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Abstract
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Statistical properties of the estimator using a covariance matrix for the account of point-to-point
correlations due to systematic errors are analyzed. It is shown that the covariance matrix estimator
(CME) is consistent for realistic cases (when systematic errors on the fitted parameters are not extremely
large comparing with the statistical ones) and its dispersion is always smaller than the dispersion of
the simplified χ2 estimator applied to the correlated data. The CME bias is negligible for the realistic
cases if the covariance matrix is calculated during the fit iteratively using the parameter estimator itself.
Analytical formula for the covariance matrix inversion help to perform fast and precise calculations even
for very large data sets. All this allows for an efficient use of the CME in the global fits.
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INTRODUCTION

Modern particle physics development becomes more and more based on the analysis of precise
experimental data. This demands the refining of all stages of the data inference including the

account of correlations due to systematic uncertainties which are often comparable or even larger
than the statistical ones. In particular, this problem is important for the precise tests of Standard

Model and determination of the parton distributions (see Refs. [1,2]). Many authors for the sake
of simplicity very often use approaches which ignore point-to-point correlations due to systematic

errors, i.e. sum up all the errors in quadrature or drop systematic errors at all. It is evident
that if the systematic errors are an important source of the data uncertainty, such approaches
can lead to the distortion of the estimated errors on the fitted parameters. At the same time

the construction of estimators accounting for the correlations is not straightforward since the
competitive probabilistic model of data can be used in the analysis. Essentially two generic

models are possible: One based on the frequentist treatment of systematic shifts and another
one based on the Bayesian approach. This paper is concentrated on the analysis of statistical

properties of the estimators within the Bayesian treatment of systematic errors. Introduction
into this scope given in Ref. [3] contains argumentation in favor of this approach. The only

point that we would like to underline in particular here is that the Bayesian approach provides
convenient handling many sources of systematic errors, when classical treatment, which implies

the introduction of an additional parameter for each source of systematic errors, can cause a great
problem with the interpretation/representation of the function of a large number of arguments.

A natural way to account for point-to-point correlations due to systematic errors within the

Bayesian approach is to use the covariance matrix associated with systematic errors (see e.g.
Refs. [4,5]). Meanwhile, there are concerns that the covariance matrix estimator (CME) can

result in biased values of the parameters values and their dispersions (see Refs. [6,7,8,9]). In this
connection it is worth recalling that the estimators accounting for the data correlations often

exhibit poor statistical properties regardless they use covariance matrix or not. For example,
as it has been shown in Ref. [10], the sample dispersion estimated from the correlated Monte

Carlo data sets can acquire the bias equal to the dispersion value itself 1. At the same time the

1This effect is connected with well known fact that the sample dispersion gives a biased estimation of the
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estimators would be unbiased if the covariance matrix is not evaluated from the measurements.
Indeed, for example, the unbiased estimator for the correlated Monte Carlo data was constructed

in Ref. [11] using the modeled covariance matrix.
Running this way, one can hope to construct the unbiased estimators accounting for sys-

tematic errors through covariance matrix, but to be aware of its unbiasness the study of their
properties is needed. In view of the lack of the comprehensive information in literature, this

paper is devoted to the analysis of the statistical properties of such estimators with a particular
attention to the bias control. Through the paper the CME properties are compared with the

properties of the simplest χ2 estimator (SCE) as well as it has been made earlier in Ref. [12].

1. THE SIMPLEST χ2 ESTIMATOR

To illustrate our method of the statistical properties analysis, we start from the analysis of
uncorrelated measurements. In this case, if the data sample {yi} is supposed to be explicitly

described by a theoretical model ti = fi(θ
0),

yi = ti + µiσi, (1)

where µi are independent random variables, σi are statistical errors, i = 1 . . .N , N is the total
number of points in the sample. We adopt that a theoretical model parameter θ0 is scalar, the

generalization of the formula on the case of vector parameter is evident. If yi are obtained in
the counting experiment with a large number of events, µi are Gaussian distributed, although

it is not crucial for our consideration. As a rule, the values of σi given in the experimental
publications, are the estimators of the yi standard deviations, i.e. are random variables, but we

neglect their fluctuations. The SCE is based on the minimization of functional

χ2(θ) =
N∑
i=1

(fi(θ)− yi)
2

σ2i
(2)

or, equivalently, the solution of the equation

ξ(θ) ≡ 1

2

∂χ2

∂θ
= 0. (3)

The solution θ̂ of Eq. (3) is the estimator of parameter θ, which is the random variable depending

on {yi}. To investigate statistical properties of θ̂, we expand the function ξ(θ) around θ0 and
then apply the Legendre inversion to obtain the series for θ̂ (see Ref. [13] for the details of

method). Introducing

X = ξ(θ0), a = −
〈
∂ξ(θ0)

∂θ

〉
,

b =

〈
∂2ξ(θ0)

∂θ2

〉
, Y =

∂ξ(θ0)

∂θ
−
〈
∂ξ(θ0)

∂θ

〉
,

one can obtain

θ̂ − θ0 =
X

a
+
XY

a2
+
bX2

2a3
+ . . . (4)

studied distribution dispersion; the correlations merely amplify this bias.

2



where < > means the averaging over the samples and the rejected part of the expansion contains
the terms with the higher powers of 1/a and/or X and Y . In this approximation the dispersion

of θ̂ is

D(θ̂) =
〈X2〉
a2

and the bias is

B(θ̂) =
〈X〉
a

+
〈XY 〉
a2

+
b 〈X2〉
2a3

.

For the SCE applied to sample (1), one can easily obtain

〈X〉 = 0,

〈
X2
〉
= −a =

N∑
i=1

[f ′i(θ0)]
2

σ2i
,

〈XY 〉 = b

3
=

N∑
i=1

f ′i(θ0)f
′′
i (θ0)

σ2i
, (5)

where f ′i(θ) denotes derivative on θ. The dispersion and the bias of this estimator are

DU0 (θ̂) = −
1

a
, BU0 (θ̂) = −

b

6a2
. (6)

If fi(θ) are the linear functions of θ, series (4) is truncated and equation (3) can be solved

exactly. One can see that in this case the estimator bias vanishes. For a nonlinear data model
expansion (4) contains an infinite number of terms, but the contributions from the highest
terms to the estimator dispersion and bias are inversely proportional to the powers of D(θ̂) or

proportional to the central moments of yi higher than the second. In first case these contributions
are progressively suppressed in comparison with the main term, if the data statistics grows. In

second case for a realistic distribution of yi its high moments falls and these contributions are also
suppressed (remind that such behaviour of a distribution high moments is assumed in deducing

the central limit theorem of statistics). All this can justify the application of expansion (4) to
the analysis of a nonlinear data model: The above formula can be applied to the data model

with a “weak nonlinearity”, i.e. if its nonlinearity is not significant on the scale of the parameter
standard deviation.

Now let the sample have a common additive systematic error. In accordance with the
Bayesian approach to the treatment of systematic errors, the measured values are given by

yi = ti + µiσi + λsi, (7)

where si are systematic shifts for each point and λ is the random variable with zero average

and unity dispersion2. Consider the case of one source of systematic error, generalization on
the many sources case is straightforward. For sample (7), we lose statistical independence of

measurements and, with account for their correlations, the relevant expression for the dispersion
and bias are more complicated

〈
X2
〉
=

N∑
i,j=1

Cij
σ2i σ

2
j

f ′i(θ0)f
′
j(θ0) = −a +

[
N∑
i=1

si
σ2i
f ′i(θ0)

]2
,

2Emphasize, that λ is not necessary Gaussian distributed.
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〈XY 〉 =
N∑
i,j=1

Cij
σ2i σ

2
j

f ′i(θ0)f
′′
j (θ0)

=
b

3
+

[
N∑
i=1

si
σ2i
f ′i(θ0)

] [
N∑
i=1

si
σ2i
f ′′i (θ0)

]
,

where a and b are given by Eq. (5), Cij is the covariance matrix for {yi}

Cij = sisj + δijσiσj, (8)

and δij is the Kronecker symbol. In terms of the N -component vectors

ρi =
si
σi
, φi1 =

f ′i(θ0)

σi
, φi2 =

f ′′i (θ0)

σi

the dispersion and the bias in this case can be expressed as

DA0 (θ̂) =
1

φ21

(
1 + ρ2z21

)
, (9)

BA0 (θ̂) = −
φ2
2φ31

[(
1 +

3

2
ρ2z21

)
z12 − ρ2z1z2

]
, (10)

where ρ, φ1, φ2 denote the vectors modulus, z1 is the cosine of angle between �ρ and �φ1, z2 –

between �ρ and �φ2, z12 – between �φ1 and �φ2. The dispersion of θ̂ is larger than for uncorrelated
data because now it also accounts for the fluctuations due to systematic errors. As to the bias,

it remains zero for the linear data model.
If systematic errors are multiplicative

yi = (ti + µiσi)(1 + ληi), (11)

where ηi quantify the systematic errors. If both statistical and systematic errors are small

comparing with ti
yi ≈ ti + µiσi + ληiti,

the covariance matrix is
Cij = ηiηjtitj + δijσiσj, (12)

and the expressions for the bias and dispersion are the same as for the additive systematics case
after the substitution si → ηiti.

Eq. (9) can be split into the parts which correspond to the statistical and systematic fluc-
tuations. One can see that, when vectors �ρ and �φ1 are orthogonal, the systematic error on θ̂ is

equal to zero and the total dispersion is suppressed. Such suppression can be illustrated at the
example of the asymmetry extraction from the data with a general offset error. Let fi(θ) = θxi
and both statistical and systematic errors be constant through the sample: si = s, σi = σ. Then

ρi = s/σ, φi1 = xi/σ and z1 ∼
∑
xi. If the positive and negative values of xi compensate each

other in the measurements, z1 = 0 and the systematic error vanish. The appropriate data filtra-

tion can also be used to suppress dispersion (9). To clarify the mechanism of this suppression,
let us trace the effect of a separate data point on the dispersion value. Add to the data set a
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point with statistical error σ0, systematic error s0 and the data model f0(θ). If the initial data
set is large and the systematic error is comparable with statistics, i.e.

N � 1, ρ� 1,

φ1 �
f ′0(θ0)

σ0
, ρφ1z1 �

s0
σ20
f ′0(θ0), (13)

the change of DA0 (θ̂) after adding a new point is

∆DA0 (θ̂) ≈
2ρ

φ31

1

σ20

[
z1s0f

′
0(θ0)−

ρz21
φ1

[f ′0(θ0)]
2
]
. (14)

The second term in brackets is always negative and describes the decrease of dispersion due to

an improved statistical precision. At the same time the first term can be negative or positive,
depending on the signs of z1 and s0. Its absolute value can be larger than the absolute value

of the second term and then DA0 (θ̂) can increase or decrease after adding the new point. This
is a manifestation of inconsistency of the SCE applied to the correlated data set. The balance

between terms of Eq. (14) is defined by the distribution of f ′i(θ0)/si, and cuts of the tails of this
distribution can decrease the estimator dispersion.

2. THE COVARIANCE MATRIX ESTIMATOR

If the systematic error is additive and the covariance matrix is known a priori and given by

(8), one can use for the parameter estimation the following functional minimization

χ2(θ) =
N∑
i,j=1

(fi(θ)− yi)Eij(fj(θ)− yj), (15)

where Eij is the inverted covariance matrix. This problem can be reduced to the uncorrelated

case using the linear transformation of the vector {fi(θ) − yi} and the estimator is linear for
the linear data model. Besides, if statistical and systematics fluctuations obey the Gaussian

distribution, this estimator provides the minimal dispersion due to the Cramer-Rao inequality.
One can easily derive the expressions necessary to calculate the estimator bias and dispersion

〈X〉 = 0,

〈
X2
〉
= −a =

N∑
i,j=1

f ′i(θ0)Eijf
′
j(θ0),

〈XY 〉 = b

3
=

N∑
i,j=1

f ′i(θ0)Eijf
′′
j (θ0).

Substituting in the above relations the explicit expression for Eij

Eij =
1

σiσj

(
δij −

ρiρj
1 + ρ2

)

we obtain the estimator dispersion

DAM(θ̂) =
1

φ21

[
1 +

ρ2z21
1 + ρ2(1− z21)

]
=

1

φ21
ξM, (16)
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where ξM is the ratio of the total dispersion to the pure statistical one. If �ρ and �φ1 are collinear,

the dispersion of the estimator is

D
A,‖
M (θ̂) =

1 + ρ2

φ21
,

which coincides with the SCE dispersion (9). One can see that if �ρ and �φ1 are not collinear,
the SCE dispersion (9) is always larger than the CME dispersion (16). This can be readily

explained qualitatively. For the SCE the fitted curve tightly follows the data points and, if these
points are shifted due to the systematic errors fluctuations, the parameter gains appropriate

systematic errors. At the same time, since for the CME the information on the data correlations
is explicitly included in χ2, the correlated fluctuation of the data due to systematic shift does

not necessary lead to the fitted curve shift and the parameter deviation gets smaller than for
the SCE. The exclusion occurs if z1 = 0, when �ρ and �φ1 are collinear and the systematic shift

can be perfectly compensated by the change of parameter. If these vectors are orthogonal, the
CME dispersion is

DA,⊥M (θ̂) =
1

φ21

i.e. it is just the same as the dispersion of SCE applied to the data set without correlations
given by Eq. (6). Qualitatively it corresponds to the measurements scheme, when the systematic
shifts for different points compensate each other, e.g. as in the example considered at the end

of Sec. 1.
For the modern experiments systematic errors are often of the same order as statistical ones

and if N � 1, then ρ� 1. In this limit and if �ρ and �φ1 are not collinear,

DAM(θ̂) ≈
1

φ21(1− z21)
(17)

and

DA0 (θ̂) ≈
ρ2z21
φ21

. (18)

One can see that in the second case the estimator standard deviation rises linearly with the
increase of the systematics, whereas the CME dispersion saturates. This difference can be

illustrated at the numerical example inspired by the elastic proton-proton scattering. Let us
choose

fi = U exp(−V xi), xi = 0.1i,

where U = 100, V = 10, i = 1 . . .9. Generating 100 data sets (7) with these fi and

σi = 0.01

√
U

fi
, si =

κ

xi
(19)

we minimized functionals (2) and (15) varying U and V to obtain their estimators Û and V̂ .
The values of (Û − U)2 and (V̂ − V )2 for all of the generated data sets were averaged to obtain

the estimators dispersions. The results on the standard deviation of Û for different values of κ
are given in Fig. 1 (the picture for V̂ is similar). One can see that at large κ the CME and the

SCE standard deviations differ by factor of 3.
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κ

S(
U∧

)

Fig. 1. The standard deviations of SCE (circles) and CME (squares) for Û at different scales of sys-
tematic errors κ. The lines correspond to the calculation performed with the two-dimensional
generalization of Eqs. (9,16).

Fig. 2. Bounds of gluon distribution obtained from the LO QCD fit to BCDMS data with different
estimators (the SCE: a; the CME: b). Full lines correspond to the total experimental errors,
dashed ones – to the statistical only.
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The example of dispersion suppression observed in the analysis of real experimental data
can be found in Ref. [14]. In this paper we performed the leading order QCD fit to the inclusive

deep inelastic scattering data of Refs. [15,16] obtained by the BCDMS collaboration in order
to determine the parton distribution functions and the strong coupling constant value αs. The

two different estimators were used and the different estimates were obtained. For the SCE the
standard deviation of αs(MZ) is 0.015, while for the CME it is 0.007. The difference in the

gluon distribution bounds for these estimators is given in Fig. 2. One can see that the standard
deviation of the gluon distribution for the CME is also about half of the SCE standard deviation.

If z1 �= 1, the change of CME dispersion after adding a new point to the large sample as
defined by Eq. (13) is

∆DAM(θ̂) ≈ −
1

φ41(1− z21)
2

1

σ20

[
f ′0(θ0)−

φ1z1
ρ

s0

]2
.

This change is always negative, which proves the CME consistency. Remind, that this is not
necessary for the SCE (see Sec. 1). The same conclusion can be drawn from the comparison of

Eqs. (17) and (18). Indeed, the CME dispersion falls with increase of statistical significance of
the data set (i.e. decrease of σ or rise of N ) while the SCE dispersion does not. Note, that due
to consistency of the CME, the filtration procedure described in Sec. 1 is not meaningful for it.

The CME bias is

BAM(θ̂) = −
φ1φ2
2

[
DAM(θ̂)

]2 (
z12 −

ρ2

1 + ρ2
z1z2

)
,

which vanishes for the linear data model and saturates in the limit of ρ � 1 contrary to the
SCE. In the numerical example (19) at κ = 0.007 the CME bias is 0.07, whereas the SCE bias

is 0.13.
For the multiplicative systematic errors the covariance matrix is unknown a priori and one

is to calculate it using the parameter estimator. Proceeding this way in the minimization of the
functional (15), we get

a = −
N∑
i,j=1

f ′i(θ
0)Eijf

′
j(θ
0)− 1

2

N∑
i,j=1

E ′′ijCij. (20)

The difference with corresponding expression for the case of additive systematic errors is in the

second term of Eq. (20). For the linear data model this term is

a(2) =
1

2

N∑
i,j=1

E ′′ijCij =
φ23

2(1 + ρ2)2
[
ρ4(z23 − 1)− 3ρ2z23 + 1

]
,

where
φi3 = ρ′i =

ρi
fi
f ′i(θ

0) = ηiφ
i
1,

φ3 is the modulus of �φ3 and z3 is the cosine of the angle between �φ3 and �ρ. The ratio of the
second term of Eq. (20) to the first term a(1) =

∑
f ′i(θ

0)Eijf
′
j(θ
0) is

a(2)

a(1)
=

φ23
φ21
· ρ
4(z23 − 1)− 3ρ2z23 + 1

(1 + ρ2)2
ξM. (21)
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If ξM ∼ O(1) (that is valid for most real cases), a(2) ∼ O(η2)a(1) for all values of ρ, i.e. it is
suppressed comparing with the first term for small η. Neglecting as elsewhere the third and

fourth central moments of {yi}, one can obtain that < X2 >≈ −a and the estimator dispersion
for multiplicative systematic errors DMM ≈ DAM .

In the case of multiplicative systematics errors Eq. (3) is nonlinear even for the linear data
model. As a consequence, the expressions responsible for the bias

〈X〉 = 1

2

N∑
i,j=1

E ′ijCij ,

b = 3
N∑
i,j=1

f ′i(θ
0)Eijf

′′
j (θ

0) + 3
N∑
i,j=1

f ′i(θ
0)E ′ijf

′
j(θ
0) +

1

2

N∑
i,j=1

E ′′′ijCij ,

〈XY 〉 =
N∑
i,j=1

f ′i(θ
0)Eijf

′′
j (θ

0) + 2
N∑
i,j=1

f ′i(θ
0)E ′ijf

′
j(θ
0)− 1

4

N∑
i,j=1

E ′′ijCij

N∑
i,j=1

E ′ijCij , (22)

do not vanish even if f ′′i (θ) is equal to zero. Meanwhile, the bias due to the estimator nonlinearity

is small comparing with the estimator standard deviation. Since 1/DMM ≈< X2 >≈ −a, the bias
of estimator with multiplicative systematic errors is

BMM(θ̂) ≈
√
DMM(θ̂)

[ 〈X〉√
−a +

〈XY 〉 − b/2

(−a)3/2
]
. (23)

The first term in the brackets of Eq. (23) is

〈X〉√
−a ≈ −

φ3
φ1

ρz3
1 + ρ2

√
ξM ∼ O(η

√
ξM). (24)

The contribution to the second term in brackets of Eq. (23) from
∑
f ′i(θ

0)E ′ijf
′
j(θ
0) is propor-

tional to
φ3
φ1

ρz1
(1 + ρ2)

(
ρ2

1 + ρ2
z1z3 − z13

)
ξ
3/2
M

and hence it is ∼ O(ηξ3/2M ). As one can conclude from Eqs. (21,24), the contribution to the same

term from
∑

E ′′ijCij ·
∑
E ′ijCij is O(η

3ξ
3/2
M ). And, finally, since

1

2

N∑
i,j=1

E ′′′ijCij =
ρz1φ

3
3

(1 + ρ3)2
[
ρ4(z23 − 1) + ρ2(1− 3z23) + 2

]
,

the contribution to Eq. (23) coming from this term is O(η3ξ
3/2
M ). In summary, for the linear

data model the estimator bias is a sum of terms O(ηpξqM )D
M
M with p ≥ 1 and q ≤ 3/2. Besides,

at small ρ all the four contributions to the bias which survive for the linear data model are
∼ ρ, while at large ρ they are ∼ 1/ρ. Summarizing, one can conclude that the estimator bias
is negligible in comparison with its standard deviation excluding the extreme cases with very

large ξM.
The explicit estimate of the bias can be obtained from Eqs. (22,23). Meanwhile, it requires

rather lengthy calculations and a simpler tool for the bias evaluation is admirable. A convenient
way for this is to trace the net residual

R = − 1

N

N∑
i=1

fi(θ̂)− yi√
σ2i + s2i

.

9



Expanding fi(θ) near θ0 and keeping only the first term in Eq. (4), one obtains for sample (7)

R ≈ − 1

N

N∑
i=1

µi + λρi√
1 + ρ2i

+ (θ̂ − θ0)
1

N

N∑
i=1

φi1√
1 + ρ2i

.

If the estimator is unbiased, the value of R averaged over the samples is equal to zero. Never-

theless, the particular values of R may be not equal to zero due to fluctuations. For the limited
ξM the dispersion of R is

D(R) =
1

N 2

N∑
i,j=1

δij + ρiρj√
1 + ρ2i

√
1 + ρ2j

+O(1/N ). (25)

If the analyzed data come from a single experiment with dominating systematics (i.e with

ρ > 1), then D(R) ∼ 1. In particular, for the BCDMS data of Refs. [15,16] D(R) ≈ 0.5. For
Nexp independent experiments involved in the analysis D(R) ∼ 1/Nexp. Comparing the net

residual R with this value allows one to get a guess about the estimator bias. A more definite
conclusion can be drawn after the comparison of R with its dispersion calculated using Eq. (25).

3. PLANNING THE COUNTING EXPERIMENTS

In a particular case, when the differential cross section on the variable x is measured, the

predicted average number of events in the i−th bin of data is

〈Ni〉 = Lfi∆xiβi,

where L is the integral experiment luminosity, βi is the registration efficiency, and ∆xi is the

bin width. Neglecting the fluctuations of Ni the statistical error on the i−th measurement is

σi =

√
〈Ni〉

L∆xiβi

and
1

σ2i
=

Lβi
fi

∆xi.

The scalar product of the vectors �ρ and �φ is

(
�ρ · �φ
)
= L

N∑
i=1

f ′isi
fi

βi∆xi

and

φ2 = L
N∑
i=1

[f ′i ]
2

fi
βi∆xi, ρ2 = L

N∑
i=1

[si]
2

fi
βi∆xi.

For the concise measurements these scalars can be reduced to the integrals over the measurements
region Ω: (

�ρ · �φ
)
= L

∫
Ω
f ′(x)s(x)dx̃

and

φ2 = L

∫
Ω

[f ′(x)]
2
dx̃, ρ2 = L

∫
Ω

[s(x)]
2
dx̃,

where dx̃ = β(x)/f(x)dx. The latter expressions can be used in the equations for the estimators

dispersions3. This approach is convenient for the future experiment optimization since it allows

3As a result, one obtains the Fisher’s information for the correlated data case.
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one to analyze the integrated expression in order to search for the optimal region of measure-
ments. For the simple functions f(x), β(x), and s(x) such analysis can be surely performed

analytically.
Particular attention should be paid to the connection between the obtained estimator dis-

persion and the confidence interval. For a known distribution of the estimator the confidence
interval can be easily calculated (e.g. it is well known that for the Gaussian distribution one

standard deviation corresponds to the 67% confidence level). Unfortunately, due to the possible
non-Gaussian nature of the systematic errors, one cannot prove that an estimator accounting

for systematics is Gaussian distributed. However, for a large number of systematic errors of
comparable scale, the estimator should obey the Gaussian distribution just to the central limit
theorem of statistics. Otherwise the robust estimates of the confidence intervals, e.g. Cheby-

shev’s inequality, should be used.

4. CONCLUSION

In conclusion, the CME is a convenient tool for the analysis of the data sets with account
for correlations due to systematic errors. The CME is consistent for the realistic cases (when

systematic errors on the fitted parameters are not extremely large comparing with the statistical
ones) and its dispersion is always smaller than the dispersion of the χ2 estimator without account

for correlations. The estimator bias is negligible for the realistic cases if the covariance matrix is
calculated during the fit iteratively using the parameter estimator itself. Analytical formula for

the covariance matrix inversion allows one to perform fast and precise calculations even for very
large data sets. The latter is especially important in view of numerical instabilities occurring in

the fits to precise data in the case of large correlation between the fitted parameters (see in this
connection Ref. [17]).
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