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Abstract

Alekhin S.I. Statistical properties of the estimator using covariance matrix: THEP Preprint 2000-17. —
Protvino, 2000. — p. 12, figs. 2, refs.: 17.

Statistical properties of the estimator using a covariance matrix for the account of point-to-point
correlations due to systematic errors are analyzed. It is shown that the covariance matrix estimator
(CME) is consistent for realistic cases (when systematic errors on the fitted parameters are not extremely
large comparing with the statistical ones) and its dispersion is always smaller than the dispersion of
the simplified x? estimator applied to the correlated data. The CME bias is negligible for the realistic
cases if the covariance matrix is calculated during the fit iteratively using the parameter estimator itself.
Analytical formula for the covariance matrix inversion help to perform fast and precise calculations even
for very large data sets. All this allows for an efficient use of the CME in the global fits.

AnaHOTanmsa

Anéxun C.M. CraTucTuyeckue CBOWCTBA OIEHUBAOIIEN QYHKIIUU TIOCTPOEHHON HA OCHOBE KOBAPUAINOH-
woit maTpuisl: [Ipenpuar UPB3 2000-17. — IIporeuno, 2000. — 12 c., 2 puc., 6ubauorp.: 17.

PaccMoTpensl cTaTuCTUIECKNE CBOMCTBA ONEHUBAOIICH (YHKIINN, NCIOIB3YIOMIEH M1 yIeTa CUCTe-
MaTUYECKUX OMMOOK KOBapmanunoHHyo MaTpuily. [lokazano, 4To sTa OleHUBaioas GYyHKINASI OAET CO-
CTOSITENILHYIO OLEHKY MJIs PEATIMCTUUHBIX CIy9aeB (T.e., el CUCTEMATUIECKNE OMINOKM HACTPAMBEMbIX
MapaMeTPOB He MPEBBINIAET BO MHOTO Pa3 CTATUCTUYECKYIO OmmOKy). Ilucmepcus 3TOi OLEHKN BCErIa
MEHBIIIE, YeM OUCIEPCUs IOJIydYeHHas] IIPU IOMOIIM YIIPOIIEHHON OIEHWBAIOIEN QYHKIINKM HE YINTHIBA-
FOITlENl KOPPEJISIIUU [TAHHBIX, & CMEIEHNE MPEHeOPEeXNMO MaJIo IS PEaJUCTUYHBIX CIIyYaeB, €CITU KO-
BapUalMOHHAS MATPUIA BBIYUCISAETCS MPHU IIOATOHKE WTEPATUBHO C MCIOJIb30BAHMEM TEKYILEN OIEHKN
duTupyemoro napamerpa. AnamuTuueckre GOPMYIIBI I OOPAILIEHNsST KOBAPUAIINOHHON MaTPHUIILI TO3BO-
JISIOT TPOBOOUTE OBICTPBIE W TOYHBLIE BHIUMCIIEHUS MaXKe IJIs OOJBINIIX HAOOPOB MaHHBIX. Bce 5TO mermaer
OLIEHWBAIONTYI0 (PYHKINIO HA OCHOBE KOBAPUAIIMOHHOU MATPUILI 3DGEKTUBHBIM MHCTPYMEHTOM [JIs TJIO-
0aJIbHOIO aHAJIN3a JTAHHBIX.
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INTRODUCTION

Modern particle physics development becomes more and more based on the analysis of precise
experimental data. This demands the refining of all stages of the data inference including the
account of correlations due to systematic uncertainties which are often comparable or even larger
than the statistical ones. In particular, this problem is important for the precise tests of Standard
Model and determination of the parton distributions (see Refs. [1,2]). Many authors for the sake
of simplicity very often use approaches which ignore point-to-point correlations due to systematic
errors, i.e. sum up all the errors in quadrature or drop systematic errors at all. It is evident
that if the systematic errors are an important source of the data uncertainty, such approaches
can lead to the distortion of the estimated errors on the fitted parameters. At the same time
the construction of estimators accounting for the correlations is not straightforward since the
competitive probabilistic model of data can be used in the analysis. Essentially two generic
models are possible: One based on the frequentist treatment of systematic shifts and another
one based on the Bayesian approach. This paper is concentrated on the analysis of statistical
properties of the estimators within the Bayesian treatment of systematic errors. Introduction
into this scope given in Ref. [3] contains argumentation in favor of this approach. The only
point that we would like to underline in particular here is that the Bayesian approach provides
convenient handling many sources of systematic errors, when classical treatment, which implies
the introduction of an additional parameter for each source of systematic errors, can cause a great
problem with the interpretation/representation of the function of a large number of arguments.

A natural way to account for point-to-point correlations due to systematic errors within the
Bayesian approach is to use the covariance matrix associated with systematic errors (see e.g.
Refs. [4,5]). Meanwhile, there are concerns that the covariance matrix estimator (CME) can
result in biased values of the parameters values and their dispersions (see Refs. [6,7,8,9]). In this
connection it is worth recalling that the estimators accounting for the data correlations often
exhibit poor statistical properties regardless they use covariance matrix or not. For example,
as it has been shown in Ref. [10], the sample dispersion estimated from the correlated Monte
Carlo data sets can acquire the bias equal to the dispersion value itself }. At the same time the

!This effect is connected with well known fact that the sample dispersion gives a biased estimation of the



estimators would be unbiased if the covariance matrix is not evaluated from the measurements.
Indeed, for example, the unbiased estimator for the correlated Monte Carlo data was constructed
in Ref. [11] using the modeled covariance matrix.

Running this way, one can hope to construct the unbiased estimators accounting for sys-
tematic errors through covariance matrix, but to be aware of its unbiasness the study of their
properties is needed. In view of the lack of the comprehensive information in literature, this
paper is devoted to the analysis of the statistical properties of such estimators with a particular
attention to the bias control. Through the paper the CME properties are compared with the
properties of the simplest x? estimator (SCE) as well as it has been made earlier in Ref. [12].

1. THE SIMPLEST x? ESTIMATOR

To illustrate our method of the statistical properties analysis, we start from the analysis of
uncorrelated measurements. In this case, if the data sample {y;} is supposed to be explicitly
described by a theoretical model t; = f;(6°),

Yi = ti + pi0i, (1)

where p; are independent random variables, o; are statistical errors, ¢ =1...N, N is the total
number of points in the sample. We adopt that a theoretical model parameter 6° is scalar, the
generalization of the formula on the case of vector parameter is evident. If y; are obtained in
the counting experiment with a large number of events, u; are Gaussian distributed, although
it is not crucial for our consideration. As a rule, the values of o; given in the experimental
publications, are the estimators of the y; standard deviations, i.e. are random variables, but we
neglect their fluctuations. The SCE is based on the minimization of functional

fi(0) — y:)?
0= (()072) 2)
i=1 i
or, equivalently, the solution of the equation
_ 1oy
£0) =555 =0 (3)

The solution 6 of Eq. (3) is the estimator of parameter 6, which is the random variable depending
on {y;}. To investigate statistical properties of #, we expand the function £(#) around 6° and
then apply the Legendre inversion to obtain the series for 6 (see Ref. [13] for the details of

method). Introducing
0E(6°

00
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one can obtain X Xy bx?
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studied distribution dispersion; the correlations merely amplify this bias.



where < > means the averaging over the samples and the rejected part of the expansion contains
the terms with the higher powers of 1/a and/or X and Y. In this approximation the dispersion
of 0 is

p() =2
and the bias is 5
By~ X)XV b

a a? 2a3
For the SCE applied to sample (1), one can easily obtain

=1 01

b <~ f1(80) £ (80)

(xv) =2 =y L) (5)
i=1 i
where f/(0) denotes derivative on #. The dispersion and the bias of this estimator are
. 1 - b
U(hy — U(h) —

DYO) = BYG) == (0

If f;(0) are the linear functions of 6, series (4) is truncated and equation (3) can be solved
exactly. One can see that in this case the estimator bias vanishes. For a nonlinear data model
expansion (4) contains an infinite number of terms, but the contributions from the highest
terms to the estimator dispersion and bias are inversely proportional to the powers of D(é) or
proportional to the central moments of y; higher than the second. In first case these contributions
are progressively suppressed in comparison with the main term, if the data statistics grows. In
second case for a realistic distribution of y; its high moments falls and these contributions are also
suppressed (remind that such behaviour of a distribution high moments is assumed in deducing
the central limit theorem of statistics). All this can justify the application of expansion (4) to
the analysis of a nonlinear data model: The above formula can be applied to the data model
with a “weak nonlinearity”, i.e. if its nonlinearity is not significant on the scale of the parameter
standard deviation.

Now let the sample have a common additive systematic error. In accordance with the
Bayesian approach to the treatment of systematic errors, the measured values are given by

Yi =t + pio; + Asy, (7)

where s; are systematic shifts for each point and A is the random variable with zero average
and unity dispersion®. Consider the case of one source of systematic error, generalization on
the many sources case is straightforward. For sample (7), we lose statistical independence of
measurements and, with account for their correlations, the relevant expression for the dispersion
and bias are more complicated
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where a and b are given by Eq. (5), C;

ij

1 (60) £ (60)

b,
3

is the covariance matrix for {y;}
Cij = sisj + 04040, (8)

and 9;; is the Kronecker symbol. In terms of the N-component vectors

S; . flo . fle
P N . A
0 0 0
the dispersion and the bias in this case can be expressed as
~ 1
Dy (0) = — (1+p%4), (9)
o1
BX(9) = e [(1 + 502 )212 —p 2122] (10)
0 2¢3 1 )

where p, ¢1, @2 denote the vectors. modulus z1 is the cosine of angle between p and ¢1, 2y —
between p and ¢2, z12 — between ¢1 and ¢2 The dispersion of 0 is larger than for uncorrelated
data because now it also accounts for the fluctuations due to systematic errors. As to the bias,
it remains zero for the linear data model.

If systematic errors are multiplicative

Yi = (ti + pioi) (1 + Any), (11)

where 7; quantify the systematic errors. If both statistical and systematic errors are small
comparing with ¢;
Yi =t + pioi + Anits,

the covariance matrix is
Cij = ninjtitj + 5ijaiaja (12)

and the expressions for the bias and dispersion are the same as for the additive systematics case
after the substitution s; — n;t;.

Eq. (9) can be split into the parts which correspond to the statistical and systematic fluc-
tuations. One can see that, when vectors g and ¢1 are orthogonal, the systematic error on 0 is
equal to zero and the total dispersion is suppressed. Such suppression can be illustrated at the
example of the asymmetry extraction from the data with a general offset error. Let f;(6) = 0z;
and both statistical and systematic errors be constant through the sample: s; = s, 0; = 0. Then
pi = s/o, ¢) = z;/o and z; ~ Y x,;. If the positive and negative values of z; compensate each
other in the measurements, z; = 0 and the systematic error vanish. The appropriate data filtra-
tion can also be used to suppress dispersion (9). To clarify the mechanism of this suppression,
let us trace the effect of a separate data point on the dispersion value. Add to the data set a



point with statistical error oy, systematic error sy and the data model fy(0). If the initial data
set is large and the systematic error is comparable with statistics, i.e.

N >1, p>1,
(0 S0 .,
o1 > %00), pP121 > U_%fo(eo)a (13)

the change of D{(f) after adding a new point is

~ 201 2 2
Am@wégzmmm—%wwm. (14)

The second term in brackets is always negative and describes the decrease of dispersion due to
an improved statistical precision. At the same time the first term can be negative or positive,
depending on the signs of z; and sy,. Its absolute value can be larger than the absolute value
of the second term and then Dé(é) can increase or decrease after adding the new point. This
is a manifestation of inconsistency of the SCE applied to the correlated data set. The balance
between terms of Eq. (14) is defined by the distribution of f/(6y)/s;, and cuts of the tails of this
distribution can decrease the estimator dispersion.

2. THE COVARIANCE MATRIX ESTIMATOR

If the systematic error is additive and the covariance matrix is known a priori and given by
(8), one can use for the parameter estimation the following functional minimization

X(0) = > (fi(0) — ui) B (£5(0) — yy), (15)

4,j=1

where E;; is the inverted covariance matrix. This problem can be reduced to the uncorrelated
case using the linear transformation of the vector {f;(#) — v;} and the estimator is linear for
the linear data model. Besides, if statistical and systematics fluctuations obey the Gaussian
distribution, this estimator provides the minimal dispersion due to the Cramer-Rao inequality.

One can easily derive the expressions necessary to calculate the estimator bias and dispersion

<X> = 07

N

<X2> =—a= Z fi/(HO)Eijf]/’(HO)a

ij=1
b N
(XY) = 3= > FL(60)Ei; £ (6o)-
ij=1
Substituting in the above relations the explicit expression for E,;

1 0;

we obtain the estimator dispersion
R 1 p222
DAH——P S —
N A )

1
-5 | = Zéw (16)



where &y is the ratio of the total dispersion to the pure statistical one. If p'and 51 are collinear,
the dispersion of the estimator is
1+ p?

¢
which coincides with the SCE dispersion (9). One can see that if 5 and ¢, are not collinear,
the SCE dispersion (9) is always larger than the CME dispersion (16). This can be readily
explained qualitatively. For the SCE the fitted curve tightly follows the data points and, if these
points are shifted due to the systematic errors fluctuations, the parameter gains appropriate
systematic errors. At the same time, since for the CME the information on the data correlations
is explicitly included in x?2, the correlated fluctuation of the data due to systematic shift does
not necessary lead to the fitted curve shift and the parameter deviation gets smaller than for
the SCE. The exclusion occurs if z; = 0, when p and 51 are collinear and the systematic shift
can be perfectly compensated by the change of parameter. If these vectors are orthogonal, the
CME dispersion is

D (9) -

ALy 1
i.e. it is just the same as the dispersion of SCE applied to the data set without correlations
given by Eq. (6). Qualitatively it corresponds to the measurements scheme, when the systematic
shifts for different points compensate each other, e.g. as in the example considered at the end
of Sec. 1.
For the modern experiments systematic errors are often of the same order as statistical ones
and if N > 1, then p > 1. In this limit and if g’ and 51 are not collinear,

ARy 1
DuO~ (an

and -
DA (0) ~ ’)(;1. (18)

One can see that in the second case the estimator standard deviation rises linearly with the
increase of the systematics, whereas the CME dispersion saturates. This difference can be
illustrated at the numerical example inspired by the elastic proton-proton scattering. Let us
choose

fi =Uexp=V®) gz, =0.14,

where U = 100,V =10, =1...9. Generating 100 data sets (7) with these f; and

U
o =001/ =, s =— (19)
i T

we minimized functionals (2) and (15) varying U and V to obtain their estimators U and V.
The values of (I — U)? and (V — V)? for all of the generated data sets were averaged to obtain
the estimators dispersions. The results on the standard deviation of U for different values of x
are given in Fig. 1 (the picture for V is similar). One can see that at large x the CME and the
SCE standard deviations differ by factor of 3.
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Fig. 1. The standard deviations of SCE (circles) and CME (squares) for U at different scales of sys-
tematic errors k. The lines correspond to the calculation performed with the two-dimensional
generalization of Egs. (9,16).
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Fig. 2. Bounds of gluon distribution obtained from the LO QCD fit to BCDMS data with different
estimators (the SCE: a; the CME: b). Full lines correspond to the total experimental errors,
dashed ones — to the statistical only.



The example of dispersion suppression observed in the analysis of real experimental data
can be found in Ref. [14]. In this paper we performed the leading order QCD fit to the inclusive
deep inelastic scattering data of Refs. [15,16] obtained by the BCDMS collaboration in order
to determine the parton distribution functions and the strong coupling constant value ag. The
two different estimators were used and the different estimates were obtained. For the SCE the
standard deviation of ay(Mz) is 0.015, while for the CME it is 0.007. The difference in the
gluon distribution bounds for these estimators is given in Fig. 2. One can see that the standard
deviation of the gluon distribution for the CME is also about half of the SCE standard deviation.

If z; # 1, the change of CME dispersion after adding a new point to the large sample as
defined by Eq. (13) is

1 ¢121 2
—W fo(6o) — P Sol| -

This change is always negative, which proves the CME consistency. Remind, that this is not

necessary for the SCE (see Sec. 1). The same conclusion can be drawn from the comparison of

Egs. (17) and (18). Indeed, the CME dispersion falls with increase of statistical significance of

the data set (i.e. decrease of o or rise of N) while the SCE dispersion does not. Note, that due

to consistency of the CME, the filtration procedure described in Sec. 1 is not meaningful for it.
The CME bias is

AD(6) ~

Bﬁ(é) = _¢12¢2 [DI\A/I(HA)}Q (212 - %h»’&) )

which vanishes for the linear data model and saturates in the limit of p > 1 contrary to the
SCE. In the numerical example (19) at £ = 0.007 the CME bias is 0.07, whereas the SCE bias
is 0.13.

For the multiplicative systematic errors the covariance matrix is unknown a priori and one
is to calculate it using the parameter estimator. Proceeding this way in the minimization of the
functional (15), we get

Z FO°)Eifi(0°) — 5 Z E;C (20)

z]l

The difference with corresponding expression for the case of additive systematic errors is in the
second term of Eq. (20). For the linear data model this term is

2
2 ®35 402 2.2
a(>_ E:EZ ”:T/)Q)Q[p(zs—l)—?)pszrl],

z]l

where

i:{ 00 z
b5 = p; = fzf( )=

¢3 is the modulus of 53 and z3 is the cosine of the angle between 53 and g. The ratio of the
second term of Eq. (20) to the first term a™™ = Y- f/(6°) E;; f}(6°) is

a® g5 ptes —1) —3p%2 + 1
T N (Y

Em- (21)



If &4 ~ O(1) (that is valid for most real cases), a® ~ O(n?)a® for all values of p, i.e. it is
suppressed comparing with the first term for small 7. Neglecting as elsewhere the third and
fourth central moments of {y;}, one can obtain that < X? >~ —a and the estimator dispersion
for multiplicative systematic errors DM ~ Dy .

In the case of multiplicative systematics errors Eq. (3) is nonlinear even for the linear data
model. As a consequence, the expressions responsible for the bias

E 1]5

1] 1
N N
b=3 f(O)E;f](6°)+3 Y fi(6°)E,f () + 5 Z EiCyj,
i,j=1 i,j=1 ” 1
N N 1N
=D VB f(6°) +2 ) Fi(0°)E,f(6°) - 1 > EjCy Z Cij (22)
i,j=1 i,j=1 i,j=1 i,j=1

do not vanish even if f/’(6) is equal to zero. Meanwhile, the bias due to the estimator nonlinearity
is small comparing with the estimator standard deviation. Since 1/D} ~< X? >~ —a, the bias
of estimator with multiplicative systematic errors is

A ~ X XY)—-0b/2
B(0) ~ /Do) [+ B
The first term in the brackets of Eq. (23) is

(X) ~ ¢3 PZs3 -
L DL G ~ O V). (24)

The contribution to the second term in brackets of Eq. (23) from _ f{(6°)E;; f(6°) is propor-
tional to

P3Pz ( p’ _ > 3/2

i (T4 p2) \14 2 27 712 o

and hence it is ~ O(n£/?). As one can conclude from Eqs. (21,24), the contribution to the same
term from ) E/2Cy; - - E;,Cy; is O(n3§f\’,{/2). And, finally, since

(23)

1 le¢3 4/ 2 2 2
52 E!'C zj_Tp)[P(23_1)"‘/)(1_323)"‘2],

the contribution to Eq. (23) coming from this term is O(n?’gi’,{ 2). In summary, for the linear
data model the estimator bias is a sum of terms O(nP&%,) DM with p > 1 and ¢ < 3/2. Besides,
at small p all the four contributions to the bias which survive for the linear data model are
~ p, while at large p they are ~ 1/p. Summarizing, one can conclude that the estimator bias
is negligible in comparison with its standard deviation excluding the extreme cases with very
large &yp.

The explicit estimate of the bias can be obtained from Egs. (22,23). Meanwhile, it requires
rather lengthy calculations and a simpler tool for the bias evaluation is admirable. A convenient
way for this is to trace the net residual



Expanding f;(0) near 6, and keeping only the first term in Eq. (4) one obtains for sample (7)

DI LR p e
V1+p? 1+ p?
If the estimator is unbiased, the Value of R averaged over the samples is equal to zero. Never-
theless, the particular values of R may be not equal to zero due to fluctuations. For the limited
&v the dispersion of R is
1 N

0ij + pip;
—— + O(1/N). 25
N2i§—:1m,/l+p? (/) (25)
If the analyzed data come from a single experiment with dominating systematics (i.e with
p > 1), then D(R) ~ 1. In particular, for the BCDMS data of Refs. [15,16] D(R) ~ 0.5. For
N..p independent experiments involved in the analysis D(R) ~ 1/N,,.,. Comparing the net
residual R with this value allows one to get a guess about the estimator bias. A more definite
conclusion can be drawn after the comparison of R with its dispersion calculated using Eq. (25).

D(R) =

3. PLANNING THE COUNTING EXPERIMENTS

In a particular case, when the differential cross section on the variable x is measured, the
predicted average number of events in the ¢—th bin of data is

<Ni> = LfiAx;3;,

where L is the integral experiment luminosity, §; is the registration efficiency, and Ax; is the
bin width. Neglecting the fluctuations of N; the statistical error on the i—th measurement is

5 = VANV
' LAz;(3;
and . L3
0-—12 = filA.Ti.

The scalar product of the vectors g and q? is

N /.
(5-9) =L;%@-Awi
and
¢’ = LZ

For the concise measurements these scalars can be reduced to the integrals over the measurements

region €
(70) =L | 1(@)s(w)ds

F =L [ 1f@Fds, =L @) d

where dZ = ((z)/f(x)dz. The latter expressions can be used in the equations for the estimators
dispersions®. This approach is convenient for the future experiment optimization since it allows

Az,

and

3 As a result, one obtains the Fisher’s information for the correlated data case.
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one to analyze the integrated expression in order to search for the optimal region of measure-
ments. For the simple functions f(z), #(z), and s(z) such analysis can be surely performed
analytically.

Particular attention should be paid to the connection between the obtained estimator dis-
persion and the confidence interval. For a known distribution of the estimator the confidence
interval can be easily calculated (e.g. it is well known that for the Gaussian distribution one
standard deviation corresponds to the 67% confidence level). Unfortunately, due to the possible
non-Gaussian nature of the systematic errors, one cannot prove that an estimator accounting
for systematics is Gaussian distributed. However, for a large number of systematic errors of
comparable scale, the estimator should obey the Gaussian distribution just to the central limit
theorem of statistics. Otherwise the robust estimates of the confidence intervals, e.g. Cheby-
shev’s inequality, should be used.

4. CONCLUSION

In conclusion, the CME is a convenient tool for the analysis of the data sets with account
for correlations due to systematic errors. The CME is consistent for the realistic cases (when
systematic errors on the fitted parameters are not extremely large comparing with the statistical
ones) and its dispersion is always smaller than the dispersion of the x? estimator without account
for correlations. The estimator bias is negligible for the realistic cases if the covariance matrix is
calculated during the fit iteratively using the parameter estimator itself. Analytical formula for
the covariance matrix inversion allows one to perform fast and precise calculations even for very
large data sets. The latter is especially important in view of numerical instabilities occurring in
the fits to precise data in the case of large correlation between the fitted parameters (see in this
connection Ref. [17]).
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C.N. Anéxun
CraTucTuyeckue CBOMCTBA OLEHUBAIOIIEN (DYHKIIUN IOCTPOEHHO Ha OCHOBE KOBAPHUAIIMOHHOM
MaTPUIIL.

Opurunan-MakeT IOATOTOBIIEH C MOMOIIEIO cucTeMer IATEX.
PenaxTop E.H.I'opuna. Texuwuecknit pemaktop H.B.Opiosa.

Tlognucano kx meuaTu 29.05.2000. dopmar 60 x 84/8. Odcernast nmeyaTs.
Ilew.n. 1.5. Yu.-u3m.a. 1.2. Tupax 160. 3akaz 160. WNunexc 3649.
JIP Ne020498 17.04.97.

THII P® NucTuTyT QU3NKM BHICOKUX DHEPTUI
142284, TIporBuro MockoBcKoit 067T.



WNunexe 3649

ONOPEIDIPUWUHT 2000-17, noBDYH, 2000




