
����
STATE RESEARCH CENTER OF RUSSIA

INSTITUTE FOR HIGH ENERGY PHYSICS

IHEP 99-55

S.I.Alekhin

THE QCD RENORMALIZATION SCALE STABILITY
OF HIGH TWISTS AND αs

IN DEEP INELASTIC SCATTERING

Protvino 1999



UDK 539.171.12/.6. m–24

Abstract

Alekhin S.I. The QCD renormalization scale stability of high twists and αs in deep inelastic scattering:
IHEP Preprint 99-55. – Protvino, 1999. – p. 9, figs. 9, refs.: 10.

A sensitivity of twist-4 and αs values extracted in the NLO QCD analysis of nonsinglet SLAC-
BCDMS-NMC deep inelastic scattering data to the choice of QCD renormalization scale (RS) is analysed.
It is obtained that the high twist (HT) contribution to structure function F2, is retuned with the change
of RS. This retuning depends on the choice of starting QCD evolution point Q0 and x. At Q0 � 10 GeV2
the HT contribution to F2 is retuned at small x and is not almost retuned at large x; at small Q0 it
exhibits approximate RS stability for all x in question. The HT contribution to FL is RS stable for all Q0
and x. The RS sensitivity of αs also depends on the choice of Q0: At large Q0 this sensitivity is weaker
than at small ones. For Q20 = 9 GeV2 the value αs (MZ) = 0.1183± 0.0021(stat + syst) ± 0.0013(RS) is
obtained. Connection with the higher order QCD corrections is discussed.

aNNOTACIQ

aLëHIN s.i. uSTOJˆIWOSTX WYS[IH TWISTOW I αs PO OTNO[ENI@ K MAS[TABU PERENORMIROWKI QCD W

GLUBOKO-NEUPRUGOM RASSEQNII: pREPRINT ifw— 99-55. – pROTWINO, 1999. – 9 S., 9 RIS., BIBLIOGR.: 10.

rASSMOTRENA ˆUWSTWITELXNOSTX WELIˆINY αs I WKLADA WYS[IH TWISTOW (wt), IZWLEKEMYH W ANA-
LIZE NESINGLETNYH DANNYH SLAC-BCDMS-NMC PO GLUBOKO NEUPRUGOMU RASSEQNI@, K WYBORU MAS-
[TABA PERENORMIROWKI W RAMKAH NLO QCD. pOLUˆENO, ˆTO WKLAD wt W STRUKTURNU@ FUNKCI@ F2
PERENASTRAIWAETSQ S IZMENENIEM MAS[TABA PERENORMIROWKI. wELIˆINA “TOJ PERENASTROJKI ZAWISIT

OT WYBORA NAˆALXNOJ TOˆKI QCD “WOL@CII Q0 I x. pRI Q2 � 10 GeV2 WKLAD wt W F2 PERENA-
STRAIWAETSQ PRI MALYH x I POˆTI NE PERENASTRAIWAETSQ PRI BOLX[IH x; PRI MALYH Q0 ON POˆTI

STABILEN PRI WSEH RASSMATRIWAEMYH x. wKLAD wt W STRUKTURNU@ FUNKCI@ FL STABILEN PRI WSEH

Q0 I x. ˜UWSTWITELXNOSTX WELIˆINY αs, IZWLEKAEMOJ W “TOM ANALIZE, K MAS[TABU PERENORMIROW-
KI TAKVE ZAWISIT OT WYBORA Q0: PRI BOLX[IH Q0 “TA ˆUWSTWITELXNOSTX NIVE, ˆEM PRI MALYH.
pRI Q2 = 9 GeV2 POLUˆENA WELIˆINA αs (MZ) = 0.1183 ± 0.0021(STAT.+ SIST.) ± 0.0013(RENORM.).
oBSUVDAETSQ SWQZX POLUˆENNYH REZULXTATOW S POPRAWKAMI OT WYS[IH PORQDKOW QCD.
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1. Interest to the quantitative description of high twist (HT) contribution to the deep inelas-
tic scattering (DIS) cross sections has recently increased, in particular, due to the development

of infrared renormalon (IRR) model (see e.g. review [1]). Within this model one can derive
the x-shape of HT contribution from the x-shape of leading twist (LT) structure functions.
This connection allows for obtaining precise predictions for the HT contribution since the LT

contribution can be determined rather precisely from the experimental data. Meanwhile the
experimental determination of HT contribution is not direct and is based on fitting a combi-

nation of log- and power-like terms to the data. If the data accuracy is not high enough, the
correlation between these log- and power-like terms can be large, which was explicitly shown

in the combined SLAC-BCDMS data analysis of Ref. [2]. If the large correlations occur, the
separation of terms is unstable with respect to the various inputs of fit and thus, it becomes

important to study the stability of HT separation. One of the poorly defined ansatz of a QCD
analysis of DIS data is the choice of renormalization scale (RS). The uncertainty due to RS vari-

ation is connected with the account of higher order (HO) QCD corrections since in the analysis
with complete account of HO terms, the RS dependence of fitted parameters should vanish and
thus the observed RS dependence can be used for the estimation of HO terms effect. Earlier

we reported the results of NLO QCD analysis of high x SLAC-BCDMS-NMC data [3]. A short
communication on the RS dependence of HT contribution and αs obtained in this analysis was

reported in Ref. [4]. In this paper a more detailed study of this dependence is given.
2. Our approach used for the study of RS stability of DGLAP evolution equation in NLO

QCD is the same as described in Refs. [5,6]. Within this approach the RS of QCD evolution is
changed from Q to kRQ, where kR is an arbitrary parameter, conventionally varying from 1/2

to 2. This approach contains certain simplification since the change of scale can depend on x,
but in our analysis this effect is not so essential due to a limited range of x. For the nonsinglet

case the NLO DGLAP equation with an arbitrary choice of RS looks as follows:

Q
∂qNS(x, Q)

∂Q
=
αs (kRQ)

π
PNS,(0)qq ⊗ qNS+ α

2
s (kRQ)

2π2

[
PNS,(1)qq ⊗ qNS + ln(kR)β0PNS,(0)qq ⊗ qNS

]
, (1)

where P⊗q =
∫ 1
x dzP (z)q(x/z, Q) denotes the Mellin convolution; q

NS is the evolved distribution;

PNS,(0) and PNS,(1) are the LO and NLO parts of splitting function; αs(Q) is the running strong
coupling constant; and β0 is the regular coefficient of renormgroup equation for αs:

Q
dαs
dQ

= −β0
2π
α2s −

β1
4π2
α3s .
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Equation (1) was solved with the help of direct integration method implemented in the code
used earlier [2]. In the analysis of Ref. [3] we used the combined SLAC-BCDMS-NMC proton-

deuterium data [7] with the cuts x ≥ 0.3 to reduce the QCD evolution to the nonsinglet case
and x ≤ 0.75 to reject the region where nuclear effects in deuterium may be significant. The

initial scale of evolution was chosen equal to Q20 = 9 GeV2 to provide comparability with the
earlier results of Ref. [2]. A complete account of point-to-point correlations due to systematic
errors was made through a covariance matrix approach, similarly to our earlier analysis of Ref.

[8]. The formula were fitted to the cross section data to allow for simultaneous and unbiased
determination of a twist-4 contribution to structure functions FL and F2:

d2σ

dxdy
=
4πα2(s−M2)

Q4

[(
1− y − (Mxy)

2

Q2

)
FHT2 (x, Q) +

(
1− 2m

2
l

Q2

)
y2

2
2xFHT1 (x, Q)

]
,

2xFHT1 (x, Q) = FHT2 (x, Q)− FHTL (x, Q),

FHT2,L (x, Q) = F
TMC
2,L (x, Q) +H2,L(x)

1 GeV2

Q2
,

Fig. 1. The values of proton and deuterium H2(x) for dif-
ferent values of kR (open circles: kR = 1/2; full
circles: kR = 1.

where FTMC2,L are the LT contributions
obtained as a result of integration

of Eq. (1) with the account of tar-
get mass corrections [9]; s is the to-

tal c.m.s. energy; ml is the scat-
tered lepton mass; and y is the reg-

ular lepton scattering variable. The
values of functions H2,L(x) at x =

0.3, 0.4, 0, 5, 0.6, 0.7, 0.8 were fitted, be-
tween these points H2,L(x) were linearly
interpolated. The functions H2 for pro-

ton and deuterium were fitted indepen-
dently, while the functions HL for pro-

ton and deuterium due to a limited ac-
curacy of data, turned out to be compatible within errors and all the fits were performed under

constraint HpL(x) = H
d
L(x).

3. The proton and deuterium H2(x) for kR = 1 and kR = 1/2 are given in Fig. 1. One

can see that they depend on kR at x ∼ 0.3 and does not practically depend at x ∼ 0.8. To
give an explanation of this behaviour, recall the basic properties of solutions to the DGLAP

evolution equations. After linearization on lnkR, Eq. (1) can be analytically solved in the Mellin
momentum space:

MNS(n,Q) =MNS(n,Q0)MNLO(n, α) exp
[
g(n)

(
α2 − α20

)
ln(kR)

]
,

where α ≡ αs(Q), α0 ≡ αs (Q0); MNS(n,Q) are the Mellin moments of qNS; MNLO(n, α) defines

NLO evolution of these moments; g(n) is the linear function of Mellin moments of the splitting
functions PNS,(0)qq and PNS,(1)qq . Introduce a function ∆qNS(kR) ≡ qNS(kR) − qNS(kR = 1), which

is convenient to study the RS dependence. The Mellin moments of this function M∆(n,Q) are
given by

M∆(n,Q) =MNS(n,Q0)MNLO(n, α)
{
exp
[
g(n)

(
α2 − α20

)
ln(kR)

]
− 1
}
. (2)
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Fig. 2. The dependence of proton ∆qNS on α2s at Q
2
0 =

9 GeV2 (full lines: log2 kR = −1; dashed lines:
log2 kR = −1/2).

In Fig. 2 the precise dependence of pro-
ton ∆qNS on α2s (Q) for different kR ob-

tained as the result of numerical integra-
tion of Eq. (1) at Q20 = 9 GeV

2 is given1.

The range of αs in the figure correspond
to the variation of Q2 from 1 to 9 GeV2,

i.e. the region where the HT contribu-
tion is most significant. It is evident

that for all the values of x in question,
∆qNS is approximately proportional to
lnkR. This means that the lineariza-

tion of Eq. (1) is justified and that in
Eqn. (2) the part of exponent contain-

ing lnkR can be expanded, so that

∆qNS(x, Q) ≈ ln(kR)
(
α2 − α20

)
q̃NLO(x, α), (3)

where q̃NLO(x, α) is the Mellin inverse of the product M
NS(n,Q0)MNLO(n, α)g(n).

The Q-behaviour of q̃NLO is defined by MNLO(n, α). At x = 0.3 the function q̃NLO depends
weakly on α (see Fig. 2). This is consequence of the well known effect that the non-singlet QCD

evolution has stationary point at x ≈ 0.1 due to the fermion conservation. In the vicinity of
stationary point scaling violation is small, but, due to at large n the function MNLO(n, α) rises

with α faster than at low ones, at large x the scaling violation is more pronounced and the
function ∆qNS rises with α significantly faster than α2.

Fig. 3. The dependence of Q2
[
α2s(Q) − α2s(Q0)

]
on Q2 (full line: αs (Q0) = 0; dashed line: αs (Q0) =

0.1; dotted line: αs (Q0) = 0.2). The dashed-dotted line corresponds to Q2
[
α3s (Q)− α3s (Q0)

]
for αs (Q0) = 0.18.

In the NLO non-singlet approximation the LT contribution to F2 is given by

FLT2 = qNS +
αs
2π
qNS ⊗CNS,(1)2 ,

where C
NS,(1)
2 is the NLO coefficient function. Since the second term of above expression is

suppressed with respect to the first one at moderate x, the Q-behaviour of function ∆F2(kR) ≡
1Here and further on we do not give the results for deuterium since they are similar to the proton ones.
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FLT2 (kR) − FLT2 (kR = 1) at x = 0.3 coincides approximately with the ones of ∆qNS. The Q-
behaviour of the factor [α2s (Q

2)− α2s (Q0)] coming to Eqn. (3) depends on Q0. If Q 
 Q0 this
factor is ∼ 1/ ln2Q, i.e. falls with Q slower, than 1/Q2. Meanwhile in the vicinity of Q0, where
this factor vanishes, its Q-dependence is steeper and it can simulate the 1/Q2 behaviour in a

rather wide range of Q (see Fig. 3). One can easily show that the value of αs at a starting evolu-
tion point Q

(n)
0 , which provides the 1/Q

2 behaviour simulation of the factor [αns (Q
2)− αns (Q0)]

in the region from Q1 to Q2, is

αs
(
Q
(n)
0

)
=

[
Q22α

n
s (Q

2
2)−Q21αns (Q21)
Q22 −Q21

]1/n
. (4)

The dependence of αs
(
Q
(2)
0

)
on Q2 for Q1 = 1 GeV

2 obtained with the help of Eq. (4) is given

in Fig. 4. For the Q2 interval from 1 to ∼ 10 GeV2, where the HT are mostly significant,

αs
(
Q
(2)
0

)
∼ 0.2, which corresponds to

[
Q
(n)
0

]2
∼ 40 GeV2. Due to the weak dependence of q̃NLO

on Q at small x, the function ∆F2 also simulates the 1/Q
2 behaviour at x = 0.3, if the starting

evolution point is chosen equal to Q
(2)
0 . At a fixed Q0 this simulation, in general, becomes less

probable with the rise of x just due to the steeper rise of ∆qNS with α at large x.

Fig. 4. The value of αs at starting evolution point Q
(n)
0 that provides the power-behaviour simulation

of factors
[
αns (Q

2)− αns (Q0)
]
in the region from Q1 to Q2 (full line: n = 1, dashed line: n = 2,

dotted line: n = 3). The value of αs (Q2) is also given for comparison (dashed-dotted line).

The behaviour of Q2∆F p2 at kR = 1/2 for different x and Q0 is given in Fig. 5. At Q
2
0 =

50 GeV2 and x = 0.3 the function ∆F2 simulates the 1/Q
2 behaviour almost perfectly in the total

Q region relevant for HT determination. This leads to the H2 retuning in the fits with different
kR, since ∆F2 is compensated by the additional contribution to H2 with the sign opposite to

∆F2 (see Fig. 6). At x = 0.8, due to the fall of q̃NLO with Q, the simulation is much worse.
If Q20 = 1 GeV2, the absolute value of Q2∆F2 steeply rises at x = 0.3 and small Q due to the

factor [α2s (Q
2)− α2s (Q0)]. At x = 0.8 this rise is not so steep because of the fall of q̃NLO with

Q, but it cannot suppress the general rise. As a consequence, at small Q0 the function ∆F2
cannot simulate the 1/Q2 behaviour at all x and it should be at least partially compensated by

the change of Q-dependence of the LT contribution. The remnant HT retuning is still possible
if the Q-dependence of ∆F2 at some x is more similar to 1/Q

2, than to the Q-dependence of
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∂F2/∂αs(MZ)
2. The explicit tracing of the balance between the H2 retuning and the change of

LT contribution is not so simple due to αs(MZ) is determined by data at all x and Q. Anyway,

as one can see from Fig. 6, at small Q0 the function H2 is retuned with the change of kR
significantly smaller than at large Q0. At Q

2
0 = 9 GeV2 the retuning effect is almost the same

as for Q20 = 50 GeV2. This is natural since the ∆F2 behaviour at small Q depends weakly on
Q0, if Q0 is large, and the data are not very sensitive to the HT contribution at Q

2 � 10 GeV2.
Thus, the choice of Q0 has small effect on the fitted HT contribution if Q

2
0 � 10 GeV2.

Fig. 5. The dependence of | Q2∆F p2 | [GeV2] on Q2 at kR = 1/2 and at different values of x and Q0
(full lines: x = 0.3; dashed lines: x = 0.8).

Fig. 6. The values of Hp2 (x) for different choices of Q0 and RS (open circles: kR = 1/2; full circles:
kR = 1; squares: kR = 2.

The RS stability of αs also depends on the choice of Q0. In the fit with HT fixed ∆F2 is
compensated by the change of LT contribution that leads to the shift of αs. If H2 is released in

the fit, the shift of αs can change due to the partial compensation of ∆F2 by the change of H2.
Since the 1/Q2 simulation of ∆F2 depends on Q0, the αs dependence on kR changes with Q0 as

well as H2 (see Fig. 7). At large Q0 the ∆F2 slope on kR is negative at small Q. As a result, in
the fit with HT released the H2 slope on kR is positive. Correspondingly the Q-dependence of

LT contribution after HT releasing becomes weaker at large kR and steeper at small ones, i.e.

2The Q-dependence of LT contribution is mainly driven by αs and thus the balance between the absorbtion
of ∆F2 into the LT contribution and H2 is defined by ∂F2/∂αs(MZ).
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the slope of fitted αs(MZ) value on kR decreases as compared to the fit with HT fixed. In the
fit with HT fixed the αs(MZ) slope on kR is positive and thus the RS uncertainty on αs at large

Q0 becomes smaller. At small Q0 the H2 slope on kR at x ≈ 0.5 ÷ 0.7 is negative. The data
from this region of x have the largest impact on the αs determination and thus the H2 releasing

leads to the increase of RS error on αs, although the scale of effect is smaller as compared with
the fit at large Q0 due to the weakness of HT retuning at small Q0. In our analysis

αs (MZ) = 0.1151± 0.0015(stat+ syst)± 0.0045(RS)

for Q20 = 1 GeV
2 and

αs (MZ) = 0.1183± 0.0021(stat+ syst)± 0.0013(RS)

for Q20 = 9 GeV
2, where the RS error is estimated as half of αs (MZ) spread with the change of

kR from 1/2 to 2; the central value is shifted to the centre of this spread. The values of χ2 are

approximately the same for different kR, but in view of that at small Q0 the total αs(MZ) error
is about two times larger, than at large one, we consider the αs value determined from the fit

with large Q0 as more reliable.

Fig. 7. The dependence of ∆αRSs (kR) ≡ αs (MZ) |kR −αs (MZ) |kR=1 on the choice of renormalization
scale for different Q0 (open circles: Q

2
0 = 50 GeV

2, full circles: Q20 = 1 GeV2). For comparison
are also given the ∆αRSs (kR) values obtained in the fits at Q

2
0 = 50 GeV

2 with HT fixed at the
values obtained in fits with kR = 1 (squares). Error bars are not given.

The function ∆qNS, by definition, is connected with the NNLO QCD corrections to evolved
distributions. Natural assumption is that the exponent in the NNLO part of moment expression

can be expanded, similarly to the exponent in Eqn. (2), and the NNLO contribution is ∼
[α2s(Q

2)− α2s (Q0)] as well as ∆qNS. One can see from Fig. 3 that the factor [α3s (Q
2)− α3s (Q0)]

coming to the N3LO contribution can also simulate the 1/Q2 behaviour. Moreover, the region of
Q, where the simulation is possible, widens from the lower orders to the higher ones. This gives

an indication that the retuning of HT contribution after the accounting of HO QCD corrections
to DGLAP kernel would exhibit the same properties as the RS retuning in NLO. Note that if

Q2  Q1, then αs
(
Q
(n)
0

)
∼ αs (Q2) for all n (see Eqn. 4 and Fig. 4). This means that in the

analysis with simultaneous determination of αs and HT at large Q0 the contribution to F2 due

to the HO QCD corrections to DGLAP kernel can be merely fitted together with the HT, if g(n)
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and the Mellin moments of HO splitting functions have the similar large n asymptotes. The
fitting of HO corrections certainly leads to the increase of αs error

3. Meanwhile, the reduction

of RS uncertainty, which is one of the dominant sources of αs error, is larger and, as one can see
from the above, the total αs error becomes smaller.

One can see from Fig. 7 that at Q20 = 50 GeV
2 the fitted αs (MZ) value is a nonlinear function

of lnkR contrary to the fits at Q
2
0 = 1 GeV

2. The reason for this difference is a large correlation

between αs and H2 (c.f. Ref. [2]), which depends on how well ∂F2/∂αs(MZ) can simulate the
1/Q2 behaviour. With the rise of Q0 this correlation increases. For example the correlation

coefficient ρ0.5 for αs(MZ) and H2(x = 0.5) at kR = 1/2 is –0.82 for Q20 = 1 GeV2 and −0.97
for Q20 = 50 GeV

2. As a consequence, at large Q0 a small nonlinearity of q
NS on lnkR manifests

better and has unnegligible effect on the fitted parameters values (remind that the effective

amplification of nonlinear effects in a fit is proportional to 1/(1− ρ2)). For comparison, the fits
with HT fixed exhibit almost linear dependence of αs (MZ) on ln kR (see Fig. 7). One of the

reflections of this nonlinearity is that the difference between H2(x) at kR = 2 and at kR = 1
is small for Q20 = 50 GeV2 (see Fig. 6). This is an unpleasant feature of the analysis since

the variation range of kR is conventional and the nonlinearity does not allow one to rescale the
RS uncertainty. One of the possible ways to suppress the nonlinear effects is to decrease the

correlation between the HT contribution and αs, e.g. adding more data to the analysis. On the
another hand this correlation leads to the reducing of RS error on αs and it is necessary keeping

balance between the linearity and the size of RS error.
In the NLO QCD the LT contribution to the structure function FL is proportional to the

Mellin convolution of qNS with the NLO coefficient function CNS,(1)L :

FLTL =
αs
2π
qNS ⊗CNS,(1)L .

Due to the convolution smearing a function ∆FL(kR) ≡ FLTL (kR) − FLTL (kR = 1) depends on Q

steeper, than ∆F2. One can see that at x = 0.3 and large Q0 the function Q
2∆FL(kR = 1/2)

falls about two times in the region of Q2 = 1 ÷ 3 GeV2 (see Fig. 8). At large x and low Q0 it

falls even more steeply. As a result, HL(x) exhibits only weak dependence on kR for all x and
Q0 (see Fig. 9).

Fig. 8. The comparison of Q2∆F p2 (kR = 1/2) and Q
2∆F pL(kR = 1/2) dependence on Q

2.

3In the fit at Q20 = 50 GeV
2 with HT fixed the αs (MZ) error is 0.0004 as compared with 0.0021 in the fit with

HT released.
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Fig. 9. The values of HpL(x) for different choices of Q0 and RS (open circles: kR = 1/2; full circles:
kR = 1; squares: kR = 2).

4. In summary, we can conclude that the HT contribution to structure function F2 extracted
in the NLO QCD analysis of nonsinglet SLAC-BCDMS-NMC data is retuned with the RS

change. This retuning depends on the choice of starting evolution point Q0 and x. At Q0 �
10 GeV2 the HT contribution to F2 is retuned at small x and is not almost retuned at large x;
at small Q0 it exhibits approximate RS stability for all x in question. The RS sensitivity of αs
also depends on the choice of Q0: At large Q0 this sensitivity is weaker, than at small ones. The
HT contribution to FL is RS stable for all Q0 and x.

The RS stability of HT contribution is important for clarification of their nature: Due to
both the HT and the HO corrections being the falling functions of Q, it was often claimed that

the extracted HT terms can contain the contribution from HO. The HT absorbtion by NNLO
correction was observed in the analysis of neutrino structure function xF3 [10], although the

effect was smashed due to a low accuracy of the data. Our results indicate that in the analysis
of high statistical charged leptons DIS data an unambiguous separation of twist-4 contribution

and NNLO QCD corrections to DGLAP kernel is possible if Q0 is low. This conclusion is es-
pecially important because no complete NNLO calculation of the splitting functions is available
at the moment and it is impossible to perform exact direct clarification of this point.
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