f_A{}^p - [f^p] = M6 \cdot \Gamma$ эВ⁻² · с³ · ср⁻¹/нуклон.

Рис. 5. Зависимости от кинетической энергии T инвариантных сечений образования протонов $f_A{}^p$ под углом $\theta = 60^{\circ}$, вычисленные при моделировании с помощью генераторов адронных ливней FLUKA (\circ) и HEISHA (\triangle) пакета GEANT процессов их образования в π^- Be-, Al-и Си-взаимодействиях при импульсе 43 ГэВ/с. Прямая линия — приведенный на рис. 3 результат параметризации экспериментально измеренных сечений. Размерность $f_A{}^p - [f^p] = M6 \cdot \Gamma$ эВ⁻² · с³ · ср⁻¹/нуклон.

Рис. 6. Зависимости от кинетической энергии T инвариантных сечений образования π^- -мезонов $f_A^{\pi^-}$ под углом $\theta = 90^{\circ}$ в π^- Ве-, Аl- и Сu-взаимодействиях при импульсе 43 ГэВ/с. Размерность $f_A^{\pi^-} - [f_A^{\pi^-}] = \mathrm{M6} \cdot \Gamma$ эВ⁻² · с³ · ср⁻¹/нуклон.

Рис. 7. Зависимости от кинетической энергии T инвариантных сечений образования π^+ -мезонов $f_A^{\pi^+}$ под углом $\theta = 90^\circ$ в π^- Ве-, Аl- и Сu-взаимодействиях при импульсе 43 ГэВ/с. Размерность $f_A^{\pi^+} - [f_A^{\pi^+}] = M6 \cdot \Gamma$ эВ⁻² · c³ · cp⁻¹/нуклон.

 Таблица 2.
 Значения параметра T_0 при аппроксимации зависимостью (1) инвариантных дифференциальных сечений инклюзивного образования пионов под углом $\theta = 90^\circ$ в π^- Авзаимодействиях при $p_{bm}=43\,\Gamma$ эВ/с

	Be Al		Cu		
<i>Т</i> (ГэВ)	$T_0(M artheta \mathrm{B})$	<i>Т</i> (ГэВ)	$T_0(M artheta B)$	<i>Т</i> (ГэВ)	<i>T</i> ₀ (МэВ)
		π^- – Me	езон (90°)	-	
0,20-0,54	$70,3{\pm}3,1$ *	0,20-0,62	$63,9{\pm}2,8$ *	$0,\!22\!-\!0,\!64$	$64,1{\pm}4,0$ *
$0,\!28\!-\!0,\!54$	$57,5{\pm}4,7$	$0,\!28\!-\!0,\!66$	$58,8{\pm}4,6$	$0,\!28\!-\!0,\!64$	$63,2{\pm}5,6$
π^+- мезон (90°)					
0,20-0,76	$71,4{\pm}2,6$ *	$0,\!20\!-\!0,\!68$	$83,2{\pm}3,7$ *	$0,\!22{-}0,\!76$	$85,2{\pm}4,9$ *
0,28-0,76	$67,6\pm4,0$	$0,\!28\!-\!0,\!68$	$72,6\pm 5,1$	0,28 - 0,76	$77,5{\pm}6,4$

Зависимости инвариантных дифференциальных сечений f_A инклюзивного образования π^- -мезонов под углом $\theta = 90^\circ$ от их кинетической энергии представлены на рис.6, а π^+ -мезонов — на рис. 7. Спектры π^- -мезонов, рождённых под углом $\theta = 90^\circ$, измерены в эксперименте левым плечом ДМС, спектры π^+ -мезонов — правым. Значения кумулятивного числа n_k изменялись от $n_k \approx 0,3$ для пионов с $T = 0,2\Gamma$ эВ до $n_k \approx 0,8$ при $T = 0,54\Gamma$ эВ и $n_k \approx 1,1$ при $T = 0,76\Gamma$ эВ. Значения параметра T_0 , полученные при аппроксимации зависимостью (1) этих инвариантных сечений, приведены в табл. 2.

Вычисленные с помощью генератора адронных ливней FLUKA [16] (аналогично протонным) сечения образования π^+ -мезонов под углом $\theta = 90^\circ$ примерно вдвое превышали по величине экспериментально измеренные сечения, но были близки к ним по характеру зависимости от *T*. Как и для протонов, степень согласия результатов расчёта с экспериментально измеренными сечениями возрастала с ростом массового числа A ядер мишени. Результаты соответствующего расчёта сечения образования π^- -мезонов под углом $\theta = 90^\circ$ ещё хуже согласуются с экспериментом. Вычисленные с помощью генератора адронных ливней HEISHA [19] сечения образования π^{\pm} -мезонов под углом $\theta = 90^\circ$ не воспроизводили даже характер зависимости от *T* соответствующих экспериментально измеренных сечений.

Изучение формы инклюзивных спектров π^- -мезонов, образованных под углом $\theta = 90^\circ$, показало, что значения параметра T_0 для спектров π^- -мезонов в π^- Al- и π^- Cuвзаимодействиях близки к значениям T_0 для спектров вторичных протонов в изученной области кинетических энергий этих адронов. Начиная с $T \simeq 0,28\Gamma$ эB, значения параметра T_0 для спектров π^- -мезонов и протонов согласуются в пределах ошибок на всех изученных мишенях.

Значения параметра T_0 для инклюзивных спектров вторичных π^+ -мезонов, полученные при аппроксимации зависимостью (1) этих спектров в π^- Al- и π^- Cu-взаимодействиях, значимо отличались от значений T_0 как для спектров вторичных протонов, так и для спектров вторичных π^- -мезонов в изученной области T и существенно возрастали при переходе от легкого ядра Ве к более тяжёлым ядрам Al и Cu. Статистика эксперимента не позволила исследовать зависимость параметра T_0 от T для достаточно больших значений кинетических энергий π^+ -мезонов. При увеличении нижней границы изучаемой области T до $0,28\,\Gamma$ эВ значения T_0 уменьшились, оставаясь на $\approx 25\%$ больше значений T_0 для спектров вторичных π^- -мезонов в соответствующей области T, что превысило 2 ошибки измерения.

Результаты сравнительного изучения формы инклюзивных спектров рождённых под углом $\theta = 90^{\circ}$ протонов и π^+ -мезонов качественно согласуются с приведенными в работах [20,21] результатами изучения формы измеренных с хорошей статистической точностью на установке ИСТРА-3 инклюзивных спектров протонов и π^+ -мезонов, образованных в π^- А-взаимодействиях при значительно ме́нышем импульсе первичных π^- мезонов $p_{bm}=1,5\Gamma$ эВ/с в сравнимой области кинетических энергий вторичных частиц. Согласно [20,21] значения T_0 для инклюзивных спектров π^+ -мезонов, образованных под углом $\theta = 118^{\circ}$ в π^{-16} О- и π^- Си-взаимодействиях, даже при $T > 0, 4\Gamma$ эВ превышали на $\approx 12 - 13\%$ значения T_0 для инклюзивных спектров протонов, образованных под углом $\theta = 110^{\circ}$, что составило примерно 2 ошибки измерения.

Измеренные в эксперименте величины отношения $R(\pi^+/\pi^-)$ инвариантных сечений инклюзивного образования π^{\pm} -мезонов при $-0, 1 < \cos \theta < 0, 1$ представлены в табл. 3. Для π^- Al- и π^- Cu-взаимодействий значения $R(\pi^+/\pi^-)$ значимо возрастали при переходе от области кинетических энергий пионов $T < 0, 28 \Gamma$ эВ к области $T > 0, 28 \Gamma$ эВ.

I	Be	Al		Cu	
Т(ГэВ)	$R(\pi^+/\pi^-)$	$T\left(\Gamma i B ight)$	$R(\pi^+/\pi^-)$	$T\left(\Gamma i B ight)$	$R(\pi^+/\pi^-)$
0,20-0,28	$1,\!12{\pm}0,\!09$	0,20-0,28	$1,00{\pm}0,10$	0,20-0,28	$0,84{\pm}0,11$
0,22 - 0,28	$1,\!18{\pm}0,\!11$	0,22 - 0,28	$1,07{\pm}0,12$	$0,\!22\!-\!0,\!28$	$0,92{\pm}0,11$
$0,\!28\!-\!0,\!54$	$1,\!28{\pm}0,\!10$	$0,\!28\!-\!0,\!60$	$1,\!63{\pm}0,\!15$	$0,\!28\!-\!0,\!60$	$1,\!65{\pm}0,\!19$

 Таблица 3.
 Значения отношения $R(\pi^+/\pi^-)$ инвариантных сечений инклюзивного образования пионов для области $-0, 1 < \cos \theta < 0, 1$ в π^- А-взаимодействиях при p_{bm} =43 ГэВ/с

Рис. 8. Зависимость от кинетической энергии T_{π^+} π^+ -мезона сечения процесса поглощения π^+ мезона дейтроном с образованием пары протонов, построенная по компиляции данных из работы [22]. Размерность $\sigma^{\pi^+ d \to pp} = [\sigma^{\pi^+ d \to pp}] = M6.$

Естественно предположить, что увеличение с ростом А значения параметра T_0 для инклюзивных спектров образованных под углом $\theta = 90^{\circ}$ вторичных π^+ -мезонов в значительной мере обусловлено усиливающимся с ростом А поглощением π^+ -мезонов с кинетическими энергиями $T < 0, 4\Gamma$ эВ коррелированными группами ядерных нуклонов. Возможность влияния процессов такого типа на поведение спектров вторичных π^+ -мезонов при $T < 0, 4\Gamma$ эВ определяется характером приведенной на рис. 8 зависимости сечения процесса $\pi^+ d \rightarrow pp$ поглощения π^+ -мезона дейтроном с образованием пары протонов от кинетической энергии T_{π^+} π^+ -мезона, построенной по компиляции данных из работы [22]. Влияние подобных процессов на поведение спектров π^- -мезонов может маскироваться различием механизмов конкретных реакций внутриядерного поглощения разноименно заряженных пионов с малыми кинетическими энергиями [23,24], а также сдвигом спектра π^- -мезонов относительно спектра π^+ -мезонов в область ме́ныших значений энергий вторичных частиц из-за кулоновского поля ядра (особенно для достаточно тяжелого ядра Cu) [25].

 Таблица 4.
 Значения параметра T_0 при аппроксимации зависимостью (1) инвариантных дифференциальных сечений инклюзивного образования пионов под углом $\theta = 60^\circ$ в π^- Авзаимодействиях при p_{bm} =43 ГэВ/с

E	Be	Al		Cu	
<i>Т</i> (ГэВ)	$T_0(M artheta \mathrm{B})$	<i>Т</i> (ГэВ)	$T_0(\mathrm{M}artheta\mathrm{B})$	<i>Т</i> (ГэВ)	<i>T</i> ₀ (МэВ)
		π^- – mes	вон (60°)		
$0,\!28\!-\!0,\!62$	$130,8{\pm}7,0$	$0,\!28\!-\!0,\!62$	$120,5{\pm}7,8$	$0,\!24\!-\!0,\!70$	$108,\!6{\pm}5,\!3$
$0,\!38\!-\!0,\!70$	$99,\!2{\pm}5,\!5$	$0,\!38\!-\!0,\!70$	$94,0{\pm}6,9$	$0,\!32{-}0,\!70$	$94,7{\pm}6,0$
π^+ –мезон (60°)					
$0,\!35{-}0,\!63$	$102,2{\pm}6,4$	$0,\!35\!-\!0,\!69$	$106,4{\pm}7,7$	$0,\!35{-}0,\!67$	$94,\!8{\pm}9,\!5$
$0,\!41\!-\!0,\!69$	$73,5{\pm}4,7$			$0,\!43-\!0,\!67$	$79,7{\pm}12,8$

Представленные в работе [15] результаты исследования измеренных в изучаемой экспозиции эксперимента инвариантных дифференциальных сечений инклюзивного образования π^{\pm} -мезонов под углом $\theta = 60^{\circ}$ в π^{-} Ве-взаимодействиях не противоречат сделанному предположению. Величины параметра T_0 , полученные при аппроксимации зависимостью (1) этих сечений, значимо уменьшались для значений $T > 0, 4\Gamma$ эВ по сравнению с их величинами в области ме́ныших значений T. Экспериментальные спектры образованных под углом $\theta = 60^{\circ} \pi^{\pm}$ -мезонов в π^{-} Аl- и π^{-} Сu-взаимодействиях существенно хуже аппроксимировались зависимостью (1). Статистика эксперимента недостаточна для изучения структуры этих спектров. В табл. 4 приведены значения T_0 , полученные при аппроксимации зависимостью (1) инвариантных дифференциальных сечений π^{\pm} -мезонов, образованных под углом $\theta = 60^{\circ}$ в π^{-} А-взаимодействиях. Следует иметь в виду, что при аппроксимации спектров вторичных π^{-} -мезонов в π^{-} Сu-взаимодействиях и π^{+} -мезонов в π^{-} Al-взаимодействиях значения $\chi_{N_i}^2$ составили 1,6. Можно отметить бо́льшее пороговое значение T = 0, 35 ГэВ для аппроксимируемого зависимостью (1) участка спектра π^{-} -мезонов даже в π^- Ве-взаимодействиях, в то время как аксептансы левого и правого плеч ДМС, регистрировавших соответственно π^+ - и π^- -мезоны под углами $\theta < 70^\circ$, не должны значительно различаться для одинаковых кинематических областей этих мезонов.

Величины отношений выходов протонов к выходам π^+ -мезонов при одинаковых импульсах вторичных адронов $0, 6 в области значений <math>\cos \theta - 0, 10 < \cos \theta < 0, 15$, где вторичные адроны достаточно эффективно регистрировались двухплечевым магнитным спектрометром установки на всех изученных ядерных мишенях, равнялись для ядер Be, Al и Cu, соответственно:

$$R_{e}(p/\pi^{+}) = 12, 0\pm 1, 9;$$
 14, 7±2, 5; 19, 1±3, 5.

В области 0, 25 <cos θ < 0, 30 значения $R_{e}(p/\pi^{+})$ упали более чем вдвое. Таким образом, измеренная величина $R_{e}(p/\pi^{+})$ быстро возрастала с уменьшением сов θ при переходе к области сов θ <0,1, соответствующей значениям кумулятивного числа протона $n_{k} > 1$ и запрещённой для взаимодействий на свободном нуклоне. Подавленность выхода пионов по отношению к выходу кумулятивных протонов при одинаковых импульсах вторичных адронов объясняется естественным образом в рамках представления о короткодействующих динамических корреляциях между нуклонами ядра как источнике образования кумулятивных адронов [9]. Динамические корреляции между нуклонами ядра должны возникать из-за установленного экспериментально факта наличия сильной отталкивающей компоненты двухнуклонного потенциала при расстояниях между нуклонами меньших $\approx 0.5\Phi$ [26].

Значимость для образования кумулятивных протонов процессов поглощения коррелированными парами внутриядерных нуклонов медленных π^+ -мезонов, возникающих в основном при перерассеяниях вторичных частиц, была показана как для адронядерных [27], так и для нейтрино-ядерных [28] взаимодействий при энергиях налетающей частицы $E_{bm} < 10 \, \Gamma$ эВ. В результате исследования измеренных в изучаемой экспозиции эксперимента спектров вторичных пионов с малыми кинетическими энергиями, образованных под углом $\theta = 90^{\circ}$ в π^-A -взаимодействиях при импульсе $p_{bm}=43 \, \Gamma$ эВ/с, получены указания на значимость таких процессов при бо́льших импульсах начального адрона, когда существенно возрастает вероятность образования вторичных адронов при взаимодейсствии налетающей частицы с коррелированными группами внутриядерных нуклонов [9].

Интересно отметить, что представленные в табл. 3 результаты изучения отношения $R(\pi^+/\pi^-)$ при указанных T качественно согласуются с приведенными в работе [28] результатами изучения отношения $R_e(\pi^+/\pi^-)$ выходов π^\pm -мезонов с импульсами $p < 1 \Gamma$ эВ/с, образованных во взаимодействии нейтрино с тяжёлыми ядрами при средней энергии начальных нейтрино 6 ГэВ. Даже с учётом довольно больших экспериментальных ошибок измеренная на камере СКАТ (ИФВЭ) [28] величина $R_e(\pi^+/\pi^-)$ превосходила 1 и возрастала с увеличением T в области 0, 28 $< T < 0, 7 \Gamma$ эВ не менее чем в полтора раза как для событий, не имеющих кумулятивных протонов, так и для событий, в которых они были зарегистрированы. Величина этого отношения в событиях с кумулятивными протонами для $T < 0, 2 \Gamma$ эВ резко падала до значений меньших 1.

3. ИЗУЧЕНИЕ А-ЗАВИСИМОСТИ ИНВАРИАНТНЫХ ИНКЛЮЗИВНЫХ СЕЧЕНИЙ ВТОРИЧНЫХ ПРОТОНОВ И ПИОНОВ

Зависимость инвариантных сечений $f(f = f_A \cdot A)$ инклюзивного образования адронов на ядрах от массового числа A ядра мишени обычно характеризуют величиной показателя α степенной зависимости

$$f = f_0 \cdot A^{\alpha}. \tag{2}$$

В табл. 5 приведены значения $\alpha_{Al/Be}$, $\alpha_{Cu/Be}$ и $\alpha_{Cu/Al}$, определённые по формуле

$$\alpha_{A_1/A_2} = \ln(f_{A_1}/f_{A_2})/\ln(A_1/A_2) \tag{3}$$

для каждого адрона в наибольшей доступной на всех изученных ядрах области кинетической энергии T.

```
      Таблица 5.
      Значения \alpha_{Al/Be}, \alpha_{Cu/Be} и \alpha_{Cu/Al}, определённые по формуле (3) для зависимости (2) инвариантных сечений образования вторичных протонов под углами \theta = 90^{\circ}; 60^{\circ} и пионов под углом \theta = 90^{\circ} в \pi^-А-взаимодействиях при p_{bm}=43 \, \GammaэВ/с
```

	протон (90°)	протон (60°)
Т (ГэВ)	$0,\!18\!-\!0,\!54$	$0,\!16\!-\!0,\!64$
$\alpha_{Al/Be}$	$1,51\pm0,06(\text{стат.})\pm0,05(\text{сист.})$	$1,36\pm0,04(\text{стат.})\pm0,04(\text{сист.})$
$\alpha_{Cu/Be}$	$1,48\pm0,04(\text{стат.})\pm0,06(\text{сист.})$	$1,30\pm0,03($ стат. $)\pm0,05($ сист. $)$
$\alpha_{Cu/Al}$	$1,43\pm0,09($ стат. $)\pm0,07($ сист. $)$	$1,23\pm0,06($ стат. $)\pm0,06($ сист. $)$
	π^- -мезон (90°)	π^+ -мезон (90°)
$T(\Gamma$ эB)	$0,\!22{-}0,\!54$	$0,\!22{-}0,\!54$
$\alpha_{Al/Be}$	$1,04\pm0,08($ стат. $)\pm0,04($ сист. $)$	$1,01\pm0,08($ стат. $)\pm0,04($ сист. $)$
$\alpha_{Cu/Be}$	$1,03\pm0,05(\text{стат.})\pm0,05(\text{сист.})$	$0.94\pm0.05(\text{стат.})\pm0.07(\text{сист.})$
$\alpha_{Cu/Al}$	$1,02\pm0,05($ стат. $)\pm0,06($ сист. $)$	$0,86\pm0,12(\text{стат.})\pm0,10(\text{сист.})$

В согласии с результатами других измерений [18,29], значения определённых по различным парам ядер показателей А-зависимости (2) инвариантных сечений инклюзивного образования протонов превышали 1 и возрастали при увеличении угла θ образования вторичного протона и, следовательно, значения его кумулятивного числа n_k . С другой стороны, несмотря на близость значений параметра T_0 для инклюзивных спектров образованных в π^- А-взаимодействиях под углом $\theta = 90^\circ$ протонов и π^- -мезонов, значения $\alpha \approx 1$ для инвариантных сечений инклюзивного образования π^- -мезонов в соответствии со значениями их кумулятивного числа n_k были меньше значений α как для сечений образованных под тем же углом протонов, так и для сечений образованных под углом $\theta = 60^\circ$ протонов.

Приведенные в табл. 5 значения α для протонов в пределах ошибок согласуются с оценками α , которые были получены по данным, представленным в работе [18] при $p_{bm} = 5 \Gamma \Im B/c$. Однако значения α как для протонов, так и для π^+ -мезонов превышают оценки α , представленные в работах [20,21] при $p_{bm} = 1.5 \Gamma \Im B/c$. На замедление при небольших энергиях налетающего на ядро адрона роста сечений рождения кумулятивных нуклонов и пионов с ростом A из-за глауберовских перерассеяний указывали Стрикман М.И. и Франкфурт Л.Л при теоретическом рассмотрении рассеяния частиц высокой энергии на ядрах, основанном на пространственно-временной картине Грибова-Фейнмана и приближении парной корреляции [9].

Точность измерений в эксперименте недостаточна для изучения поведения α в зависимости от T для инвариантных инклюзивных сечений π^{\pm} -мезонов, образованных под углом $\theta = 90^{\circ}$. Однако можно отметить, что значения α для инвариантных сечений инклюзивного образования π^- -мезонов с кинетическими энергиями $T > 0, 28 \Gamma$ эВ в области $-0, 1 < \cos \theta < 0, 1$ практически не отличались от значений, приведенных в табл. 5 для π^- -мезонов. В то же время значения α для инвариантных сечений инклюзивного образования π^+ -мезонов с кинетическими энергиями $T > 0, 28 \Gamma$ эВ при $-0, 1 < \cos \theta < 0, 1$ возросли по сравнению с приведенными в табл. 5 и составили для $T = 0, 28 - 0, 64 \Gamma$ эВ:

$$\alpha_{Al/Be} = 1,21\pm0,07; \ \alpha_{Cu/Be} = 1,14\pm0,05; \ \alpha_{Cu/Al} = 1,05\pm0,11.$$

В результате выполненного в ИТЭФ изучения А-зависимости инклюзивных сечений рождения под углами $\theta = 110^{\circ} - 155^{\circ} \pi^{-}$ -мезонов с импульсами 100–500 МэВ/с в π^{-} Аl- и π^{-} Рb-взаимодействиях при p_{bm} =4,4 ГэВ/с [30], было показано, что величина α существенно зависит от импульса вторичного пиона. В области импульсов π^{-} -мезонов $p \leq 120 \text{ МэB/c}$ и $p \geq 350 \text{ МэB/c}$ ($T \geq 237 \text{ МэB}$) значения $\alpha \approx 1$. Имеется минимум при импульсах вторичных π^{-} -мезонов 200–250 МэВ/с, где $\alpha \approx 0.7$. Сравнивая свои результаты с имеющими аналогичный характер результатами изучения А-зависимости выходов π^{-} мезонов под углом $\theta = 168^{\circ}$ в протон-ядерных взаимодействиях при $p_{bm}=8.9 \text{ ГэB/c}$ [31], авторы работы [30] сделали заключение, что нерегулярность А-зависимости определяется характеристиками вторичной частицы.

Представленные в табл. 5 настоящей работы результаты измерения А-зависимости инклюзивных сечений рождённых в π^{-} А-взаимодействиях при $p_{bm}=43\,\Gamma$ эВ/с под углом $heta=90^\circ\,\pi^-$ -мезонов с кинетической энергией $T>0,22\,\Gamma$ эВ (соответствующие значения импульса π^{-} -мезонов $p > 330 \text{ M}_{2}\text{B/c}$), во-первых, согласуются с результатами, представлеными в работе [30] для соответствующих импульсов π^- -мезонов. Во-вторых, сравнение с результатами работы [30] показывает, что характер импульсной зависимости α для инклюзивных сечений образованных под углом $\theta = 90^{\circ} \pi^+$ -мезонов, измеренных в изучаемой экспозиции эксперимента в π^{-} Al- и π^{-} Cu-взаимодействиях, весьма похож на поведение А-зависимости инклюзивных сечений π^{-} -мезонов с импульсами $p > 200 \,\mathrm{MyB/c}$, измеренных в эксперименте [30]. Область минимума в функциональной зависимости величины α от импульса p (или кинетической энергии T) для π^{\pm} -мезонов определяется областью эффективности процессов поглощения вторичных пионов. Верхняя граница p (или T) этой области для π^- -мезонов несколько смещена в сторону ме́ныших импульсов относительно соответствующей границы для π^+ -мезонов. Следует отметить бо́льшие 1 значения $\alpha_{Al/Be}$ и $\alpha_{Cu/Be}$ для π^+ -мезонов с кинетической энергией $T > 0,28 \, \Gamma$ эВ, свидетельствующие об усилении вклада в сечения образования π^+ -мезонов на средних и тяжёлых ядрах в указанной кинематической области процессов их размножения по сравнению с вкладом таких процессов в сечения образования π^- -мезонов. Поведение величины α для пионов в зависимости от Т соответствовало поведению измеренной в эксперименте величины отношения $R(\pi^+/\pi^-)$ инвариантных сечений инклюзивного образования π^{\pm} -мезонов при $-0, 1 < \cos \theta < 0, 1$ (табл. 3).

Приведенная совокупность экспериментальных результатов указывает на то, что для образованных на средних и тяжёлых ядрах вторичных пионов с малыми кинетическими энергиями особенности поведения их инклюзивных спектров и А-зависимости инклюзивных сечений определяются особенностями внутриядерной структуры при взаимодействии вторичных частиц с этими ядрами.

Точность измерений в эксперименте недостаточна для изучения степени отклонения поведения А-зависимости инвариантных сечений инклюзивного образования вторичных адронов от закона (2), хотя данные не противоречат факту падения значений эффективного показателя α с ростом А, что обычно связывают с усилением при увеличении А поглощения внутри ядра сформировавшихся адронов [32].

4. ИЗУЧЕНИЕ ШИРОКИХ КОРРЕЛЯЦИЙ ОДНОИМЁННО ЗАРЯЖЕННЫХ ПАР АДРОНОВ

При изучении широких корреляций пар одноимённо заряженных адронов корреляционная функция пары определялась следующим образом [6-8]: $R_2^{h_Lh_R} = \sigma_{in} F^{h_Lh_R} / F^{h_L} F^{h_R}$, где функции F^{h_L} и F^{h_R} — это инвариантные сечения инклюзивного образования зарегистрированных соответственно левым и правым плечами ДМС адронов пары, определённые в некоторых областях значений $T_{L,R}$ и $\cos \theta_{L,R}$; $F^{h_Lh_R}$ — дваждыинклюзивное инвариантное сечение образования h_Lh_R -пар в тех же областях $T_{L,R}$ и $\cos \theta_{L,R}$. Для нормировки каждой функции в π^- Ве-взаимодействиях было использовано измеренное на установке СИГМА [33] значение неупругого сечения взаимодействиях — значения неупругих сечений взаимодействия π^- мезона с соответствующими ядрами при импульсе 60 ГэВ/с из работы [34].

В дальнейшем адроны, зарегистрированные в эксперименте левым плечом ДМС, названы левыми, адроны, зарегистрированные правым плечом ДМС, — правыми. Для обозначения типа пары использован индекс $h_L h_R$, т.е. первым всегда помещён индекс левого адрона, вторым — индекс правого адрона.

Следует отметить, что для области $-0, 10 < \cos \theta < 0, 25$ эффективности регистрации установкой вторичных протонов с кинетическими энергиями от $0, 16 < T < 0, 6\Gamma$ эВ для мишени из Ве до $0, 18 < T < 0, 6\Gamma$ эВ для мишени из Сu, а также для пионов с кинетическими энергиями от $0, 20 < T < 0, 76\Gamma$ эВ для мишени из Ве до $0, 22 < T < 0, 76\Gamma$ эВ для мишени из Ве до $0, 22 < T < 0, 76\Gamma$ эВ для мишени из Сu являлись гладкими функциями и достаточно слабо менялись по величине при изменении значений T и $\cos \theta$. То же верно для протонов с кинетическими энергиями $0, 18 < T < 0, 7\Gamma$ эВ, зарегистрированных в области $0, 35 < \cos \theta < 0, 65$, и пионов с кинетическими энергиями $0, 28 < T < 0, 76\Gamma$ эВ, зарегистрированных в области $0, 35 < \cos \theta < 0, 65$, и пионов с кинетическими энергиями $0, 28 < T < 0, 76\Gamma$ эВ, зарегистрированных в области $0, 35 < \cos \theta < 0, 65$, и пионов с кинетическими энергиями $0, 28 < T < 0, 76\Gamma$ эВ, зарегистрированных в области $0, 35 < \cos \theta < 0, 65$, и пионов с кинетическими энергиями $0, 28 < T < 0, 76\Gamma$ эВ, зарегистрированных в области $0, 35 < \cos \theta < 0, 65$, и пионов с кинетическими энергиями $0, 28 < T < 0, 76\Gamma$ эВ, зарегистрированных в области $0, 35 < \cos \theta < 0, 70$ для ядра Ве и $0, 35 < \cos \theta < 0, 75$ для более тяжёлых ядер. Пары одноменно заряженных адронов регистрировались при углах разлёта Ψ , удовлетворяющих соотношению $\cos \Psi < -0, 5$.

Значения корреляционных функций $R_2^{h_L h_R}$ для зарегистрированных в π^- А-взаимодействиях пар одноименно заряженных вторичных адронов представлены в табл. 6–10, где указаны области определения функций по кинетическим энергиям адронов. Для всех изученных выборок адронных пар углы вылета правых протонов и π^+ -мезонов, а также левых π^- -мезонов удовлетворяли соотношению $-0, 15 < \cos \theta < 0, 25$. Левые протоны пар отбирались при значениях $\cos \theta$ в области $0, 35 < \cos \theta < 0, 65$. Для увеличения стати-

стики партнёры-пионы $\pi^+ p$ - и $\pi\pi$ -пар отбирались в угловой области 0, 35 $< \cos \theta < 0, 75$. При уменьшении верхней границы угловой области до $\cos \theta = 0, 70$ величины корреляционных функций для соответствующих выборок $\pi^+ p$ - и $\pi\pi$ -пар, образованных в π^- Вевзаимодействиях, менялись незначительно. В табл.6–10 приведены статистические ошибки определения значений корреляционных функций. Систематическая ошибка определения $R_2^{h_Lh_R}$, обусловленная главным образов процедурой выделения событий образования адронных пар, не превышала 16%. Использование для нормировки корреляционных функций на разных ядрах значений неупругих сечений, измеренных в разных экспериментах и при различных значения импульса, может приводить к неучтённому здесь систематическому смещению полученных величин $R_2^{h_Lh_R}$ для ядер Al и Cu относительно Be. Сравнение величин неупругих сечений π^- С-взаимодействий, измеренных в эксперименте [34] при импульсе 60 ГэВ/с, а в эксперименте [33] при импульсах 40, 50 и 60 ГэВ/с, позволяет надеяться, что использованная процедура нормировки может уменьшить значения корреляционных функций и Си не более чем на 8%.

Рис. 9. Спектры зарегистрированных правым плечом ДМС протонов *pp*-пар, образованных в π^- Be-, Al- и Cu-взаимодействиях при импульсе 43 ГэB/с. Углы вылета правых протонов удовлетворяли соотношению $-0, 15 < \cos \theta < 0, 25$, левых протонов — соотношению $0, 35 < \cos \theta < 0, 65$.

На рис. 9 представлены не поправленные на аксептанс установки спектры зарегистрированных правым плечом ДМС в области $-0, 15 < \cos \theta < 0, 25$ протонов *pp*-пар, образованных в π^{-} А-взаимодействиях. Если протоны, образующиеся при разрушении сильно коррелированных групп внутриядерных нуклонов, вносят заметный вклад в эту выборку, то согласно [9] универсальность спектров должна нарушаться вследствие перехода из области доминирования парных в область доминирования тройных корреляций при импульсах, близких к $0.8-0.9\Gamma$ в /с (соответствующие значения T близки к $0.30-0.36\Gamma$ в). Статистика зарегистрированных в эксперименте pp-пар недостаточна для изучения нарушения универсальности спектров правых протонов этих пар при $T > 0.35\Gamma$ в, однако можно отметить, что приведенные на рис. 9 распределения не противоречат такому нарушению.

Измеренные значения R_2^{pp} (табл. 6) свидетельствуют о коррелированном рождении pp-пар, образованных в изученной кинематической области π^{-} А-взаимодействий, причём степень коррелированности несколько возрастает для самого тяжёлого из изученных ядра Си. Следует отметить полученное в эксперименте указание на возрастание величины R_2^{pp} , особенно значительное для легкого ядра Ве, при выделении выборки pp-пар с кинетическими энергиями правых протонов $T_R \ge 0,28 \Gamma$ эВ и кинетическими энергиями левых протонов в области 0, $16 < T_L < 0$, 30Γ эВ. Отбор событий для последней выборки позволил, с одной стороны, увеличить в ней число событий с правым протоном, образованным в глубоконеупругих взаимодействиях, а с другой стороны, отсечь события, для которых сумма кумулятивных чисел протонов пары n_k^{pp} существенно превышала 2. Наблюдение такого эффекта, надёжно обеспеченное статистически, явилось бы свидетельством в пользу гипотезы парной корреляции [9], так как наличие двух разлетающихся под большими углами нуклонов, для которых справедливо соотношение $n_k^{pp} \leq 2$, можно объяснить как результат взаимодействия с парной корреляцией. В работе [9] указано, что поиск парных корреляций реален только для легких ядер, где мало среднее число взаимодействий налетающего адрона и меньше вероятность перерассеяний и поглощения вторичных нуклонов.

Значения корреляционных функций $R_2^{p\pi^+}$ для $p\pi^+$ -пар (табл. 7) свидетельствуют об их коррелированном рождении в изученной кинематической области. Получено указание на сближение величин корреляционных функций $R_2^{p\pi^+}$ и R_2^{pp} для выборок адронных пар с одинаково определенным левым протоном при увеличении энергии правого пиона (т.е. при переходе к импульсам, более близким к импульсам правых протонов), что является аргументом в пользу общего механизма образования основной части этих пар.

Таблица 6.	Значения корреляцио	нных функ-
	ций для <i>pp</i> -пар, зарег	чстрирован-
	ных в π^{-} А-взаимодей	іствиях при
	p_{bm} =43 Гэ $\mathrm{B/c}$	

Таблица 7.	Значения	корреляционных	функ-
	ций для $p\pi$	+-пар, зарегистри	рован-
	ных в π^-	А-взаимодействия	х при
	p_{bm} =43 ГэІ	B/c	

Ядро мишени	Область T_L (ГэВ)	Область $T_R (\Gamma \mathfrak{3} B)$	Величина R_2^{pp}
Be	0, 16-0, 64	0, 16-0, 54	$2,00\pm0,19$
	0, 16-0, 30	0, 28-0, 54	$3,32\pm0,60$
Al	0, 16-0, 70 0, 16-0, 30	0,18-0,60 0,28-0,60	$_{2,10\pm0,20}^{2,10\pm0,20}_{2,62\pm0,48}$
Cu	0, 16-0, 70	0,18-0,60	$2,71\pm0,24$
	0, 16-0, 30	0,28-0,60	$3,23\pm0,50$

		-	
Ядро	Область	Область	Величина
мишени	T_L (ГэВ)	T_R (ГэВ)	$R_2^{p\pi^+}$
Be	0,16-0,64	0, 20-0, 76 0, 28-0, 76	$1,78\pm0,21$ $1,92\pm0,27$
Al	0,16-0,70	0,20-0,76 0,28-0,76	$1,76{\pm}0,22$ $1,88{\pm}0,28$
Cu	0,16-0,70	0,22-0,76 0,28-0,76	$^{2,43\pm0,32}_{2,58\pm0,39}$

Таблица 8. Значения корреляционных функций для $\pi^+ p$ -пар, зарегистрированных в $\pi^- A$ -взаимодействиях при p_{bm} =43 ГэВ/с

-	-		
Ядро	Область	Область	Величина
мишени	T_L (ГэВ)	T_R (ГэВ)	$R_2^{\pi^+ p}$
Be	$0,35{-}0,70$ $0,40{-}0,70$	0,16-0,54	$1,32\pm0,23$ $1,43\pm0,29$
Al	$0,35{-}0,70$ $0,40{-}0,70$	0,18–0,60	$1,50\pm0,23$ $1,59\pm0,28$
Cu	$0,35{-}0,70$ $0,40{-}0,70$	0,18–0,60	$1,43\pm0,24$ $1,49\pm0,28$

Измеренные в эксперименте ме́нышие величины корреляционных функций $R_2^{\pi^+ p} \pi^+ p$ -пар (табл. 8) по сравнению с R_2^{pp} для выборок адронных пар с одинаково определенным правым протоном должны соответствовать ме́нышему вкладу в сечения образования π^+ -мезонов под углами $40^\circ < \theta < 70^\circ$ в изученной импульсной области процессов коррелированного рождения $\pi^+ p$ -пар по сравнению с вкладом процессов коррелированного рождения двух и более протонов в сечения образования протонов под такими же углами.

В табл. 9 и 10 представлены значения корреляционных функций $\pi^+\pi^+$ - и $\pi^-\pi^-$ -пар, соответственно. Измеренные во всей доступной для изучения кинематической

области величины $R_2^{\pi^+\pi^+}$ и $R_2^{\pi^-\pi^-}$ пар одноименно заряженных пионов, образованных на легком ядре Ве, близки к 1 и имеют наименьшие значения среди всех измеренных в эксперименте величин $R_2^{h_Lh_R}$. При переходе к более тяжёлым ядрам величины корреляционных функций $R_2^{\pi\pi}$ возрастают, что не противоречит представлению о возрастании с ростом А относительного вклада процессов глубоконеупругого образования адронов в сечения их рождения [3,4]. Для сравнения механизмов глубоконеупругого образования протонов и пионов необходимо исследование величин корреляционных функций $R_2^{p\pi^+}$, $R_2^{\pi^+p}$ и $R_2^{\pi\pi}$ при значениях кинетической энергии пионов $T > 0, 4\Gamma$ эВ, т.е. при импульсах, близких к импульсам зарегистрированных в соответствующих угловых областях протонов. Верхнюю границу $\cos \theta$ области $-0, 15 < \cos \theta < 0, 25$ следовало уменьшить хотя бы до значения $\cos \theta = 0, 15$.

 Таблица 9.
 Значения корреляционных функций

 для $\pi^+\pi^+$ -пар, зарегистрированных в π^-A -взаимодействиях при

 $p_{bm}=43\,\Gamma$ эB/с

Таблица 10.	Значения корреляционных фу	тк-
	ций для $\pi^-\pi^-$ -пар, зарегист	ри-
	рованных в π^- А-взаимодейств	иях
	при $p_{bm}{=}43\Gamma$ э $\mathrm{B/c}$	

Ядро	Область	Область Т. (Г. Р.)	Величина $D\pi^+\pi^+$
мишени	I_L (1 9D)	I_R (1 9D)	n_2°
Be	0,35-0,70	$0,20{-}0,76$ $0,28{-}0,76$	$^{1,27\pm0,26}_{1,40\pm0,34}$
Al	0,35–0,70 	$0,20{-}0,76$ $0,28{-}0,76$	$1,59{\pm}0,30$ $1,60{\pm}0,36$
Cu	0,35-0,70 0,32-0,76	$0,22{-}0,76$ $0,28{-}0,76$	$1,77{\pm}0,39$ $1,98{\pm}0,44$

Ядро	Область	Область	Величина
мишени	T_L (ГэВ)	T_R (ГэВ)	$R_2^{\pi^-\pi^-}$
Be	0, 30-0, 70 0, 30-0, 70	0, 20-0, 76 0, 28-0, 76	$^{1,16\pm0,16}_{1,27\pm0,33}$
Al	0, 30-0, 70 0, 30-0, 70	0,20-0,76 0,28-0,76	$^{1,73\pm0,23}_{1,77\pm0,32}$
Cu	0, 30-0, 70 0, 30-0, 70	$0,22{-}0,76$ $0,28{-}0,76$	$1,58\pm0,27$ $1,74\pm0,36$

Для исследования механизма глубоконеупругого образования pp-пар наиболее информативным является изучение на основе бо́льшей экспериментальной статистики широких корреляций пар протонов в π^- Ве-взаимодействиях. Получение такой статистики представляет интерес и с точки зрения изучения механизма образования pp-пар в дифракционно-подобных событиях π^- Ве-взаимодействий, где передним магнитным спектрометром установки был зарегистрирован только быстрый π^- -мезон при небольших значениях квадрата передачи импульса этому мезону [12]. Представляет интерес и получение бо́льшей статистики зарегистрированных в изучаемой эксперимента событий образования dp-пар. Можно также отметить, что среди дифракционно-подобных собыли зарегистрированы несколько событий образования dp-пар с импульсами левого дейтрона, бо́льшими $0.8 \Gamma_9 B/c$ [13]. Оценивая необходимые ресурсы, следует иметь в виду, что использование в экспезиции только бериллиевой мишени позволило бы увеличить статистику корреляционной выборки в 5 раз при удвоении статистик выборок L и R.

Ядро мишени	Область $\cos \theta_R$	Область T_L (ГэВ)	Область <i>T_R</i> (ГэВ)	Величина R_2^{pp}
Be	$-0,15-0,35 \\ -0,15-0,25 \\ _"- \\ -0,15-0,15$	0, 16–0, 70 	0,16-0,60	$1,20\pm0,13$ $1,48\pm0,15$ $1,12\pm0,12$ * $1,48\pm0,17$
Al	-0, 15-0, 35 -0, 15-0, 25 -0, 15-0, 15	0,16-0,70 	0,18–0,60 	$1,39{\pm}0,10$ $1,35{\pm}0,10$ $1,36{\pm}0,13$
Cu	$\begin{array}{c} -0,15{-}0,35\\ -0,15{-}0,25\\ _"-\\ -0,15{-}0,15\end{array}$	0,16-0,70 	0,18-0,60 	$1,58\pm0,09$ $1,59\pm0,10$ $1,53\pm0,09 \star$ $1,63\pm0,11$

В табл. 11-13 приведены оценки величин корреляционных функций для pp-, $p\pi^+$ и $\pi^+\pi^+$ -пар, соответственно, полученные в результате моделирования с помощью генератора адронных ливней FLUKA [16] пакета GEANT [14] процессов их образования при прохождении π^- -мезонов с импульсами 43 ГэВ/с через используемые в эксперименте ядерные мишени. Для сокращения времени счёта при моделировании в качестве событий образования адронной пары отбирались такие события, среди вторичных частиц которых были найдены два попавших в z – аксептанс ДМС адрона с кинетическими энергиями и углами вылета относительно направления падающего π^- -мезона в изучаемой экспериментально области и разностью у – координат точек их образования в мишени, меньшей 10 мм, 6 мм и 4 мм для Be, Al и Cu в соответствии с используемыми процедурами восстановления треков заряженных частиц и выделения событий образования адронных пар в π^- А-взаимодействиях [11,13]. В табл. 11 кроме оценок величин R_2^{pp} для изучаемой экспериментально угловой области $-0, 15 < \cos \theta < 0, 25$ регистрации правых протонов *pp*-пар приведены также рассчитанные значения R_2^{pp} для областей, включающих ме́нышие $(-0, 15 < \cos \theta < 0, 35)$ и бо́льшие $(-0, 15 < \cos \theta < 0, 15)$ углы вылета правых протонов этих пар.

 Таблица 12.
 Значения корреляционных функций для $p\pi^+$ -пар, вычисленные при моделировании с помощью генератора адронных ливней FLUKA пакета GEANT процессов их образования в π^- А-взаимодействиях при p_{bm} =43 ГэВ/с

Ядро	Область	Область	Величина
мишени	$T_L \left(\Gamma$ эВ $\right)$	T_R (ГэВ)	$R_2^{\pi^+ p}$
Be	$0, 16{-}0, 70$	$0,20{-}0,76$	$1,41\pm0,12$
Al	"	"	$1,36{\pm}0,11$
Cu	"	$0,22{-}0,76$	$1,54{\pm}0,12$

 Таблица 13.
 Значения корреляционных функций для $\pi^+\pi^+$ -пар, вычисленные при моделировании с помощью генератора адронных ливней FLUKA пакета GEANT процессов их образования в π^-A -взаимодействиях при p_{bm} =43 ГэВ/с

Ядро	Область	Область	Величина
мишени	$T_L \left(\Gamma$ эВ $\right)$	T_R (ГэВ)	$R_2^{\pi^+\pi^+}$
Be	$0,35{-}0,70$	0,20-0,76	$0,83{\pm}0,09$
Al	"	"	$1,05{\pm}0,09$
Cu	"	0,22-0,76	$1,20{\pm}0,11$

Полученные в результате модельных расчётов значения корреляционных функций меньше экспериментально измеренных. Наиболее сильно превышают модельные оценки измеренные в эксперименте значения величин корреляционных функций образованных в π^{-} Си-взаимодействиях *pp*- и $p\pi^{+}$ -пар (табл. 6 и 7, соответственно). Следует отметить, что приведенные в табл. 11 для нескольких значений верхней границы угловой области регистрации правых протонов pp-пар оценки величин R_2^{pp} в π^- Ве-взаимодействиях возрастают приблизительно на 25% при изменении верхней границы $\cos \theta_R$ области регистрации правого протона от значения $\cos \theta_R = 0.35$ до $\cos \theta_R = 0.15$, оставаясь значимо меньшими экспериментально измеренных величин. Причём в процессе моделирования рр-пары на бериллиевой мишени в кинематической области, соответствующей изучаемой экспериментально, образуются главным образом при взаимодействиях вторичных частиц. В то же время на медной мишени значения корреляционных функций R_2^{pp} , полученные при моделировании процессов образования pp-пар с выключенным механизмом сильных взаимодействий для вторичных частиц, не отличаются в пределах ошибок от их значений, рассчитанных с учётом этих взаимодействий. Значения R_2^{pp} , полученные при подавлении механизма сильных взаимодействий для вторичных частиц, отмечены в табл. 11 звездочкой. Вычисление в процессе моделирования π^- А-взаимодействий значений корреляционных функций пар вторичных адронов с учётом всех физических эффектов, возникающих при прохождении этих адронов через детекторы двухплечевого магнитного спектрометра, а также изучение зависимости величин корреляционных функций от размеров мишени требуют слишком большого счётного времени на доступных автору ЭВМ.

ЗАКЛЮЧЕНИЕ

В работе представлены измеренные в π^- Ве-, Al-, Cu-взаимодействиях при импульсе налетающего π^- -мезона $p_{bm}=43\,\Gamma$ эВ/с инклюзивные инвариантные сечения образованных под углами $\theta = 90^\circ$ и $\theta = 60^\circ$ вторичных протонов и образованных под углами $\theta = 90^\circ$ пионов обоих знаков заряда. Исследованы форма инклюзивных спектров вторичных адронов, A-зависимость их сечений, а также величины корреляционных функций пар одноимённо заряженных вторичных адронов при больших углах разлёта этих адронов. Изученная кинематическая область соответствовала значениям кинетической энергии $T \approx 0, 16-0, 70\,\Gamma$ эВ для вторичных протонов и значениям $T \approx 0, 20-0, 76\,\Gamma$ эВ для вторичных пионов. Углы разлёта Ψ адронов пар удовлетворяли соотношению $\cos \Psi < -0, 5$.

В результате анализа экспериментальной информации показано, что для образованных на средних и тяжёлых ядрах вторичных пионов с малыми кинетическими энергиями особенности поведения их инклюзивных спектров и А-зависимости инклюзивных сечений определяются особенностями внутриядерной структуры при взаимодействии вторичных частиц с этими ядрами.

Исследование широких корреляций пар одноимённо заряженных вторичных адронов показало коррелированное рождение pp- и pπ⁺-пар при сближающихся с ростом кинетической энергии пионов значениях корреляционных функций R_2^{pp} и $R_2^{p\pi^+}$, что является аргументом в пользу общего механизма образования основной части этих пар. Получено указание на значительное возрастание в π^- Ве-взаимодействиях величины R_2^{pp} для выборки pp-пар, где усилен вклад событий, для которых сумма кумулятивных чисел протонов пары n_k^{pp} удовлетворяла соотношению $n_k^{pp} \leq 2$. Наблюдение такого эффекта, надёжно обеспеченное статистически, явилось бы свидетельством в пользу гипотезы парной корреляции [9]. Измеренные во всей доступной для изучения кинематической области величины корреляционных функций пар одноименно заряженных пионов, близкие к 1 для π^{-} Ве-взаимодействий, возрастали при переходе к более тяжёлым ядрам, что не противоречит представлению о возрастании с ростом А относительного вклада процессов глубоконеупругого образования адронов в сечения их рождения. Для сравнения механизмов глубоконеупругого образования протонов и пионов необходимо изучение на основе бо́льшей экспериментальной статистики широких корреляций пар протонов и пионов при значениях кинетической энергии пионов $T > 0, 4\Gamma$ эВ. Для исследования механизма глубоконеупругого образования pp-пар наиболее информативным является исследование π^{-} Ве-взаимодействий.

Автор выражает глубокую благодарность Ю.М. Антипову, О.В. Ерошину, И.В. Мандриченко и всем членам Сотрудничества СИГМА-АЯКС за предоставление магнитных лент с упакованной экспериментальной информацией, доступа к библиотекам программ обработки на VAX и за консультации по конструкции отдельных детекторов установки.

Автор выражает глубокую признательность А.А. Иванилову за обсуждение работы, советы и критические замечания, а также благодарит В.Ф. Образцова и В.А. Уварова за ознакомление с работой.

Список литературы

- [1] Антипов Ю.М. и др. Препринт ИФВЭ 90-141, Протвино, 1990.
- [2] Лексин Г.А. V Международный семинар по проблемам физики высоких энергий. Дубна, 1978. Д1-2-12036, с.274.
- [3] Баюков Ю.Д. и др. Препринт ИТЭФ-85, Москва, 1982.
- [4] Гаврилов В.Б., Лексин Г.А. Препринт ИТЭФ-124, Москва, 1983.
- [5] Ставинский В.С. VI Международный семинар по проблемам физики высоких энергий.
 Дубна, 1981. Д1,2-81-728, с.205.
- [6] Баюков Ю.Д. и др.// ЯФ, 1989, т.50, вып.9, с.719.
- [7] Баюков Ю.Д. и др.// ЯФ, 1990, т.52, вып.2(8), с.480.
- [8] Власов А.В. и др.// ЯФ, 1992, т.55, вып.9, с.2468.
- [9] Стрикман М.И. и Франкфурт Л.Л.// ЭЧАЯ, 1980, т.11, вып.3, с.571.
- [10] Балдин А.М.// Краткие сообщения по физике, 1971, т.1, с.35.
- [11] Карташева В.Г. Препринт ИФВЭ 95-122, Протвино, 1995.
- [12] Карташева В.Г. Препринт ИФВЭ 97-47, Протвино, 1997; // ЯФ, 1999, т.62, вып.4, с.1.
- [13] Карташева В.Г. Препринт ИФВЭ 96-45, Протвино, 1996.
- [14] GEANT-Detector Description and Simulation Tool CERNLIB. CERN Program Library Long Writeup W5013, Geneva, CERN, 1994.
- [15] Карташева В.Г. Препринт ИФВЭ 98-10, Протвино, 1998; // ЯФ, 1999, т.62, вып.8, с.1.
- [16] Fasso A. et al. "FLUKA 92". In: Proc. of the Workshop on Simulating Accelerator Radiation Environment, Santa Fe, 11-15 January 1993.
- [17] MINUIT-Function Minimization and Error Analysis CERNLIB. CERN Program Library Long Writeup D506, Geneva, CERN, 1992.
- [18] Баюков Ю.Д. и др. Препринт ИТЭФ-5, Москва, 1985.
- [19] Fesefeldt H.C. Simulation of hadronic showers, physics and applications. RWTH Aachen Physikzentrum, Aachen, Germany, 1985.
- [20] Буклей А.Е. и др. Препринт ИТЭФ-1, Москва, 1982.
- [21] Буклей А.Е. и др. Препринт ИТЭФ-108, Москва, 1982.
- [22] Jones G. Preprint TRI-PP-81-62, Vancouver, 1981.

- [23] Асатурян В.М. и др.// ЯФ, 1983, т.38, с.684.
- [24] Гулканян Г.Р. и др. Препринт ЕФИ 962(12)-87, Ереван, 1987.
- [25] Барашенков ВС. и Тонеев В.Д. Взаимодействия высокоэнергетических частиц и атомных ядер с ядрами. — М., Атомиздат, 1972.
- [26] Джибути Р.И. Динамические корреляции нуклонов в атомном ядре. Тбилиси, Мецниереба, 1981.
- [27] Abdinov O.B. et al Preprint JINR E1-84-421, Dubna, 1984.
- [28] Аммосов В.В. и др.// ЯФ, 1986, т.43, вып.5, с.1186.
- [29] Антипов Ю.М. и др.// ЯФ, 1990, т.53, вып.2, с.439.
- [30] Баюков Ю.Д. и др. Препринт ИТЭФ-30, Москва, 1979.
- [31] Балдин А.М. и Ставинский В.С. V Международный семинар по проблемам физики высоких энергий. Дубна, 1978. Д1-2-12036, с.261.
- [32] Абрамов В.В. и др. VI Международный семинар по проблемам физики высоких энергий. Дубна, 1981. Д1,2-81-728, с.194.
- [33] Аллаби Дж. и др.// ЯФ, 1970, т.12, с.538.
- [34] Carrol et al.// Phys. Lett., 80B, 1979, p.319.

Рукопись поступила 27 августа 1999 г.

В.Г. Карташева

Изучение инклюзивных спектров и широких парных корреляций вторичных протонов и пионов с малыми кинетическими энергиями в $\pi^- A$ -взаимодействиях при 43 ГэВ.

Оригинал-макет подготовлен с помощью системы IAT_EX. Редактор Л.Ф. Васильева. Технический редактор Н.В. Орлова.

Подписано к печати 31.08.99г. Формат 60 × 84/8. Офсетная печать. Печ.л. 2,87. Уч.-изд.л. 2,3. Тираж 130. Заказ 174. Индекс 3649. ЛР №020498 17.04.97.

ГНЦ РФ Институт физики высоких энергий 142284, Протвино Московской обл.

ПРЕПРИНТ 99-46, 1999ИФВЭ,