
����
STATE RESEARCH CENTER OF RUSSIA

INSTITUTE FOR HIGH ENERGY PHYSICS

IHEP 2000–4

M.V. Saveliev, A.B. Zuevsky

QUANTUM VERTEX OPERATORS
FOR SINE–GORDON MODEL

asp9608@mx.ihep.su

Protvino 2000



UDK 539.1.01 m–24

Abstract

Saveliev M.V., Zuevsky A.B. Quantum Vertex Operators for Sine-GordonModel: IHEP Preprint 2000–4. –
Protvino, 2000. – p. 21, refs.: 37.

On the base of the second Drinfeld realization of U ′q(ŝl2) we construct the quantum version of vertex
operators for the sine-Gordon model which are responsible for the generation of soliton solutions in the
classics. The quantum vertex operators satisfy the relations of Zamolodchikov algebra and possess the
quantum interaction function. We also discuss their possible role in the quantum soliton theory.
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This work has been inspired by M.V. Saveliev as part of a concept on quantum groups ap-
plications to two-dimensional integrable systems and continuation of group-theoretical methods

developed in [2,19]. Most of the ideas reflected in this paper originated from discussions with
him. His friends and colleagues suffered an unbearable loss when he died last year. People

will remember M.V. Saveliev as a very kind person, an outstanding scientist, and an excellent
teacher. The second author is deeply indebted to M.V. Saveliev and would like to dedicate this

work to his memory.

1. Introduction

Two dimensional integrable field theories have attracted much attention in the last years.
Both in the classical and quantum cases they deliver examples of nice theories which have rather

rich internal algebraic structure. In particular, a huge amount of work has been done in cases
of conformal and affine Toda models. Among affine Toda systems, the case of the sine-Gordon

equation that corresponds to the Lie algebra ŝl2 is the most elaborated one. This theory is
interesting from many points of view.

In the pioneering paper [1] a general solution to affine Toda systems was constructed on the
base of the group-theoretical method [2]. It was shown how to obtain soliton solutions to affine
Toda equations on the classical level starting with the general solution. The construction is

crucially based on the existence of the principal or homogeneous Heisenberg subalgebra of an
affine Lie algebra Ĝ.

The quantum Toda field theory (in the compact or non-compact space) may be introduced
in various ways [3,4,5,6,7,8,9,10,11]. In the Zamolodchikov’s approach [12] the quantum sine-

Gordon model was considered in the framework of the S-matrix formalism. This model is known
as an example of the relativistic quantum field theory leading to the factorized scattering. Soli-

tons and antisolitons are generated by non-commuting operators F (θ) and F̄ (θ) (θ denotes the
rapidity of a soliton (antisoliton)) which act on the vacuum of the theory and form an associa-

tive algebra describing the scattering of corresponding particles in the theory (see Appendix E).
In this, the spectrum of the quantum sine-Gordon theory consists of solitons, antisolitons and
bound soliton-antisoliton states (quantum doublets).

In [13,14,15,16,17] the quantum sine-Gordon model was considered in the frames of the
angular quantization approach. An attempt to search for rudiments of the classical algebraic

structure in the quantum case was made in the paper [18]. The so-called quantum interaction
function that had to play the role of the classical interaction function for some soliton vertex

operators was introduced.
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The purpose of this paper is to clarify further connections between quantum groups and
quantum two dimensional integrable systems. By the example of the quantum sine-Gordon

model we show that the structure of soliton operators in Zamolodchikov’s approach is guided by
the properties of corresponding quantum group. Starting from the second Drinfeld formulation

of the quantized universal enveloping algebra U ′q(ŝl2), we construct a particular realization of
quantum vertex operators which possess the quantum interaction function introduced in [18]

and satisfy the Zamolodchikov algebra. In contrast to vertex operators calculated in the angular
quantization approach, the algebraic origin of our vertex operators is much more transparent

and useful for further applications. We also calculate vertex operators in the antisoliton sector
of the Zamolodchikov algebra subject to some condition. That restriction clarifies the existence
range of bound soliton-antisoliton states (breathers). Our quantum vertex operators degenerate

to the usual soliton-generating vertex operators in the classical limit. We also discuss their
possible role in the theory of quantum solitons.

The paper is organized as follows. In Section 2 we recall affine Toda systems, the general
solution and its solitonic specialization in the group-theoretical approach. Section 3 is devoted

to the S-matrix for the sine-Gordon model and its relation to the quantum dilogarithm. In
Section 4 we propose the quantum vertex operators and discuss their properties. The quantum

antisoliton vertex operators are calculated in Section 5. In order to remind some basic facts about
quantum groups, quantum dilogarithms, the S-matrix approach to the quantum sine-Gordon

equation, and algebraic theory of Toda systems, we have added Appendices A–F. Appendix D
is dedicated to an explicit construction of a soliton solution to the classical sine-Gordon model
in the homogeneous gradation case.

2. Affine Toda systems and soliton specialization

Let us first recall some known results concerning affine Toda systems in the classical region
(see Appendix C as a reminder on conformal Toda systems). Let M be a two dimensional
manifold, say IR2 or C1, with standard coordinates z± = t ± x and derivatives ∂±. In the C1

case we suppose that z− = (z+)∗. Let Ĝ be a complex Lie group with a simple Lie algebra Ĝ
of rank r + 1 endowed with a ZZ-gradation. In the principal gradation the subspace Ĝ0 in the

decomposition Ĝ = ⊕
m∈ZZĜm is abelian, while for the homogeneous gradation this is not the

case.

The affine Toda fields φ =
r∑
i=1

hiφi (here hi, i = 0, ..., r denote Cartan elements of Ĝ, see
Appendix A) satisfy the equations

∂+∂−φ+
4η2

β

(
r∑
i=1

mi

αi

α2i
eβαi·φ − ψ

ψ2
e−βψ·φ

)
= 0, (2.1)

where αi, i = 0, ..., r are simple roots of Ĝ, ψ = −α0 is the highest root, and ψ
ψ2

=
r∑

i=1
mi

αi
α2i

defines mi. Equations (2.1) are associated with an affine Lie algebra Ĝ in the principal gradation.

In (2.1) η conventionally denotes a real inverse length scale and β is a coupling constant. The
coefficients in (2.1) are arranged in such way that φ = 0 is a constant solution. The very fact of

the integrability of system (2.1) has been established on the base of a relevant flat connection
form using more or less the same arguments as in the case of corresponding conformal (finite

dimensional) Toda systems, see Appendix C, [2,19], and references therein.
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The general solution to (2.1) is represented in a formal sense [1,20] as

e−βλj ·φ =
< Λj|γ−1+ µ−1+ µ−γ−|Λj >

< Λ0|γ−1+ µ−1+ µ−γ−|Λ0 >mj
, (2.2)

where |Λj >, j = 1, ..., r is the highest vector of the j–th fundamental representation of Ĝ
labelled by the fundamental weight λj, (mj are marks on the Dynkin diagram of Ĝ). The
mappings µ±(z

±) :M→ Ĝ± satisfy

∂±µ± = κ±µ±, (2.3)

where

κ±(z
±) =

r∑
i=0

Ψ(0)±i · x±i, (2.4)

(x±i, i = 0, ..., r are Chevalley generators of Ĝ),

Ψ
(0)
±j = mje

∓β
r∑
i=0

kjiφ
(0)

±i
, (2.5)

where φ
(0)
±i are free fields and (2.4) can be also represented as

κ±(z
±) = γ−1± Ê±1γ±, (2.6)

with

Ê±1 =
r∑
i=0

√
mix±i. (2.7)

In (2.2) the mappings γ±(z±) :M→ Ĝ0 are

γ± = e

r∑
i=0

φ
(0)

±ihi

. (2.8)

Affine Toda theories posses soliton solutions when β is imaginary. The sine-Gordon equation

∂+∂−φ +
4η2

β

(
α1
α21

eβα1·φ − ψ

ψ2
e−βψ·φ

)
= 0 (2.9)

is a particular case associated with the affine Lie algebra Ĝ = ŝl2 both in the principal and
homogeneous [21] gradations. In the homogeneous gradation the general solution to (2.9) has

the same form (2.2). The soliton solution to equation (2.9) is

φsol = arctg

(
e
x−vt√
1−v2

)
. (2.10)

In [1] there was suggested a remarkable specialization of the general solution (2.2) in the
principal gradation which leads to soliton solutions. The authors choose the mappings γ± in

(2.2) to be unit elements of Ĝ0. Therefore, because of (2.6), κ± = Ê±1. Then it is easy to
integrate the equations (2.3). One finds

µ± = µ±(0)e
ηz±Ê±1 . (2.11)
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The general solution (2.2) reads

e−βλj·φ =
< Λj|e−ηÊ1z

+

µ(0)e−ηÊ−1z
− |Λj >

< Λ0|e−ηÊ1z+µ(0)e−ηÊ−1z− |Λ0 >mj
, (2.12)

where µ(0) ≡ (µ(0)+)
−1µ(0)− is a constant mapping M → Ĝ independent of the coordinates

z±. N -soliton solutions can be obtained by choosing the group element µ(0) as

µ(0) =
N∏
n=1

eQnF̂
n(ζn), (2.13)

where ξn = 4πθn
γ

, γ = |β|2

1− |β|
2

8π

(θn are rapidities of solitons), and Qn is the logarithm of the n-th

soliton initial coordinate. In (2.13) F̂n(ζn) are vertex operators in the principal gradation [22],
i.e., elements of the principal vertex operator construction. These operators are eigenvectors

with respect to elements of the principal Heisenberg subalgebra Ê±k (see (2.7) for k = 1). This
fact helps us to eliminate Ê±1 from solution (2.12) commuting them with µ(0). Also note that

exponentiation series of F̂n(ζn) operators terminate after the order which coincides with the
level of the highest weight representation. These two properties make solution (2.12) equal to

classical soliton solution [23]. One sees that the vertex operators QnF̂
n(ζn) generate solitons in

the classical theory. It should be mentioned that it is possible to choose the functions φ
(0)
±i in

(2.8) to be φ
(0)
±i = miφ

(0) where φ(0) is an arbitrary function. Then γ± commutes with all the

elements of the algebra Ĝ. That leads to solution (2.11). However, under such a specialization,
the final solution following from general solution (2.2) differs from the classical soliton solution

(2.12) by the exponentiation of the function φ(0).
Note that in the case of ŝl2 algebra both the principal and homogeneous gradations lead to

the same sine-Gordon equation (2.9). Therefore, one can construct soliton solutions using the

general solution (2.2) in the case of the homogeneous gradation with the corresponding vertex
operators based on the homogeneous Heisenberg subalgebra of ŝl2 [22] (see Appendix D).

3. S-matrix of sine-Gordon model and quantum dilogarithm

In the paper [18] a remarkable dilogarithmic (see Appendix F) structure of the factorized

S-matrix elements calculated in [12] (see Appendix E) was discovered. It turned out that the
S-matrix elements S(θ), ST (θ) and SR(θ) could be expressed through a new function Xq(x)

which is composed of the ratio of two regularized quantum dilogarithms [24,25]. In addition,
the function Xq(x) (called the quantum interaction function) can be considered as a quantum

analogue of so-called interaction function which plays a very important role on the classical
level. The usual interaction function X(θ) [18,20] comes from a normal ordering of two vertex

operators generating soliton solutions in the classical region,

F (ζ1)F (ζ2) = X(θ12) : F (ζ1)F (ζ2) :, (3.1)

where θ12 = θ2 − θ1, (θi, i = 1, 2 are rapidities of two solitons), ξ = e
4πθn
γ , γ = |β|2

1− |β|
2

8π

. It has

been discovered earlier that the S-matrix for the sine-Gordon model coincides, up to a scalar
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function factor, with the R-matrix of Uq(ŝl2), [26] (here we have used the notations of [18])

S11(θ) = v(x)


xq − x−1q−1 0 0 0

0 q − q−1 x− x−1 0
0 x − x−1 q − q−1 0

0 0 0 xq − x−1q−1



=


S(θ) 0 0 0

0 SR(θ) ST (θ) 0
0 ST (θ) SR(θ) 0
0 0 0 S(θ)

 ,

(3.2)

where x = e
8π
γ θ, q = e−i

8π2

γ . Here S(θ), SR(θ) and ST (θ) are given in Appendix E and differ

from the R-matrix of Uq(ŝl2) by a scalar function v(x) [18]

v(x) =
q

1− x2q2
Xq(x)

Xq(x−1)
, (3.3)

S(θ) = v(x)(xq− x−1q−1), (3.4)

SR(θ) = v(x)(q − q−1), (3.5)

ST (θ) = v(x)(x− x−1). (3.6)

We see that the deformation parameter q of the quantum group U ′q(ŝl2) is related to the renor-
malized coupling constant γ which is pure by real. Here Xq(x) is the above mentioned quantum

interaction function. The most important thing is that the quantum interaction function Xq(x)
can be expressed as the ratio

Xq(x) =
Sreg
q−2(e

iπ+2miπx2q2)

Sreg
q−2(e

iπ+2miπx2)
, (3.7)

where m ∈ ZZ is an arbitrary integer and Sreg
q−2(z) is the regularized quantum dilogarithm [24,25]

(see Appendix F for the definition and properties of quantum dilogarithms).

4. Quantum vertex operators

The question one can pose now is what kind of object might correspond to classical vertex

operators that are responsible for the creation of solitons in the classics. A natural idea is
to find such a vertex operator which would have the interaction function as in (3.7) and sat-
isfy the Zamolodchikov algebra (see Appendix E). The dilogarithmic structure of the quantum

interaction function hints us an answer.
We propose the following form of the quantum vertex operator qF (ζ)

qF (ζ) = qΦ(ζ)e
α
2 ζ

1
2∂α . (4.1)
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Here qΦ(ζ) is the product

qΦ(ζ) = Φa(ζ) · Φb(ζ), (4.2)

where

Φa(ζ) = exp

( ∞∑
n=1

a−n
[2n]

q
7
2nζn

)
exp

(
−
∞∑
n=1

an
[2n]

q−
5
2nζ−n

)
, (4.3)

Φb(ζ) = exp

( ∞∑
n=1

b−n
[2n]

q̃

q̃
7
2n(2(1+2m)−

µ
π )ζ̂n

)

·exp
(
−
∞∑
n=1

bn
[2n]q̃

q̃−
5
2n(2(1+2m)−

µ
π )ζ̂−n

)
.

(4.4)

In (4.4) ζ̂ = ζ−
π
µ and

q−2 = eiµ, q̃ = e
π2

µ2 . (4.5)

Two other multipliers in (4.1) will be explained later. The operator Φa(ζ) (4.3) is the vertex op-

erator introduced in [27] (the values 7
2
and 5

2
in (4.3)-(4.4) are not important while their difference

is). Φa(ζ) contains elements of the homogeneous quantum Heisenberg subalgebra of Uq(ŝl2). The

operator Φb(ζ) is constructed with the help of elements of the homogeneous Heisenberg subalge-
bra of the quantized universal enveloping algebra with the deformation parameter q̃ associated

with q. In (4.4) we have introduced the quantum homogeneous Heisenberg subalgebra of a
quantzed universal enveloping algebra Uq̃(ŝl2). Its generators defined by {bk, k ∈ {ZZ− 0}, γ̃±12 }
satisfy

[al, bk] = [xn, bk] = [K, bk] = [γ, bk] = 0, (4.6)

[bk, bm] = δk,−m
[2k]q̃
k

γ̃
µk
π − γ̃−

µk
π

q̃ − q̃−1
, (4.7)

k,m, l ∈ {ZZ− 0}, n ∈ ZZ. Here

[k]q̃ =
q̃k − q̃−k

q̃ − q̃−1
. (4.8)

The operators γ̃±
1
2 belong to the center of Uq̃(ŝl2) and commute with gene

-rators of Uq(ŝl2). The generators γ̃ act as γ̃(f ⊗ eβ) = q̃(f ⊗ eβ) on a representation vector of

U
q̃
(ŝl2) (see Appendix B).

Now we are going to explain the form of (4.2). The quantum vertex operator qΦ(ζ) consists
of two commuting multipliers qΦ(ζ) = Φa(ζ) ·Φb(ζ). It is easy to verify that the product of two

operators (4.3) with different parameters ζ1 and ζ2 satisfies

Φa(ζ1)Φa(ζ2) = Xunreg
q (x) : Φa(ζ1)Φa(ζ2) :, (4.9)

and

Φa(ζ1)Φa(ζ2) =
Xunreg

q (x)

Xunreg
q (x−1)

Φa(ζ2)Φa(ζ1), (4.10)
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where the columns denote the normal ordering which means that all {a−n, n ∈ IN} generators
are moved to the left with respect to {an, n ∈ IN} generators. The function Xunreg

q (x) (the

superscript “unreg” meaning will be explained later) is given by

Xunreg
q (x) = exp

(
−
∞∑
n=1

qnx2n[n]

n[2n]

)
, (4.11)

where

x2 =
ζ2
ζ1
, (4.12)

i.e., ζn = e
4πθn
γ .

Indeed, permuting the second exponential of the operator of Φa(ζ1) with the first exponential

of Φa(ζ1) (see (4.3)), we obtain the interaction operator exp

(
−
∞∑
n=1

qnx2n

n[2n]
γk−γ−k
q−q−1

)
that acts by

the operator γ on a level one representation vector, giving (4.11). Similarly, the operator Φb(ζ)

permutes as
Φb(ζ1)Φb(ζ2) = Xunreg

q̃
(x̂) : Φb(ζ1)Φb(ζ2) :, (4.13)

Φb(ζ1)Φb(ζ2) =
Xunreg

q̃
(x̂)

Xunreg

q̃
(x̂−1)

Φb(ζ2)Φb(ζ1), (4.14)

where x̂ = x−
π
µ and

Xunreg

q̃
(x̂) = exp

(
−
∞∑
n=1

q̃n(2(1+2m)−
µ
π ) x̂2n [µn

π
]q̃

n[2n]
q̃

)
. (4.15)

Since {ak, k ∈ {ZZ − 0}} commute with {bl, l ∈ {ZZ − 0}}, the result of commutation of two
operators qΦ(ζ1) and qΦ(ζ2) is

qΦ(ζ1)qΦ(ζ2) =
Xunreg

q (x)

Xunreg
q (x−1)

Xunreg

q̃
(x̂)

Xunreg

q̃
(x̂−1)

qΦ(ζ2)qΦ(ζ1). (4.16)

Let us denote by
Xreg

q (x) = Xunreg
q (x) ·Xunreg

q̃
(x̂) (4.17)

the regularized quantum interaction function; the meaning of “regularized” will be clarified later.

Then

qΦ(ζ1)qΦ(ζ2) =
Xreg

q (x)

Xreg
q (x−1)

qΦ(ζ2)qΦ(ζ1). (4.18)

The crucial point is that the function Xreg
q (x) in (4.17) coincides with so-called quantum

interaction function Xq(x) (3.7) introduced in [18]. In order to show that, let us use formula
(F.4) (see Appendix F) which splits the regularized quantum dilogarithm into the product of

two unregularized quantum dilogarithms

Sreg
q−2(x) = Sunreg

q−2 (x) · Sunreg

q̃−2
(x̂). (4.19)

Then we obtain

Xq(x) =
Sunreg
q−2 (eiπ+2miπx2q2)

Sunreg
q−2 (eiπ+2miπx2)

Sunreg

q̃−2
̂(eiπ+2miπx2q2)

Sunreg

q̃−2
̂(eiπ+2miπx2)

. (4.20)
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This is the reason why we call the interaction function Xunreg
q (x) (4.11) and Xreg

q (x) (4.17) un-

regularized and regularized, respectively. Note that here q−2 = eiµ, q̃ = q
π2

µ2 and ̂(eiπ+2miπx2q2) =

(eiπ+2miπx2q2)
−πµ in (4.20).

Consider the first ratio in (4.20). Substituting the definition of the unregularized quantum
dilogarithm (F.3), we obtain

Sunreg
q−2 (eiπ+2miπx2q2)

Sunreg
q−2 (eiπ+2miπx2)

= exp

( ∞∑
k=1

qkx2k(qk − q−k)

k(q−2k − q2k)

)

= exp

(
−
∞∑
k=1

qkx2k[k]
k[2k]

)
= Xunreg

q (x).

(4.21)

The second multiplier in (4.20) can be rewritten as

Sunreg

q̃−2
̂(eiπ+2miπx2q2)

Sunreg

q̃−2
̂(eiπ+2miπx2)

= exp

(
−
∞∑
k=1

q̃k(2(1+2m)−
µ
π ) x̂2k [µk

π
]q̃

k[2k]q̃

)

= Xunreg

q̃
(x̂).

(4.22)

We have used the fact that q̂2 = −1 and (̂eiπ) = q̃2.

In [18] there was discovered a remarkable connection between the elements of the exact
quantum S-matrix for the sine-Gordon (see Appendix E) and the quantum interaction function
Xq(x). The S-matrix elements S(θ), ST (θ), SR(θ) associated with soliton-soliton (antisoliton-

antisoliton) and soliton-antisoliton scattering transmission and reflection processes have a com-
mon multiplier Xq(x)

Xq(x−1)
(see (3.3),(3.4-3.6)) which is a ratio of two quantum interaction functions.

We see that the commutation of two quantum vertex operators qΦ(ζn), n = 1, 2 (4.2) gives pre-

cisely that common factor in the right hand side of (4.16). That is, up to a scalar function, our
operators (4.2) satisfy the algebra of quantum soliton operators introduced in [12] (see Appendix

E).

Let us get convince now that
(
e
α
2 ζ

1
2 ∂α
)
-part of the quantum vertex operator (4.1) corresponds

to the above-mentioned scalar (R-matrix part) function. Consider the commutation of two

operators of the form
(
e
α
2 ζ

1
2∂α
)

which act on the second part of the tensor product in the

highest weight representation vectors |1⊗ e
αn
2 > of Uq(ŝl2) (see Appendix B). We have

(
e
α
2 ζ

1
2∂α
1

) (
e
α
2 ζ

1
2∂α
2

)
.eβ =

(
ζ2
ζ1

) 1
2 (α,

α
2 ) (

e
α
2 ζ

1
2∂α
2

)(
e
α
2 ζ

1
2∂α
1

)
.eβ . (4.23)

The normalization of the root lattice vector α is (α, α) = 2. Therefore,(
ζ2
ζ1

) 1
2 (α,

α
2 )

=
(
ζ2
ζ1

) 1
2

= 1
x
. Then we obtain

(
e
α
2 ζ

1
2∂α
1

) (
e
α
2 ζ

1
2∂α
2

)
=

1

x

(
e
α
2 ζ

1
2∂α
2

)(
e
α
2 ζ

1
2∂α
1

)
. (4.24)
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The S-matrix element corresponding to the scattering of two solitons (or two antisolitons) is

S(θ) = −qxq − x−1q−1

1− q2x2
Xq(x)

Xq(x−1)
=

1

x

Xq(x)

Xq(x−1)
. (4.25)

Therefore, the vertex operator (4.1) satisfies the algebra of quantum soliton operators in the

sense of [12].
In the classical case the sine-Gordon vertex operators possess some important properties.

In particular, they are eigenvectors with respect to the action of elements of the Heisenberg
subalgebra of Uq(ŝl2). That is the property which allows one to commute vertex operators in

the exponential expressions in solution (D.5) to the sine–Gordon equation (see Appendix D).
Moreover, the square of the vertex operator vanishes. This fact is responsible for the termination

of the exponential series in (D.5). Then, this solution coincides with the well-known soliton
solution to the sine-Gordon equation [23].

The quantum vertex operator qΦ(ζ) has similar properties. First of all, it is easy to see that

qΦ(ζ) is an eigenvector with respect to the action of the generators a±k of Uq(ŝl2) (recall also
that a±k commute with b±n for every k, n ∈ {ZZ− 0}),

[a+k, qΦ(ζ)] = q
7k
2
[k]

k
ζkqΦ(ζ), (4.26)

[a−k, qΦ(ζ)] = q−
5k
2
[k]

k
ζ−kqΦ(ζ). (4.27)

Secondly, the operator qΦ(ζ) satisfies

qΦ(ζ1)qΦ(ζ2) = Xq(x) : qΦ(ζ1)qΦ(ζ2) : . (4.28)

Moreover,
Xq(x) = Xunreg

q (x) ·Xunreg

q̃
(x̂), (4.29)

and

Xunreg
q (x) =

Sunreg
q−2 (eiπ+2miπx2q2)

Sunreg
q−2 (eiπ+2miπx2)

, (4.30)

where

Sunreg
q−2 (eiπ+2miπx2q2) =

∞∏
k=0

(
1 + q−2(2k+1)(eiπ+2miπx2q2)

)
. (4.31)

Therefore, when ζ1 = ζ2, i.e., x = 1, the first multiplier (k = 0) in the product (4.31) is

zero and thus, Sunreg
q−2 (eiπ+2miπx2q2)|x=1 = 0. At the same time Sunreg

q−2 (eiπ+2miπx2)|x=1 �= 0.

Similarly, Sunreg

q̃−2
( ̂eiπ+2miπx2q2)|x=1 = 0 and Sunreg

q−2 ( ̂eiπ+2miπx2)|x=1 �= 0. So, Xunreg
q (1) = 0 and

Xunreg

q̃−2
(1) = 0. Thus, we infer that Xq(1) = 0 which means that

qΦ(ζ) · qΦ(ζ) = 0. (4.32)

These properties of the quantum vertex operators turn to be very useful in calculations of
form-factors and correlation functions in the quantum sine-Gordon model. That will be a topic

of a further paper. It is easy to see that in a classical limit the vertex operators (4.1) generate
soliton solutions to the sine-Gordon equation. Indeed, take q → 1. Then, due to (4.5) we have

q̃ = e
1

4l2 , l ∈ ZZ, i.e., when l→ ±∞, then q̃ → 1 and one gets the soliton solution (D.15).
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5. Antisoliton sector

The antisoliton sector in (E.5)-(E.6) can be obtained in a similar way. It is clear that a
quantum antisoliton vertex operator should have almost the same form as qF (ζ) in (4.1). The

antisoliton solution in the classical case is given by

φantisol = arctg

(
e
− x−vt√

1−v2

)
, (5.1)

which can be obtained from the classical solution by changing the signs of x and t. On the base

of the form of soliton solution (5.1), one can make a guess on a classical vertex operator that
generates an antisoliton, and then construct a quantum vertex operator. We take

qF̄ (ζ) = −qΦ(ζ)e
α
2 (a(ζ))

1
2∂α , (5.2)

as such a quantum antisoliton vertex operator, where a(ζ) is some function. Then the permu-
tation of two antisoliton operators gives

qF̄ (ζ1)qF̄ (ζ2) =

(
a(ζ1)

a(ζ2)

) 1
2 Xreg

q (x)

Xreg
q (x−1)

qF̄ (ζ2)qF̄ (ζ1). (5.3)

Note that the operators (a(ζ1))
1
2∂α and (a(ζ2))

1
2∂α commute. Here we have made use of the

formula

e
α
2 (a(ζ))

1
2∂α = (a(ζ))

− 12 (α,
α
2 ) (a(ζ))

1
2∂α e

α
2 . (5.4)

But according to (E.5) antisolitons have the same scattering as solitons do. Therefore taking

into account (4.25), we get a condition on the function a(ζ)

ζ1a(ζ2) = ζ2a(ζ1). (5.5)

The function a(ζ) can be determined with the help of rules (E.5)–(E.6). This function is given

by

(a(ζ))
1
2 = −1

q
ζ
1
2

(
1− q2x

1− x

)
, (5.6)

where x2 = ζ2
ζ1
. In the limit q −→ 1 (5.2) tends to (D.16) (see Appendix D).

Indeed, commutation (E.6) of soliton and antisoliton operators [12] (see Appendix E) in

terms of the S–matrix elements (we keep notations of [18]) leads to

qΦ(ζ1)e
α
2 ζ

1
2∂α
1 (−qΦ(ζ2)) e

α
2 (a(ζ2))

1
2∂α

= q x−x−1
1−x2q2

Xq(x)

Xq(x−1)
(−qΦ(ζ2)) e

α
2 (a(ζ2))

1
2∂α

qΦ(ζ1)e
α
2 ζ

1
2∂α
1

+ q2−1
1−x2q2

Xq(x)

Xq(x−1) q
Φ(ζ2)e

α
2 ζ

1
2∂α
2 (−qΦ(ζ1)) e

α
2 (a(ζ1))

1
2 ∂α .

(5.7)

Thus because of (5.4) equation (5.7) is equivalent to

ζ
1
2 ∂α
1 (a(ζ2))

1
2∂α ζ

1
2

1 = q
x− x−1

1− x2q2
(a(ζ2))

1
2 (a(ζ2))

1
2∂α ζ

1
2∂α
1

+ q2−1
1−x2q2 ζ

1
2

2 ζ
1
2∂α
2 (a(ζ1))

1
2∂α .

(5.8)
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Therefore, using (5.5) we see that the function (5.6) is a solution to (5.8). Thus we have
constructed the quantum vertex operator (5.2) that corresponds (in the sense of Zamolodchikov

algebra) to an antisoliton. The spectrum of soliton-antisoliton bound states is given bymbr(n) =
2msol sin

(
nγ
16

)
, n = 1, 2, ... < 8π

γ
, [12], where msol is the mass of a soliton. Note that according to

(3.5) the reflection part SR(x) vanishes when q = ±1, i.e., n = 8π
γ

and (a(ζ))
1
2 = ±ζ 12 . Taking

into account (5.6) and considering the classical soliton solution corresponding to the quantum

antisoliton vertex operator (5.2), one sees that there is no bound states when γ > 8π.

Conclusions

We have constructed an explicit representation of the quantum sine-Gordon vertex operators
that satisfy the Zamolodchikov algebra, generalize usual vertex operators, and generate soliton

solutions in the classical limit. These quantum vertex operators possess the quantum interaction
function Xq(x) introduced in [18]. One has to mention that some other variants of quantum

vertex operators for the sine-Gordon model was constructed in [17,28]. Nevertheless, they look
rather ugly from a group-theoretical point of view, and their relation to soliton-generating vertex

operators in the classics is not clear. In our quantum vertex operator construction the role of
the quantum group Uq(ŝl2) is much more transparent. The structure of these operators is based

on two quantized universal enveloping algebras with the deformation parameters q and q̃ related
by (4.5). Though we restrict ourselves to the simplest case among affine Toda theories (the sine-
Gordon model), it is quite obvious that such a construction can be extended to higher algebras

(the quantum interaction function for Uq(ŝl3) was calculated in [18]).
A natural question that one can ask is what a quantum soliton might be. In the Zamolod-

chikovs picture of the quantum sine-Gordon theory one has the algebra of soliton-generating
operators and a vacuum state they act on. The quantum solitons are the states of the the-

ory and they may be related (in an appropriate classical limit) to classical sine-Gordon soliton
solutions.

Another approach to quantum conformal or affine Toda theories consists in choosing one
of standard ways of quantization, say, the light-cone method [10]. In that case one has to de-

fine the quantum affine (conformal) Toda equations (e.g., by specifying a normal ordering of
exponentials). A solution to the quantum affine Toda equations should be a Heisenberg field op-
erator. The experience in that direction shows that a formal general solution to such equations

may be constructed on the base of quantum groups [9]. Since vertex operators generate soliton
solutions to affine Toda equations in the classics, one can think that the quantum situation is

somewhat analogous and may try to construct some special operator solutions using quantum
vertex operators. Unfortunately, except for an explicit representation of quantum vertex oper-

ators little is known about their role in such a specialization. In the classics, soliton solutions
can be extracted from the general one with the help of elements of the principal or homogeneous

(see Appendix D) Heisenberg subalgebra of the corresponding affine Lie algebra. Considering
the second Drinfeld realization [29,30,31,27] of Uq(Ĝ), we find that the homogeneous Heisenberg

subalgebra comes out naturally in that formulation (see Appendix B). In the quantum case one
may think that the situation is similar. However, unfortunately, it is not completely clear how
to extract the principal Heisenberg subalgebra from a quantized universal enveloping algebra

Uq(Ĝ). In this paper we have made use of the homogenous quantum Heisenberg subalgebra in
order to define our quantum vertex operators.
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As an application of the quantum vertex operators constructed in this paper one may think
of calculations of form-factors [13,15,16,32] and correlation functions [33,34] of the quantum

sine-Gordon model. In [17] a way to do that using vertex operators was proposed. It involves
calculations of traces of some vertex operator products. Having an explicit and algebraically

transparent representation of quantum vertex operators, one is in a position to calculate the
form-factors of the theory. This will be the topic of a further paper. The other algebraic

construction in the frames of the angular quantization approach to the sine-Gordon model has
been recently presented in [14].
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Appendix

A. Affine Lie algebras

Let Ĝ0 and Ĝ± be subspaces of the group Ĝ corresponding to the subspaces to Ĝ0 and
⊕m>1Ĝ±m of the simple Lie algebra Ĝ. Denote by hi and x±i the Cartan and Chevalley genera-

tors, i.e., the elements of the subspaces Ĝ0 and Ĝ±1 of Ĝ endowed with the principal gradation.
They satisfy the defining relations

[hi, hj] = 0, (A.1)

[hi, x±j] = ±kijx±j, (A.2)

[x+i, x−j] = δijhi, (A.3)

1 ≤ i, j ≤ r; where kij are the elements of the Cartan matrix of Ĝ. The generators in (A.1-A.3)
also satisfy Serre relations. If Ĝ is an affine Kac–Moody Lie algebra, say of rank r+1, then the

matrix k in (A.1- A.3) is affine, i.e., degenerated with a single zero eigenvalue. For more details
on affine Lie algebras see [22]. It is convenient and traditional to enlarge the Cartan subalgebra

of Ĝ by a derivative element d such that

[d, hi] = 0, [d, x±i] = ±x±i,

and then the completed Cartan subalgebra has dimension r + 2. Positive integers mi in (2.2)

are defined as the lowest for which ∑
i

kjimi = 0. (A.4)

Then

c =
r∑

i=0

mihi, (A.5)

belongs to the center of Ĝ.

B. Second Drinfeld realization
of quantized universal enveloping algebra U ′q(ŝl2)

A quantized universal enveloping algebra U ′q(G) has, instead of (A.1 - A.3), the commutation
relations, e.g., in Jimbo–Drinfeld form [29,30,31,36,27,37])

[hqi , h
q
j ] = 0, (B.1)

[hqi , x
q
±j] = ±kijxq±j, (B.2)

[xqi , x
q
j] = δij

q
hq
i

i − q
−hq

i

i

qi − q−1i
, (B.3)

where qi is defined as qi = edi h̄ in terms of the Planck constant h̄ and coprime integers di such

that d k is a symmetric matrix. There are also analogues of Serre relations.
Let us recall the second Drinfeld realization of the quantized universal enveloping algebra

U ′q(ŝl2), (i.e., Uq(ŝl2) without a grading operator) [29,30,27], which is a natural quantum analogue

of the algebra ŝl2 in the loop realizations. U ′q(ŝl2) is an associative algebra generated by {x±k , k ∈
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ZZ; an, n ∈ {ZZ − 0}; γ±12 , K}, where γ±
1
2 belong to the center of the algebra, satisfying the

commutation relations

[K, ak] = 0, (B.4)

[ak, al] = δk,−l
[2k]

k

γk − γ−k

q − q−1
, (B.5)

Kx±kK
−1 = q±2x±k , (B.6)

[an, x
±
k ] = ±

[2n]

n
γ∓

|n|
2 x±n+k, (B.7)

[x+k , x
−
n ] =

γ(k−n)/2ψk+n − γ(n−k)/2φk+n
q − q−1

, (B.8)

x±k+lx
±
l − q±2x±l x

±
k = q±2x±k x

±
l+1 − x±l+1x

±
k . (B.9)

The generators φk and ψ−k, k ∈ ZZ+ are related to ak and a−k by means of the expressions

∞∑
k=0

ψmz
−m = Kexp

(
(q − q−1)

∞∑
n=1

akz
−k

)
, (B.10)

∞∑
k=0

φ−mz
m = K−1exp

(
−(q − q−1)

∞∑
n=1

a−kz
k

)
, (B.11)

i.e.,
ψm = 0, m < 0, (B.12)

φm = 0, m > 0. (B.13)

Here [k] = qk−q−k
q−q−1 .

It is easy to define the grading operators corresponding to the principal and homogeneous

gradation of U ′q(ŝl2) by analogy with the grading of U ′q(G) where G is a simple Lie algebra [37].
The principal gradation can be realized with the help of the operator

Dpx =
1

2
qK−1

(
d

dq
(KxK−1)

)
K + 2λ

d

dλ
x, (B.14)

where x ∈ Uq(ŝl2) and λ is an affinization parameter. The power of λ is denoted by the subscript

of U ′q(ŝl2) generators. Then the grading subspaces are

qĜ0 = {K, γ},

qĜ2n+1 = {x+n , x−n+1, n ∈ ZZ},

qĜ2n = {an, n ∈ {ZZ− 0}}.

(B.15)

The grading operator for the homogeneous gradation is

Dhx = 2λ
d

dλ
x, (B.16)
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so that the grading subspaces are

qĜ0 = {K, γ, x+0 , x
−
0 },

qĜn = {x+n , x−n , an, n ∈ {ZZ− 0}}. (B.17)

The level one irreducible integrable highest weight representation of
U ′q(ŝl2) can be constructed in the followingway [31,27]. Let P = ZZα

2
, Q = ZZα be the weight/root

lattice of sl2. Consider the group algebras F [P ], F [Q] of P and Q. The multiplicative basis
of F [P ] is formed by e

α
2 n, n ∈ ZZ. The F [Q]-module is split into F [P ] = F [P ]0 ⊕ F [P ]1 where

F [P ]n = F [Q]e
α
2 n. The sl2-module structure on the space W = F [a−1, a−2, ...]⊗ F [P ] is given

by the action of the ak, k ∈ {ZZ− 0} and eα, ∂α = a0 generators in accordance with the rules

ak(f ⊗ eβ) = (akf ⊗ eβ), k < 0,

ak(f ⊗ eβ) = ([ak, f ]⊗ eβ), k > 0,

eα(f ⊗ eβ) = (f ⊗ eα+β),

∂α(f ⊗ eβ) = (α, β)(f ⊗ eβ),

K = 1⊗ q∂α ,

γ = q ⊗ id.

(B.18)

Then W is a U ′q(ŝl2)-module. Its submodules are isomorphic to irreducible highest weight
modules V (Λn) with the highest vectors |Λn >= |1⊗ e

αn
2 >, n = 0, 1.

C. Conformal Toda systems

Let us recall some known results concerning conformal Toda systems in the classical region.

The conformal abelian Toda fields φ =
r∑

i=1
hiφi (here hi, i = 1, ..., r denote the Cartan elements

of G) are associated with a complex simple Lie algebra G of rank r endowed with the principal
gradation, and satisfy the equations

∂+∂−φ+
4η2

β

r∑
i=1

mi

αi

α2i
eβαi·φ = 0 (C.1)

(mi are the labels on the Dynkin diagram of G). In (C.1) β is a coupling constant and η is a

length scale factor. The general solution to the system (C.1) is represented in a holomorphically
factorisable form [2]

e−βλj·φ =< Λj|γ−1+ µ−1+ µ−γ−|Λj > , (C.2)

where γ±(z±) :M→ G0, and µ±(z±) :M→ G± are holomorphic and anti–holomorphic map-

pings respectively; |Λj >, j = 1, ..., r is the highest vector of the j–th fundamental representation
of G labelled by the fundamental weight λj. The mappings µ±(z

±) satisfy

∂±µ± = κ±µ±, (C.3)
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where κ± realizes the mappingsM→ G±1, i.e.,

κ±(z
±) =

r∑
i=1

Ψ
(0)
±i · x±i, (C.4)

(xi, i = 1, ..., r are Chevalley generators of G) and

Ψ
(0)
±j = mje

∓β
r∑
i=1

kjiφ
(0)

±i
, (C.5)

where φ
(0)
±i are free fields.

D. Soliton solution of the sine-Gordon in homogeneous gradation

The other way to construct soliton solutions to the sine-Gordon equation is to consider the

general solution (2.2) in the homogeneous gradation and to use vertex operators [22] which are
related to the homogeneous Heisenberg subalgebra of ŝl2. Take the general solution (2.2) to the
affine Toda system (2.1). In the homogeneous gradation the mappings γ± can be parametrized

as
γ± = edφdecφceφ

±
0 x

±
0 , (D.1)

where d is the grading operator, c is the center of ŝl2 and x±k are the generators of the subspaces
Ĝk corresponding to the homogeneous gradation. The mappings µ± satisfy

∂±µ± = κ±µ±, (D.2)

where

κ±(z
±) = a±1 + φ±x±1 . (D.3)

In order to obtain a soliton solution we put

φ± = 0, φ±0 = 0. (D.4)

Then the general solution reduces to

e−βφ(z
+,z−) =

< Λ1|ea+1z
+

µ(0)ea−1z
− |Λ1 >

< Λ0|ea+1z+µ(0)ea−1z− |Λ0 >
. (D.5)

The following group element µ(0) in (D.5) generates the N–soliton solution

µ(0) = e−
α
2N

N∏
n=1

[
exp

(
(−1)∂α+1iQnΦ(ζn)

)
e
α
2 ζ

1
2∂α
n

]
, (D.6)

where the action of the operators 1
2
∂α and e

α
2 on the highest vectors |Λn >= |1⊗eα2 n >, n = 0, 1

is the same as in the case of U ′q(ŝl2) (see Appendix B) [22] when q = 1.

The operator Φ(ζ) is given by

Φ(ζ) = exp

( ∞∑
n=1

a−n
n

ζn
)
exp

(
−
∞∑
n=1

a+n
n

ζ−n
)
, (D.7)
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and diagonalizes the action of a±k, k ∈ IN, i.e.,

[a±k,Φ(ζ)] = ζ±kΦ(ζ). (D.8)

Also note that a product of two vertex operators can be normally ordered as

Φ(ζ1)Φ(ζ2) = X(x) : Φ(ζ1)Φ(ζ2) :, (D.9)

where

X(x) = exp

(
−
∞∑
n=1

x2n

n

)
= exp

(
log(1− x2)

)
. (D.10)

When x = 1, X(x) vanishes which has a consequence that

Φ(ζ) ·Φ(ζ) = 0. (D.11)

Therefore, an exponentiation of the Φ(ζ) operator terminates after the first order.

In the limit q −→ 1 soliton-soliton, antisoliton-antisoliton and soliton-antisoliton scattering
reduce to the classical case. I.e., (E.4)-(E.6) (see Appendix E), degenerate to

F a(ζ1)F
b(ζ2) =

1

x

X(x)

X(x−1)
F b(ζ2)F

a(ζ1), (D.12)

where x2 = ζ2
ζ1
, a, b denote soliton (antisoliton), and the factor 1

x
comes from the commutation

of e
α
2 ζ

1
2 ∂α
1 and e

α
2 ζ

1
2∂α
2 operators (see Section 3). Therefore, the vertex operator generating a

classical soliton solution is
F (ζ) = QΦ(ζ)e

α
2 ζ

1
2∂α
2 . (D.13)

Taking into account the properties of the operator F (ζ), we rewrite the solution (D.5) as

e−βφ(z
+,z−) =

< Λ1|
(
1 + (−1)∂α+1iQΦ(ζ)

)
e
α
2 ζ

1
2∂α |Λ1 >

< Λ0| (1 + (−1)∂α+1iQΦ(ζ))e
α
2 ζ

1
2∂α |Λ0 >

. (D.14)

The final form of (D.14) is

e−βφ(z
+,z−) =

1+ iQeζz
+−ζ−1z−

1− iQeζz+−ζ−1z−
· ζ. (D.15)

The antisoliton solution can be associated with the vertex operator

F̄ (ζ) = −QΦ(ζ)e
α
2 ζ

1
2∂α. (D.16)

E. Exact factorized S-matrix of quantum sine-Gordon model

The quantum sine-Gordon model has been considered in the framework of the S-matrix

approach in [12]. The model is known as an example of the relativistic quantum field theory
leading to the factorized scattering. In the special construction given in [12] some associative non-

commuting operators Fi(θj) correspond to particles in the theory. The variable θj is associated
with the rapidity and i in Fi(θj) denotes the kind of a particle. Asymptotic in and out states

in the scattering theory consist of Fi(θj) operators product. Particles of the same kind are
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represented by identical operators; in this the statistics is not taken into account. The scattering
of particles is described by the factorized S–matrix, i.e., the commutation of two operators

depends on the S–matrix elements. Namely, for two particles of different masses one has (the
reflection is forbidden in this case)

F1(θ1)F2(θ2) = ST (θ12)F2(θ2)F1(θ1). (E.1)

When particles are of a different kind but have equal masses, we should also include the reflection
process

F1(θ1)F2(θ2) = ST (θ12)F2(θ2)F1(θ1) + S1,2R (θ12)F1(θ2)F2(θ1), (E.2)

which gives

F1(θ1)F2(θ2) = S(θ12)F2(θ2)F1(θ1), (E.3)

when particles are identical. Thus, any product of operators identified with a state can be

rearranged by means of rules (E.1)-(E.3). Each commutation of two operators denotes a two-
particles collision.

The spectrum of the quantum sine-Gordonmodel consists of solitons, antisolitons and soliton-
antisoliton bound states (quantum doublets). In terms of operators, the commutation rules for
the soliton-soliton, antisoliton-antisoliton and soliton-antisoliton scattering can be written as

A(θ1)A(θ2) = S(θ12)A(θ2)A(θ1), (E.4)

Ā(θ1)Ā(θ2) = S(θ12)Ā(θ2)Ā(θ1), (E.5)

A(θ1)Ā(θ2) = ST (θ12)Ā(θ2)A(θ1) + SR(θ12)A(θ2)Ā(θ1), (E.6)

where A(θi) and Ā(θi) denote a soliton and an antisoliton states, respectively. Soliton-antisoliton
bound states and the soliton scattering have been investigated in the semiclassical approach, see

references in [12].
The calculation of the S-matrix elements in [12] was based on the S-matrix analytical prop-

erties following from general principles of the quantum field theory and on the semiclassical data
analysis. The S-matrix elements S(θ), ST (θ) and SR(θ) are given by

ST (θ) = −i
sinh

(
8π
γ
θ
)

sin
(
8π2

γ
θ
) SR(θ), (E.7)

S(θ) = −i
sinh

(
8π
γ
(iπ− θ)

)
sin
(
8π2

γ
θ
) SR(θ), (E.8)

SR(θ) =
1

π
sin

(
8π2

γ
θ

)
U(θ), (E.9)

where γ = |β|2

1− |β|
2

8π

is the renormalized coupling constant

U(θ) = Γ

(
8π

γ

)
Γ

(
a+ i

8θ

γ

)
Γ

(
1− 8π

γ
− i

8θ

γ

) ∞∏
k=1

Rn(θ)Rn(iπ − θ)

Rn(0)Rn(iπ)
, (E.10)

Rn(θ) =
Γ(2n8π

γ
+ i 8θ

γ
)Γ(1 + 2n8π

γ
+ i 8θ

γ
)

Γ((2n+ 1) 8π
γ
+ i 8θ

γ
)Γ(1 + (2n− 1) 8π

γ
+ i 8θ

γ
)
. (E.11)
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F. Quantum dilogarithm

The regularized version of the quantum dilogarithm was introduced in [25]

Sreg
q (w) = exp

1

4

+∞∫
−∞

dx

x

(w)−ix

sinh(πx) sinh(µx)

 , (F.1)

where q = eiµ, and a contour of integration in (F.1) goes above the pole at the origin. The
quantum dilogarithm satisfies the defining property

Sreg
q (qw)

Sreg
q (q−1w)

=
1

1 + w
. (F.2)

The unregularized version of the quantum dilogarithm [24,25]

Sunreg
q (w) =

∞∏
k=0

(1 + q2k+1w) = exp

( ∞∑
k=1

(−w)k
k(qk − q−k)

)
, (F.3)

satisfies the same defining property (F.2), but the first expression in (F.3) one converges when

|q| < 1, while the second converges when |q| �= 1, and |w| < 1. The unregularized quantum
dilogarithm is related to the regularized one by the formula

Sreg
q (x) = Sunreg

q (x) · Sunreg

q̃
(x̂), (F.4)

where q̃ = q
π2

µ2 and x̂ = x−
π
µ . Equation (F.4) can be easily verified by means of the residue

calculation. Note that the unregularized dilogarithm divergencies at |q| = 1 cancel each other
in (F.4).
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