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Abstract

Pirogov Yu. F. Parametrizing and Rephasing Neutrino Mixing.: ITHEP Preprint 2000-12. — Protvino,
2000. — p. 17, refs.: 16.

Neutrino mixing in the standard model extensions, both renormalizable and effective, with arbitrary
numbers of the singlet and left-handed doublet neutrinos is investigated in a systematic fashion. The
charged and neutral (the Z and Higgs mediated) lepton currents are written under general Majorana
condition, and the odservable independence of the choice of the condition, the rephasing invariance,
is studied. A parametrization of the neutrino mixing matrices in the doublet-singlet factorized form
is developed. Its relationship with the see-saw mechanism is shown in the limit of a small doublet-
singlet mixing. The structure of the mixing matrices relevant to the neutrino oscillation experiments is
explicated.

AnaHOTanmsa

Tuporos FO. ®@. ITapamerpusamnus u Ga3oBas HHBAPUAHTHOCTbL HEATPUHHOTO CMeEIUBaHUsA.: [IpempuuT
N®PBYS 2000-12. — IIporsuso, 2000. — 17 c., 6ubauorp.: 16.

B cucremaTuueckoit popme ncciaenoBaHO HEXTPUHHOE CMEIIMBAHIE B PAMKAX PACIIUPEHHON CTaHIaPTHON
MOOeNnu, KakK IMeEPEeHOPMUPOBAHHON, TAK W HET, C IPOW3BOJIBLHBIM KOJWYECTBOM CHHIJIETHBIX U JIEBOCIIH-
PaTbHBIX Ny6IeTHBIX HEHTpuHO. [Ipw mpom3BOILHOM MAHOPAHOBCKOM YCJIOBUY BBITTMCAHBI 3apSXKEHHBIE 1
HeATpasibHble (IepeHOCHMBIE Z M XUTTCOBCKAM GO30HOM) JIEITOHHBIE TOKU. VICCIIenoBaHa HE3aBUCHMOCTD
HaOIIONAaeMbIX OT BBIGOpa 3TOro ycrioBus (pa3oBas MHBAPMAHTHOCTH). PaspaboTaHa mapaMeTpU3als
HEWTPUHHON MATPHUIBI CMEITUBAHUS B Oy0eT-CHHTJIETHO (DaxTopu3oBanHoi dopme. B mpenene cimaboro
my6IIeT-CUHTJIETHOTO CMENINBAHUS TIOKA3aHa, CBI3b 9TOU MapaMeTPU3AINU C MEXAHU3MOM “TepeKadkm ‘.
IIposicHena CTPYKTypa HEHTPUHHBIX MATPUIl CMEIIIMBAHUS, COTJIACYIIINXCS C SKCIEPUMEHTAMHI TI0 OCIIMJI-
JISIUSM HENTPUHO.
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Introduction

The lepton sector of the minimal Standard Model (SM) of electroweak interactions is amaz-
ingly simple and symmetric. Due to the absence of the right-handed neutrinos and neutrino
masses, the SM predicts no flavour and CP violation for leptons. Nevertheless, there is no
known rule which would prohibit neutrinos from acquiring masses. More than this, there are
numerous indications of the contrary. If so, the lepton mixing has to take place with all the
subsequent phenomena such as flavour and C'P violation, neutrino oscillations, etc (as a recent
review see, e.g., ref. [1]).

The lepton mixing, unlike the quark one, should generally be much more complicated. There
are two main reasons for this. First, the number of the (iso)singlet neutrinos is a priori arbitrary
relative to that of the (iso)doublet ones. Second, the Majorana masses for neutrinos are possible
in addition to the Dirac ones. As a result, three types of associated problems arise. First, what
is the total number of physical parameters, and how many of them are masses, mixing angles
and C'P violating phases? Second, what do the lepton currents, both the vector and scalar
ones, look like in terms of the mixing matrices? And third, how to parametrize the matrices
explicitly? In the previous paper [2] (see also references therein) we have systematically studied
the parameter counting problem for the SM extensions, both renormalizable and effective, with
arbitrary numbers of the singlet and left-handed doublet neutrinos. Here we address ourselves
to the second and third problems.

The gauge interactions of Majorana neutrinos for the SM extensions with arbitrary numbers
of the singlet and left-handed doublet neutrinos were studied in ref. [3], where a parametrization
of the neutrino mixing matrices was also proposed. The Yukawa neutrino interactions within the
framework of the renormalizable SM extensions with an equal number of the singlet and doublet
neutrinos were considered in ref. [4]. The studies of refs. [3,4] were carried out traditionally
under canonical Majorana condition. In the present paper these results are generalized under
arbitrary Majorana condition for any SM extensions, both renormalizable and effective, with
arbitrary numbers of the singlet and left-handed doublet neutrinos. The freedom of the choice
of the Majorana condition, the rephasing invariance, is put as a corner-stone of the whole study.
Some of our results are known in the literature in one form or another. Nevertheless, having
been extended, they are hoped to be presented in the paper in a more systematic fashion.



In Section 1, the structure of the neutrino interactions, both gauge and Yukawa, are studied
under arbitrary Majorana condition. In Section 2, the properties of the interactions under
Majorana neutrino rephasing, including requirements for C'P invariance, are considered. A
parametrization of the mixing matrices in the doublet-singlet factorized form is proposed in
Section 3. Its relationship, under small doublet-singlet mixing, with the see-saw mechanism [5]
is shown. And finally, the patterns of neutrino mixing matrices, relevant to neutrino oscillation
experiments, are discussed in Section 4.

1. Lagrangians and mixing matrices

(i) Weak basis.  The most general renormalizable SU(2)w x U(1)y invariant lepton La-
grangian of the SM extended by the right-handed neutrinos reads
£ = 15D+ e%iDed + vigvy
— _ 1—
— (Y ey + 1Y vhe° + SACMIG + he.). (1)

In eq. (1), the lepton doublet [ and singlet €%, % fields with a zero superscript mean those in
a weak basis where, by definition, the symmetry properties are well stated. It is supposed that
the ordinary chiral families of the SM with the doublet left-handed Weyl neutrinos in number
d > 3 are added by the singlet (sterile) Weyl neutrinos in number s > 0. Let us designate such a
renormalizable SM extensions as (d, s),. A priori, one should retain s and d as arbitrary integers,
both s < d and s > d being allowed®. Further, [) = v*D,, is the generic covariant derivative
which reduces to the ordinary one, @ = v*d,, for the hypercharge zero singlet neutrinos. Here
and in what follows the notations 9¢ = (v%)¢ = C1% 7, etc, are used for the particle-antiparticle
conjugates of chiral fermions in the weak basis. Y¢ and Y are the arbitrary complex d x d and
d x s Yukawa matrices, respectively, and M is a complex symmetric s X s matrix of the Majorana
masses for the singlet neutrinos. Finally, ¢ is the Higgs isodoublet and ¢¢ = i1,¢* is its charge
conjugate.

One can generalize the preceding considerations to the most exhaustive Dirac-Majorana case
with the left-handed Majorana masses. The direct Majorana mass term for the doublet neutrinos
is excluded in the minimal SM by the symmetry and renormalizability requirements. But in the
extended SM as a low energy effective theory it could stem from the SM invariant operator of
the fifth dimension

= %((bCTTi(b)(@h iTomil?) + hec., (2)

with 74, ¢ = 1,2, 3 being the Pauli matrices, h being a d X d symmetric constant matrix, A > v
being the lepton number violating mass scale (supposedly of order of the singlet Majorana
masses) and v being the Higgs vacuum expectation value. The above operator with the effective
isotriplet field A; = (1/A)(¢°;¢) reflects the oblique radiative corrections in the low energy
Lagrangian produced by the physics beyond the SM3. With the Higgs doublet as

¢ = ( %(v—zi-wH—i-iz) ) ’ (3)

2We omit in the present analysis the possible vector-like lepton doublets. Hence, with account for the most
probable exclusion of the fourth heavy chiral family [6], one should put in reality d = 3. Nevertheless, we retain
d as a free parameter to better elucidate the parameter space structure of the extended SM.

3Were the isotriplet A; be considered as elementaty in the renormalizable framework, it would change only
the emerging Yukawa interactions not affecting the mass and mixing matrices.




it yields (in the unitary gauge) the following mass and Yukawa term for neutrinos

1 H\2—
- L' = 5(1 + ;) WUV +hee., (4)
where = hv?/A. Such an effective SM extension will be designated as (d, s).
Now, let us introduce the complete one-handed neutrino collection (which can always be
chosen, say, as left-handed)
n% :(yg’ygc)’ (5)

so that (n%)¢ = n% = (199, 1%). In these notations, the total neutrino mass matrix M} defined
by the mass Lagrangian

1— 1
= L = 5 MG MENG +hc. = o ngTCTIMEng + b, (6)
is clearly symmetric with account for C* = —C. More particularly, it has the form

3=(,,’5T E) (7)

where m = Y*v/ V2 is an arbitrary d x s matrix of the Dirac masses, m” is its transposed, u

and M are, respectively, the d x d and s x s symmetric Majorana mass matrices from egs. (1)
and (4).

(ii) Mass basis.  Let us now consider the mass basis n; where, by definition, the neutrino
mass matrix is diagonal. It is understood in this that the true neutrino mass eigenfields are d+ s
four component fields A (n) bringing the neutrino kinetic Lagrangian to the diagonal positive
form and simultaneously satisfying some subsidiary Majorana condition to halve the number of
degrees of freedom. Such most general condition looks like [7]—[9]

NG =N, (8)

where /\/:PC = CN; and ¢ = diag(ey,...,@ars) is a diagonal phase matrix. Here and in what
follows we use the notations with subscript ¢ to stress that quantity at hand generally depends
on ¢p* Expressing N, through Weyl spinors as N, = ¢rn; @ prn§ with some diagonal phase
matrices ¢y and g, one finds the Majorana condition to fulfil if prpr = ¢*. Without loss of
generality one can put, e.g., o5, = I, ¢r = ©*, so that®

Np=ny & ¢™nf. (9)

This choice is advantageous because it results in the simplest form for the charged current which
is left-handed (see later on).
In these terms, we demand the kinetic part of the neutrino Lagrangian be

1 1
Lyin = §N<p PN, — §N¢MdiagN<pa (10)

“Note that the maximum number of the independent Majorana specific phases in ¢ might be d+ s — 1 because
an overall neutrino phase is unobservable.
"Note that egs. (8), (9) do not put any constraint on the original Weyl fields nr.



with a non-negative diagonal mass matrix Mg, idependent of ¢. To this end, let us choose

the (d + s) x (d + s) unitary transformation U}

ng = Uynr, (11)
so that
UZTMQUZ = @Mgiaga (12)
with®
M, = diag (mf, ...mi; MY, ... MY). (13)

With account for /T/:P = /\Tg p= —Ng C~1'yp, the neutrino kinetic Lagrangian takes the required
form of eq. (10). At s < d for the (d, s), extension, d — s elements m" are zero. This reflects the
fact that in this case the rank of the (d+ s) x (d + s) matrix given by eq. (7) with p = 0 is 2s.
At s > d the rank of the matrix is generally d + s and hence there is no massless neutrinos.
Similarly, the charged lepton fields e, (x = L, R) in the mass basis are defined as

&) =Ue, (14)

with the unitary d x d matrices Uy, so that the bi-diagonalization of relevant mass matrix looks
like
UsT MU, = MG, = diag (ms, ..., m3) . (15)

By means of the global symmetries of the kinetic part of Lagrangian (1) one can arrange, without
loss of generality, the charged lepton weak basis to coincide with the mass one. This means that
MG can be chosen diagonal ab initio, so that U = Uy = I. The associated neutrinos are usually
referred to as the flavour ones”. Traditionally, the corresponding basis is used when discussing
the neutrino oscillation phenomenon. For simplicity, it is adopted in what follows. But in fact
there is no need for such a particular choice. Moreover, the mass basis suffices to describe the
neutrino oscillations without resort to the weak eigenstates [10]®.

Now, the charged current Lagrangian in the mass basis reads®

Ly = %W;Efyaij\fw +he., (16)

where the rectangular d x (d 4 s) mixing matrix for the charged currents is
V, =U'PU; (17)
with the charged current matrix in the weak basis given by

P = (1 O ) | (18)

5This notations correspond to partition A, = (v, N), and tacitly imply the see-saw hierarchy m” <« MY
for all the elements, with v being (quasi-)doublet neutrinos and N being (quasi-)singlet ones. Nevertheless there
might be experimental indications of the existence of at least one light singlet neutrino [1].

"Unfortunatelly, this is unlike the quark sector where flavour is synonymous with the mass eigenstate.

8When there is an admixture of the heavy Majorana neutrinos, it is only the coherent part of the light neutrinos
what has the meaning of a flavour state. Note that so modified flavour states are non-orthogonal and process
dependent.

9Note that due to the supposed absence of the vector-like lepton doublets, the right-handed charged currents
do not emerge.



1; being the d-dimensional identity matrix and Oy, being d X s zero matrix. The lepton mixing
matrix V,, is a counterpart of the quark CKM matrix. It follows from egs. (17) and (18) that
ViPVJ = Id ) (19)

though VJ Vi, # Iiis. Eq. (19) can be regarded as the one-sided unitarity condition at s # 0.
The neutral current Lagrangian with the SM neutral current operator Ts — s3,Q in the mass
basis is as follows:

1 1—
— L, = iZO(( — e er + siyeve + =N, 7“X<PN<PL) , (20)
Cw 2 2
where the (d + s) x (d + s) neutrino mixing matrix for the neutral currents is
X, =U P U (21)
with the on-doublet neutrino projector (P"? = P™)
P" = diag(1,...,1;0,...,0). (22)
—_——— ——
d s

Here one puts cy = cos by, sy = sinfy with 6y being the Weinberg angle. Clearly, X, is a
Hermitian projective matrix: X, = Xf, X2 = X, # I. Due to eqgs. (17), (18) the relation

X, =V}V, (23)
between the neutral and charged current mixing matrices is obeyed. For the (d,0) extension
one has P" = I, so that X, = I, and thus the d x d matrix V,, is unitary. More than this, for
the renormalizable (d, 0), extensions one can always put Uy =1, so that V, = I, also follows.
Hence, the lepton flavour conservation of the minimal SM with the residual symmetry U(1)¢ is

readily recovered.
For the renormalizable extensions (d, s),, the Yukawa Lagrangian looks like

H z .
— EY = ; EMaiage + ; EMgiagV% e
1H +iz
+ (5

NwR (¢*X$¢Mgiag + Mgiang)NwL
+\/§¢7“Z—_ (2 Ve MijiagNion — TEM G0 Vo N1 ) + h.c.>. (24)
Here use is made of the constraint
X7 oMGiagXe =0, (25)
which follows from a more particular one
P UM oM ULTP =0 (26)

and reflects the absence of the d x d symmetric left-handed Majorana mass term g in eq. (7).

For the general extensions (d, s), the constraint eq. (25) should be dropped off. This results
in addition of a number of interaction terms to Yukawa Lagrangian. E.g., according to eq. (4)
one should add in the unitary gauge the term

1 H 2 - * n
— Ly = 5 (%) Nor " X pMiagXoNos +hic., (27)

the linear in H term being cancelled by a similar one present now in Ly-.



2. Rephasing invariance

Consider the group of transformations consisting of the Majorana field rephasing N, —
1/2N,, followed by transformations

¢ = @@,
V, — Vo2 (28)
with a diagonal phase matrix ® = diag(®q,...,®P4ys). As a result, one also gets X, —

®1/2X,®*/2. All the Lagrangians are clearly rephasing invariant. It follows from eq. (28) that
independent rephasing invariant quantities containing ¢ may be chosen as V,p*!/2 (o2 X *!/?)
and p'/2N,,. Thus, the rephasing allows one to extract a number of neutrino phases from V,
and to reabsorb them in ¢ (or v.v.). Observables depend only on the sum of the complementary
phases of V,, and ¢*1/2 as well as of NV, and ¢!/, but not separately on each of them (in addition
to phases in the rephasing invariant combinations of the matrix V,, itself). Clearly, it is not a
particular choice of the Majorana condition but the invariance with respect to this choice which
is physically meaningful®®

The rephasing invariance permits one to choose ¢ most appropriate to the problem at hand.
The reason is that only the Higgs vertices and the neutrino wave functions (and thus the <
/\/:P/\TE > propagators) depend explicitly on ¢, whereas the gauge vertices and the <N¢J\T¢ >
propagators do not depend on it. As a result, if the matrix element for a particular process does
not contain ¢ explicitly one can extract by means of the rephasing as many Majorana specific
phases from V,, as possible. The rephasing invariance then insures that under other ¢ these
phases, though being superficially present in V,,, would not enter nevertheless the final results.

To illustrate, the amplitude for the (chirality conserving) N A oscillations

Ao (t) = Ve "PV] (29)
clearly does not depend on the Majorana specific phases capable of being stored in ¢, whereas
amplitude for the (chirality flipping) NN oscillations

Ai(t) = Ve Prlo Mg BTV (30)

@

does depend on the phases. In the above, F is the diagonal energy matrix for the light neutrinos.
The same is true for the neutrino mass elements vv© in the weak basis

M, = (V SO* giagvg) (31)

Vel Velgr Y

which determine the rates of the neutrinoless double -decay (at e’ = e) or efi conversion (at
e =p)tt

10Stress that due to rephasing invariance, fixing a choice for ¢ has nothing to do with the real physical properties
of the Majorana neutrinos, in particular with those concerning C conjugation. The last properties are described
additionally by the fact that if the neutrino mass eigenstates do possess definite C' parity nc = diag (+1), then the

C conjugation for the Majorana eigenfields shoud be consistently redefined [8] as N, S Nf v = nccp*./\ff , Where

traditionally Nf =CN 5 . It follows that the modified (anti-)self-charge conjugacy condition Nf ? =ncN, is
indeed satisfied independent of ¢. Nevertheless, attempts are sometimes made in the literature to ascribe physics
content to the Majorana condition being chosen superficially in the self- or anti-self-charge conjugate form. The
emerging results are thus misleading.

" Note that according to eqs. (24) and (27) the (chirality flipping) Yukawa interactions might also serve as a
probe of the Majorana specific phases.



(i) Canonical Majorana condition. Sometimes it might be tempting to go to a basis
where the Majorana neutrino wave functions have a canonical form. Namely, the rephasing by
® = ¢ yields ¢ — I, with I being unity matrix, and transformed fields N; satisfy the canonical
Majorana condition N = N;. Under this condition, all the physical mixing parameters reside
only in mixing matrices. With account for the X, Hermiticity property Re X Z: = Re X, and
Im X[ = —Im X, the neutrino neutral current parts of Lagrangians (20) and (24) can now be
re-expressed in a simpler form

— LD = éZaNIVQ(iImXI — s ReXz) N; (32)
and!?
1H . n
_Egl/ = §;M(R€X[+’L’)’5ImX[)MdiagA/’[
1z
5 Ny (Tm X — i Re X1 ) Mg N + hic. (33)

(ii) CP invariance. It is well known that for a field theory not to explicitly violate C'P
there should be allowed a weak basis where all the parameters in the Lagrangian are real. Under
this condition, the neutrino mass matrix M™, being symmetric, can always be brought to the
(real) diagonal form (generally, not positive definite) by means of an orthogonal transformation
U™ = O™ with the effect

O" M O™ = Na Mg - (34)

Here 0, = diag (£1) is the mass signature matrix which is completely determined by the original
M™. Clearly, the mixing matrix V,,, = R = P*"O" is real'® In the rephasing invariant form
one gets V,, = R (¢na)'/?, and hence the condition for CP invariance looks like

Vo =V onu (35)

as well as
Xy =" Xoonu - (36)

Stress that CP conservation does not mean V,, and X, to be real in general.
In the mass basis, one can define the C'P conjugation (in the unitary gauge) as

e(x) — e (zh),

Ne(@) = nepe™vNS (2F),
WH(z) — -WTP("),

Z(x) — —Z"(2"),

H(z) — H(a:P) (37)

(with ¥ = (2o, — #), etc). The definition is clearly rephasing invariant. Here incp, with nep =
diag (£1), is the matrix of the (relative) C'P parities for the neutrino mass eigenstates [8,9]. In

12Under ¢ = I, the Yukawa term for the renormalizable extensions (n,n)r was found in ref. [4].
3Here and in what follows, the basis where Uf = Ug = I is generally chosen for simplicity.



the above, ncp is not arbitrary but is to be properly defined for consistency. Namely, under
eq. (37) the whole Lagrangian can be shown to transform into itself where substitutions

P = P,
Vo — V;SOWCP (38)

are made. Imposing the requirement of C'P invariance one arrives with account for eq. (35) at
the identity

Nep =M - (39)

This identity insures the consistency of the description of C'P invariance directly in terms of the
rephasing invariant quantities, which being built of Vi, and ¢ depend on 7,,, with the description
in terms of the explicit CP transformations eq. (37) being dependent on ncp.

In particular, in the case of CP conservation one gets for the amplitudes of egs. (29)—(31)

Ao(t) = Vape_iEtnCP 80*V¢Ta
Ai(t) = Ve "FnopMgE V],
er/l:;/e/ - (V<P nCPMgiagVJ)ueue, : (40)

At v, = v, the last line explicitly demonstrates the possibility for the (partial) compensation
of various contributions to the lepton number violating eé transition under C'P conservation.
At ¢ = ncp, the matrix V,, (as well as X,) becomes pure real, V,, ., =R, so that

A() (t) = Re_iEtRT s

Ai(t) = Re PnopMia,E'RY,
Ml’r/lgllel = (,R’nCPMgiag,R’T)ueue, : (41)

The basis V., may be called as the C'P-associated one. In a sense, it might present the most
natural choice for the C'P conserving theory, all other bases being equivalent though probably
less convenient. Thus, under canonical Majorana condition ¢ = I the elements of V; (and X;) in
the C'P conserving theory should be according to eq. (35) either pure real or imaginary [8,9,11],

and this has nothing to do with the maximal C'P violation as it might superficially seem.

3. Doublet-singlet parametrization

(i) General case. A mathematical parametrization of the neutrino mixing matrix U™ is
given in ref. [3]. An alternative physical prescription, heavily relying on the doublet-singlet
neutrino content and thus being useful for practical purposes, is proposed in the present paper.
For simplicity, the subscript ¢ will be omitted in what follows. First of all note that by means
of the global symmetries one can always achieve, without loss of generality, that Uf = Ug = T '*
Now, before applying any restrictions on the neutrino mass matrix M™ the (d + s) x (d + s)
unitary mixing matrix U™ is arbitrary and can be decomposed in a unique way (at least in a
neighborhood of unity) as

U =uyuru; . (42)

MFor this reason, lepton mixing is synonimous with the neutrino one.



Here U} is a unitary d x d matrix in the doublet neutrino subspace corresponding to indices

f=1,...,d. This matrix is spanned on d* generators and depends on d(d — 1)/2 mixing angles
and d(d + 1)/2 phases. More particularly, one can put
n_ (Ui 0

with a d x d unitary matrix UZ. There is still a freedom of d charged lepton phase redefinition
which is left after the mass matrix in eq. (15) is diagonalized. According to egs. (17) and (42)
this freedom can be used to eliminate d phases out of U}. It clearly leaves only d(d — 1)/2
independent phases in this matrix (and equal number of mixing angles).

Now, one can write down the following explicit parametrization for U; (d > 1) in terms of
the modified Pontryagin’s coordinates of the second kind [3]

Ui = tdiag(e) H ®ugsy(6,0). (44)
f,g?i,é..,d
The product above should be understood in some particular (but a priori unspecified) order.
Here ugiag is a diagonal d xd phase matrix uqiag() = diag (e, ..., e'*¢) which differs equivalent
parametrizations and is at our disposal. (At d = 1, one has Uy = e*.) A basic matrix uy,
(“complex rotation”), one of a set of d(d—1)/2 unitary SU(2) submatrices, acts in the fg plane,
f # g, and depends only on one mixing angle 6, and one phase d,

0 0, €19 cos by, sin 6, e
= . = . . . 45
Upg = €XP ( —Opge s 0 —sin B e cos by, (4)

By means of the identity

Udiag (@) Usg(Ofg: I 19) uZﬁag(O‘) =Usg(0rg, 05 +07g — ) (46)

one can eliminate d —1 §’s out of U} and to transform these phases into the same number of the
Majorana specific ones, the d-th of the last phases being unphysical*? It clearly leaves (d—1)(d—
2)/2 CKM-like phases and d — 1 Majorana specific ones. Thus, under proper phase redefinitions
the matrix U} may be chosen in experimentally viable cases d = 2 and 3, respectively, as

U;=(_‘; )(0 (1’) (47)

and
C3 S3 0 Co 0 S9
Ué/ = —S3 C3 0 0 1 0 (48)
0 0 1 —S89 0 Co
1 0 0 em 0 0
X 0 c1 s1€% 0 e 0 |,
0 —s;e7 ¢ 0 0 1

158trictly speaking, this is true only for the (d,0) case. For the (d,s) extension the Majorana specific phases
could be exposed only after taking into account the matrix Uy,.



where ¢ = cosf and s = sinf. Clearly, one can shift the ordinary phase § to any of the s;,
i=1,2,3.

Further, U is the counterpart of U/} in the singlet neutrino subspace with indices f =
d+1,...,d+ s, being spanned on the s* generators and dependent on s(s — 1)/2 mixing angles

and s(s + 1)/2 phases. One has
n __ Id 0

with a s X s unitary matrix UY. Clearly, U} and U™ commutes with each other. According to
eq. (17) the matrix U is irrelevant for observables. Hence, by means of the global symmetries
one can always achieve, without loss of generality, that UYN = diag (e'®+1, ..., e'*e+), with o’s
being at our disposal. This choice is advantageous to subsequently expose the Majorana specific
phases in U™.

Finally, U" is a unitary (d + s) x (d + s) matrix spanned on 2sd generators which mix the
two subspaces'® This matrix depends generally on sd mixing angles and the same number of
phases. It follows from egs. (21) and (42) that the neutral current mixing matrix takes the form

X =Uurr ur. (50)

In other words, it depends entirely on the parameters of I, the rest of parameters present in I/}
manifesting themselves only through charged currents (and thus through neutrino oscillations).
To achieve this goal, the chosen order of matrices U} and U relative to U in eq. (42) is cru-
cial. The factorization property of the charged and neutral currents makes the parametrization
eq. (42) very convenient in practice. Altogether, the total neutrino mixing matrix " for the
general (d, s) extension contains d(d —1)/2 + sd physical mixing angles and the same number of
phases in agreement with refs. [2], [3]. Similarly to egs. (44), (45) one can propose the following
explicit representation for U,

Uy, = H ®Ufarg(Whatg) (51)
f=1,....d
g=1,...,s

with a fixed but a priori unspecified order of submatrices, and wy¢ 44, being ds arbitrary complex
numbers. When restricted to 2 x 2 complex plane the matrices uy 44, are quite similar to those
given by eq. (45). By means of the identity (46) with diagonal phases from U?, one can eliminate
s phases out of ds ones in U], and to get in the end d + s — 1 Majorana specific phases in U".

As for the renormalizable (d, s), extensions, the d X d symmetric matrix constraint eq. (26)
reduces d(d + 1)/2 phases and the same number of moduli, d of the latter ones corresponding
to masses and d(d — 1)/2 to mixing angles. As a result, 4" contains sd independent physical
mixing angles and d(s — 1) phases, precisely as it should according to general counting of ref. [2].
Superficially, the above constraint restricts only parameters in ¢ and does not touch those in
U}. But it can be shown that at d > s > 0, due to the presence of d — s massless neutrinos, it is
additionally possible to eliminate from U} the parameters corresponding to U(d — s). It leaves
in UY ds — s(s+ 1)/2 independent #’s and d(s — 1) — s(s — 1)/2 ¢’s. Note that the constraint
does not invalidate the charged-neutral current factorization property.

This gives the complete solution to the problem. There are two important cases with neutral
currents remaining diagonal.

5This follows from inversion of eq. (11) for transformation between the weak and mass neutrino bases.
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(ii) Only Dirac masses.  For the particular case of the (d,s), extension with only Dirac
masses, further reduction of parameters is possible. Diagonalization of the neutrino mass matrix
by U} U yields for the d x s Dirac mass term

Maing = Uy Tm U2 (52)

with the non-negative elements on the quasi-diagonal, the rest being zero. Remind that UY
is unobservable. At 0 < s < d one has s nonzero entries in mgi,s. Hence, there is the U(d —
s) x U(1)*~! left-out symmetry in the doublet neutrino subspace which reduces the number of
parameters in U} to sd — s(s + 1)/2 mixing angles and sd — s(s + 1)/2 — d + 1 phases. At
0 < d < s there are d nonzero entries, the left-out symmetry in the doublet neutrino subspace
is only U(1)*"! and one recovers the CKM-like scheme for d Dirac neutrinos with d(d —1)/2
mixing angles and (d —1)(d —2)/2 phases. This explicit counting is in complete accordance with
the general one in ref. [2].

Finally, there still remains the maximal (equal to 7/4) mixing U" between the pairs
of the mass degenerate eigenfields. Under the proper choice for ¢, the ensuing orthogo-
nal transformation O" brings the neutrino mass matrix to the real diagonal form Mg, =
(m1(1,-1),...,my(1,-1),0,...,0), with p = min(d, s). It corresponds to p pairs of the mass
degenerate Majorana neutrinos with opposite C'P parities plus |s — d| massless neutrinos. The
emerging mixing matrix X in eq. (50) is superficially non-diagonal. Nevertheless the neutral
currents may be put to explicitly flavour conserving form independent of ¢ via the reversed
transition to the Dirac basis. As for massless neutrinos, there is no difference whether they
are considered as Weyl or Majorana ones. The neutral current Lagrangian L% for the doublet
massless neutrinos is flavour conserving, singlet massless neutrinos being sterile.

(iii) Only Majorana masses. In the case of (d, s) extension with only Majorana masses,
one has U} = I and hence X = P". The neutrino part of interactions now becomes

£y = -7, Ny PN (53)
4CW
and (in the unitary gauge)
o (H 1,H\\— .
— L= (? +3(3) >/\/'./\/ldiagP N, (54)

both Lagrangians being explicitly independent of ¢. Due to presence of the on-doublet neutrino
projector P" the singlet neutrinos are insured to be sterile.

(iv) Small doublet-singlet mixing. It is instructive to discuss the mixing matrices under
condition of a small doublet-singlet mixing, the case of importance for phenomenology. In
particular this is so in the framework of the see-saw approximation (see further on). Making use
of the equivalent representation for eq. (51) as

n 0 w
u, —exp< —ol 0 ) , (55)
where w is an arbitrary complex d X s matrix, one gets for small w
(1-twwh)  w(l - twiw)
ur = 2 6 O(w* 56
" ( —wi(l—jww’)  1-3iwlw +OWH (56)
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and

Ur(1—tow?) Ulw(l-3iwlw)
U = 2 6 + O(w?). 57
( —wi(1 - tww') 1-twlw ") (57)
Hence one has
V=(Us(-jwwl) Uyw)+0@?, (58)
as well as
1-wwl w
X = 3. 59
( wf wiw ) + O(w”) (59)
These expressions can readily be generalized with any finite accuracy in w'”
Finally, the constraint for the (d, s), extension given by eq. (25) yields
P Miiag = —wp™ Mjppw” + O(w?) . (60)

This determines my;,, and a part of the w’s in terms of MY and the rest of the w’s. E.g., in the
simplest case s = 1 the solution to the equation can be shown to be given by the d-dimensional
vector w with one nonzero component wy; = (—¢% /@ )Y/2|w|, so that my = |w|>M. Reversing,
one gets generically w = O(| mdlag/Mdlag\l/Q). The general solution to eq. (60) is given by an
s X s nonzero matrix with the proper constraints followed from the equation. As a result, the
parameters in U™ are shared between the independent ones in U} and U, as is shown in Table 1.
The relations above have their close counterparts in the framework of the see-saw approximation
(see below).

Table 1. Independent mixing parameters for the renormalizable (d, s), extensions.
Param’s ur uy u,
Angles ds d(d—1)/2 s(s+1)/2
d>s>0 —(d—s)(d—s—1)/2
Phases | d(s—1) d(d—1)/2 s(s—1)/2
—(d—s)(d—s+1)/2
s>d>0| Angles ds d(d—1)/2 sd—d(d—1)/2
Phases | d(s—1) d(d—1)/2 sd—d(d+1)/2
d=s=n| Angles n? n(n—1)/2 n(n+1)/2
Phases | n(n —1) n(n—1)/2 n(n—1)/2

The part U™| x4 of the total mixing matrix U™ which spans the d x d subspace of the doublet
neutrinos reads

1
U g = Uy (1 - §WT) +O(wh). (61)

It includes the d x d Hermitian combination ww' of the d x s matrix w. This brings in the
additional mixing angles and phases. But even in neglect of these terms, when U™ |44 = UY is

17Clearly, the above results are not applicable in the case of the pseudo-Dirac neutrinos where w’s are generally
not small. Here eq. (55) could be properly modified by decomposing mixing matrix Uy, into the product of two
parts, Uy, = Upn Uy . The part U, should produce transition to the pseudo-Dirac basis by a set of the (mutually
commuting) pairwise transformations at the (nearly) 7/4 angles. The part U, due to the rest of w’s could result
in the remaining flavour violating corrections.
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unitary, the number of physical phases in it being relevant for the Majorana neutrinos, d(d—1)/2,
would exceed that (d—1)(d—2)/2 given by the CKM-like unitary matrix for the Dirac neutrinos.
In essence, this difference is due to having the freedom of fixing in U}, out of the initial d(d+1)/2
phases, only d phases in the Majorana case, instead of 2d — 1 ones in the Dirac case.

(v) See-saw approximation. In order to evaluate the mixing magnitudes and study the
decoupling limit, it is useful to compare the general results for small mixing with those obtained
in the framework of the see-saw mechanism by the explicit diagonalization of the neutrino mass
matrix. By the unitary global transformation U(s) of the singlet neutrinos the mass matrix M
in eq. (7) can be put to the diagonal form

M ="My, - (62)

Besides, d phases of the Dirac mass matrix m can be eliminated due to the freedom of the charged
lepton phase redefinitions. This freedom is still left after the simultaneous diagonalization of the
charged lepton mass matrix by the bi-unitary d x d transformation. So, the total neutrino mass
matrix M™ clearly contains s(d + 1) independent moduli, s of them corresponding to physical
masses and sd ones to mixing angles, as well as d(s — 1) phases. This explicit counting for the
(d, s); extension is in accordance with the general one presented in ref. [2].

The results of ref. [12] for the neutrino mass diagonalization in the (n,n), extension can
readily be generalized to the (d, s), one. Under condition Mg, > |m/| for all the elements, the
see-saw neutrino mixing matrix can be found to be

o _%T Tl_% T 4
= ( e Sige ) HOe, (63)

where the s x d matrix € is ¢ = M~ 'm7, |{] < 1. Clearly, £ results in sd mixing angles and
d(s — 1) phases in the neutrino mixing matrix. Up to next-to-leading order in ¢ the matrix U”
brings My from the texture form

w_ 0 &M

to the block-diagonal form M™ = U T M2 U with

v [ —€"Me 0 :

Now, by means of the unitary d x d transformation U} " one can diagonalize the mass matrix for
light neutrinos

/T ’
¢'Miag = —Uy 9" Mg EUY +0(€7), (66)

so that £ = O((m”/M™)'/?). Similarly, by the unitary s x s transformation UN" = I, +O(&?) one
can diagonalize the mass matrix for the heavy neutrinos. Under condition that the left-handed
Majorana mass term p is O(1/M), eq. (66) straightforwardly generalizes to

IT 7
P Miiag = Uy (1= €T MY,€) Uy + O(1/M?) . (67)
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The full neutrino mixing matrix in the see-saw framework looks like U™ = U™ U U™,
Comparing it with that in the the doublet-singlet parametrization eq. (42), one finds that the
parametrizations differ by order of matrices. As a result, this leads to somewhat different rep-
resentations for V' (and X). In the absence of the direct masses for the doublet neutrinos the
model-independent matrix w is related with the see-saw one £ as

£ =(Ujw)' +O(w?), (68)

where Uy = UY + O(w?). In this, all the quantities w, UY and ¢ generally depend on ¢. The
parameters of ¢ are clearly shared between the independent ones in U} and w in accordance
with Table 1.

In the limit £ = O(m/M) — 0 and hence m” — 0, one has to substitute effectively Uy — I,
due to the neutrino mass degeneracy. So, all the light neutrino mixing effects in the see-saw
framework disappear at v/M < 1 signalling the onset of decoupling. In particular, it follows
from egs. (24), (27) that Higgs boson decouples from the ¥N current in the see-saw framework
in the leading order O(M), only Yukawa couplings O(v) being generally left. As for NNH
vertices, they are O(v?/M) in the limit M > v'® The see-saw matrix £ (and more generally
w) results in the non-universality and non-unitarity of the lepton charged and neutral currents,
and it can be estimated experimentally to be small, typically |£]| < O(107! + 1072) [13].

Some comments are finally in order. It is clear from the above that the see-saw form of U7,
given by eq. (63), closely resembles the most general one given by eq. (56). In fact, this see-saw-
like structure does not depend on the particular expression eq. (7) for the neutrino mass matrix,
the latter restricting only the number of independent parameters through constraint eq. (60).
Whereas the see-saw results, under condition m” # 0, can strictly be applicable only at £ # 0,
the advantage of the model-independent parametrization is that it can straightforwardly be
generalized to a case with arbitrary w. The mixings and masses become completely disentangled.
In particular, one can have, e.g., w = 0 at m” # 0, or m” = 0 at w # 0. Besides, it is possible to
have finite w at M > v and thus produce enhancement in the vertices with heavy neutrinos'®
This general parametrization completely exhausts all the possibilities for the neutrino masses,
including these of the pure Dirac and Majorana origins.

4. Neutrino oscillations

The structure of U™ for the SM general extension (d, s) (in practice, d = 3) could be used
when discussing the pattern of the light neutrino oscillations. Both Dirac and Majorana light
neutrinos are permitted a priori. Because the Dirac neutrino can be regarded as a pair of
the mass degenerate Majorana ones (with opposite CP parities), the SM extensions with at
least several additional light degrees of freedom are of interest. The primordial abundances of
light nuclei in the standard big bang nucleosynthesis restrict the effective number of the rela-
tivistic two component interacting neutrinos to be < 3.2 (95% C.L.) [14]. Hence, in principle, a
number of the light sterile neutrinos could still be accommodated. Sticking to as simple neutrino
content as possible one can encounter two different scenarios: with and without one additional
light Majorana neutrino.

'8 This contradicts the statement of ref. [4] made in the see-saw framework on significant enhancement of the
vNH and NN H vertices. The enhancement could clearly take place at large M only in neglect of the suppression
(~1/M or 1/M?) of the mixing elements. Otherwise it could be just a numerical effect at not too large M.

19Clearly, the violation of decoupling can originate in the given framework only due to non-renormalizable
Lagrangian (2).
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(i) No light singlet neutrino. The relevant for oscillations part of the neutrino mixing
matrix U™ at any s reduces in this case to U"|;xq4. In the leading O(w) approximation it is
d x d unitary matrix Uj. This effectively simplifies the (d,s) extension up to (d,0) in the
light lepton sector (in practice, it is (3,0) one and the corresponding mixing matrix is given by
eq. (48)). As is stated before, U} depends generally on d(d — 1)/2 physical mixing angles and
the same number of phases. But, according to eq. (29), the neutrino oscillations with chirality
conservation (coinciding here with the total lepton number conservation, AL = 0) are insensitive
to d — 1 phases capable of being resided in the Majorana condition matrix . This reduces the
number of observable phases to (d —1)(d —2)/2, exactly as in the Dirac case. Hence, there is no
difference here for the AL = 0 neutrino oscillations between the Majorana and Dirac cases [15].
This effective suppression could be evaded though for the chirality flipping (here also lepton
number violating, |AL| = 2) oscillations. But according to eq. (30) these ones are, in their turn,
chirally suppressed, i.e., their intensity is O((m”/E)?) at the neutrino energy E > m” [15,16].
It follows that it would be hard in this case to observe in oscillations the Majorana specific C'P
violation, if any.

Finally, in the absence of light singlet neutrinos the chirality preserving light neutrino os-
cillations are described in the given assumptions just by the d x d unitary matrix U] of the
CKM-like type with d(d — 1)/2 mixing angles and (d — 1)(d — 2)/2 phases. Account for the
terms O(w?) due to the doublet-singlet mixing would reveal additional C'P violating phases in
UY (plus those in w itself). Besides, it is clear that the neutrino oscillations in this case are
mainly sensitive to other set of the mixing parameters than the neutral current mixing matrix,
the latter one being determined entirely by the doublet-singlet mixing matrix U (w). Hence in
this case the two phenomena disentangle in essence.

(ii) Light singlet neutrino.  As for the case with a light singlet neutrino, the doublet-singlet
mixing can no more be ignored and should be taken into account, producing the observable
effect. Among singlet neutrinos, only the light one is relevant in the leading order O(w) for
the light neutrino mixing. One can effectively put in the given approximation s = 1, thus
reducing the problem to the (d,1) case. U in eq. (56) is given by its part not higher than
O(w), where w = (wy,...,wq). Thus, U" effectively depends on d(d + 1)/2 physical mixing
angles and equal number of phases, in accordance with ref. [2]. d(d — 1)/2 of each of them
reside in the doublet-doublet mixing UY and d in the doublet-singlet mixing U (w). Such an
approximate (d + 1) x (d + 1) matrix U™ is unitary up to the given accuracy and presents the
most general mixing matrix in this approximation. Due to explicit independence on ¢ of the
helicity conserving (now do not coinciding any more with lepton number conserving) oscillations
the number of phases relevant to these oscillations reduces to d(d — 1)/2, as if there were d + 1
Dirac neutrinos.

In reality, one has d = 3 and experiment might suggest a pairwise neutrino mixing [1]. It
consists only of the mixing of a pair of doublet neutrinos (chosen here as v; and v,) between
themselves and the mixing of the light singlet neutrino (N; = v4) only with the remaining
doublet neutrino v, i.e., w = (0,0,w3). Hence, in the case at hand the neutrino mixing (3, 1)
reduces to the product of two cases (2,0) and (1,1), each of them corresponding to one mixing
angle and one Majorana specific phase (the latter being unobservable in the helicity conserving
oscillations). Under proper redefinitions, the mixing matrix U™ becomes
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¢ S em 0
U — 1 ) (69)

Co Sy e 0
—S9 Co 0 1

In the given assumptions, eq. (69) describes the general, consistent with experiment, mixing for
four light neutrinos, one of them being (quasi-)sterile. Correspondingly, one gets for the charged
current mixing matrix V = P"Y"

Y1
ERNCEEN
V: —(;91 COI 0 0 0 0 ei’yZ 0 (70)
C2 52 0 0 0 1

and for the neutral current one X = Y"P*U"t = ViV

( 10 ) 0
01
X = ) , . (71)
c CoSqe "2
0 2. 292
( CoSoe™? s2 )

Clearly, c,, sy # 0 results in flavour violation in neutral currents. Remind that to completely
describe the lepton interactions one should also specify the matrix ncp of the neutrino C'P
signatures, as well as the matrix ¢ of Majorana condition to which the mixing matrices above
correspond. In particular, only then one can decide whether there is C'P violation or not in a
general case. But in the chirality preserving oscillations, CP will always be conserved because
all the phases here are the Majorana specific ones.

5. Summary

The neutrino gauge and Yukawa interactions for the SM extensions, both renormalizable and
effective, are systematically investigated under arbitrary Majorana condition. Independence of
the particular choice of this condition is demonstrated by means of the explicit rephasing in-
variance. The invariance is used to exhibit manifestations of the Majorana specific phases. The
parametrization of the neutrino mixing matrices in the doublet-singlet factorized form is pro-
posed. Its relation with the see-saw approximation is shown. The patterns of neutrino mixing,
relevant to neutrino oscillation experiments, are exposed.

The author is grateful to V.V. Kabachenko for valuable discussions.
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