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Abstract

Boldyrev E.M. Peculiarities of Particle Motion in the Plane Monochromatic Electromagnetic Wave Field:
IHEP Preprint 2000-55. – Protvino, 2000. – p. 9, tables 10, refs.: 6.

With a spiral approach of a charged particle motion (into a beam) in the plane monochromatic
elliptically polarized electromagnetic wave field some peculiarities of this motion were brought out. It is
shown that the motion of a low energy particle is physically predicable. The motion doesn’t depend on
a particle movement along or against the wave spreading; the particle frequency is comparable with a
wave frequency; the deflection of particle from the axis of initial motion is inversely proportional to its
mass. It is shown that the motion of a high energy particle (an ultrarelativistic particle) has a number
of peculiarities. The motion depends essentialy on the way the particle moves along or against the wave
spreading. If the particle moves along a wave spreading, the particle frequency is a few cycles only or even
less. The deflection of particle from the axis of initial motion may be proportional to the particle mass. If
the particle moves against the wave spreading, the frequency is twice as much as the wave frequency and
the motion of particle is independent of the particle mass. The peculiarities associated with the particle
mass were first established.

aNNOTACIQ

bOLDYREW e.m. oSOBENNOSTI DWIVENIQ ˆASTICY W “LEKTROMAGNITNOM POLE PLOSKOJ MONOHROMATIˆE-
SKOJ WOLNY: pREPRINT ifw— 2000-55. – pROTWINO, 2000. – 9 S., 10 TABL., BIBLIOGR.: 6.

pRI USLOWII WINTOWOGO PRIBLIVENIQ DWIVENIQ ˆASTICY (W PUˆKE) W “LEKTROMAGNITNOM POLE

PLOSKOJ MONOHROMATIˆESKOJ “LLIPTIˆESKI POLQRIZOWANNOJ “LEKTROGNITNOJ WOLNY WYQWLENY OPRE-
DELENNYE OSOBENNOSTI UKAZANNOGO DWIVENIQ. pOKAZANO, ˆTO ESLI DLQ ˆASTICY NIZKOJ “NERGII DWI-
VENIE FIZIˆESKI PREDSKAZUEMO: DWIVENIE PRAKTIˆESKI NE ZAWISIT OT TOGO, KAK DWIVETSQ ˆASTICA—
WDOLX ILI PROTIW RASPROSTRANENIQ WOLNY; ˆASTOTA KOLEBANIQ ˆASTICY SRAWNIMA S ˆASTOTOJ WOLNY;
OTKLONENIE ˆASTICY OT OSI NAˆALXNOGO DWIVENIQ OBRATNO PROPORCIONALXNO EE MASSE, TO DLQ ˆA-
STICY WYSOKOJ “NERGII (ULXTRARELQTIWISTSKOJ ˆASTICY) DWIVENIE OBLADAET RQDOM OSOBENNOSTEJ:
DWIVENIE ˆASTICY SU]ESTWENNO ZAWISIT OT TOGO, KAK DWIVETSQ ˆASTICA — WDOLX ILI PROTIW RAS-
PROSTRANENIQ WOLNY. w PERWOM SLUˆAE ˆASTOTA KOLEBANIQ ˆASTICY MENX[E BOLEE ˆEM NA DESQTX

PORQDKOW DLINY WOLNY I SU]ESTWUET WOZMOVNOSTX TOGO, ˆTO OTKLONENIE ˆASTICY OT OSI NAˆALXNOGO

DWIVENIQ PROPORCIONALXNO EE MASSE. wO WTOROM SLUˆAE ˆASTOTA KOLEBANIQ ˆASTICY WDWOE BOLX[E

ˆASTOTY WOLNY I DWIVENIE ˆASTICY NE ZAWISIT OT EE MASSY. oSOBENNOSTI, SWQZANNYE S MASSOJ

ˆASTICY, WYQWLENY WPERWYE.
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INTRODUCTION

In high-energy physics considerable attention has been recently focused on the experimental
set-ups using the beammotion of charged particles in the electromagnetic laser wave field ([1],[2]).

This invites further study of a charged particle motion in the plane monochromatic elliptically
polarized electromagnetic wave field (TEM) as most fitting the description of a laser wave field.

Motion of charged particles (electron, proton) of both low (103 eV) and high energy (1012 eV)
for different parameters of TEM was calculated from the formulae in [3]. The calculational
results (see APPENDIX A) have revealed some peculiarities of the motion of a charged high

energy particle. The motion depends essentially on how the particle moves along or against the
wave spreading. If the particle moves along the wave spreading, the particle frequency is a few

cycles only or even less. The deflection of the particle from the axis of its initial motion may be
proportional to the particle mass. If the particle moves against the wave spreading, the particle

frequency is twice as much as the wave frequency and the motion of particle is independent of
the particle mass.

This is in contrast to the case with a low energy particle. The motion does not depend on
how a particle moves along or against the wave spreading; the particle frequency is comparable

with a wave frequency; the deflection of particle from the axis of initial motion is inversely
proportional to its mass. It is physically predictable.

In recent paper [4], to account for these facts an analysis of the motion of particle has been

made for a special case: the zero initial conditions (with the exception for an initial longitudinal
momentum) and with the phase of TEM being virtually zero.

In the present paper we pursue a related analysis for the initial conditions characteristic of
a particle moving in the beam and with the phase of TEM being not virtually zero.

The stated generality of this analysis has made possible practical estimations of the particle
motion in electromagnetic laser wave field.

1. PRELIMINARIES

The [x, y, z, ct] is the laboratory system of coordinates and it has the signature [−,−,−,+]
(c is the velocity of light). The �V = (Vx, Vy, Vz) is the vector. Vx, Vy, Vz are the coordinates of
�V . V = |�V | =

√
(V 2x + V 2y + V 2z ).
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Infinitesimal quantities are considered in comparison with 1. In this case I(±a) = 1 ± a if
a� 1.

We consider a particle with mass m and charge e (e = ge|e|, ge = ±1, |e| is the magnitude
of e).

Particle parameters

�r0 = (x0, y0, z0), �P0 = (P0x, P0y, P0z), and E0 are the respective radius-vector of the initial
position of particle, initial momentum of particle, and initial energy of particle at the initial

time instant t0. In this case, P0x = P0cosϕ0sinθ0, P0y = P0sinϕ0sinθ0, P0z = P0cosθ0, P0xy =

max(|P0x|, |P0y), �π0 = �P0
mc
.

Wave parameters
�E and �H are the respective electric and magnetic fields. E1 and E2 are the respective

amplitudes of Ex and Ey, Emax = max(|E1|, |E2|). ω and ϕ are the respective frequency and

phase of TEM. g = ±1 is the degree of polarization. ξ = t− z
c
.

�E = (E1 cos(ωξ − ϕ), gE2 sin(ωξ − ϕ, 0).
�H = (−gE2 sin(ωξ − ϕ), E1 cos(ωξ − ϕ), 0),

ξ0 = t0 − z0
c
, φ0 = ωξ0 − ϕ, φ = ωξ − ϕ, C(φ) = cosφ− cosφ0, S(φ) = sinφ − sinφ0.

The TEM propagation in the z direction.

T = t− t0.
�r = (x, y, z) = (x(t), y(t), z(t)), �P = (Px, Py, Pz) = (Px(t), Py(t), Pz(t)), �v = (vx, vy, vz) =

(vx(t), vy(t), vz(t)), �a = (ax, ay, az) = (ax(t), ay(t), az(t)), and E = E(t) are the respective radius-
vector of particle, momentum of particle,velocity of particle, acceleration of particle, and energy

of particle at t.

2. ANALYSIS OF MOTION

With our conventions the classical equations of motion are

�P = γm�v, E = γmc2,

d�P
dt
= e �E + e

c
[�v, �H], d�r

dt
= �v,

�P (t0) = �P0, �r(t0) = �r0,

(1)

where γ = 1√
1−β2

, β = v
c
.

It follows that the motion of particle in TEM is well determined if �r(t), �P (t), E(t), �v(t), and
�a(t) of particle are determined in the laboratory system of coordinates (t ∈ [t0,∞)).

Here the motion of particles of different mass are determined at the same initial conditions.
On this assumption, �P0, and �r0 are independent of the particle mass.

The solution of Eq. (1) can be considered as a spiral approximation. Hereafter we shall use

the term “a quasi-spiral motion” for the spiral approximation.
The quasi-spiral motion is defined as the motion wherein z(t) is linear in t, vz(t) and Pz(t)

are constant, and |az(t)| � |ax(t)|, |ay(t)| with an accuracy of infinitesimals.
That approximation is due to the following fact: For a spiral motion, the quasi-spiral motion

is the simplest and it spans a wide enough class of problems, in particular, so important for the
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practical implementation the class of problems such as the motion of high energy particles. As
an illustration, the data given in APPENDIX A showed that only rows 7, 8 of Tables 1, 2 did

not fit this approximation. At the same time the spiral motion of a particle is possible in TEM
of a circular polarization only under those initial data conditions that they cannot be realized

for the beam of particles. In this the case of a linear polarization is ruled out [3].
The quasi-spiral motion is determined by the requirement so that Γ� 1, where

Γ = 4 |e|
ω
Emax(

|e|
ω
Emax + P0xy)G (2)

and G is determined below.
The area of particle and wave parameters, where the above requirement (2) is obeyed, will

be called the area of quasi-spiral motion.
The motion of the particle in the beam is determined by the requirement so that P0x � P0z

and P0y � P0z. For this it will suffice to require that θ0 = θ (n0 = 1) and θ0 = π−θ (n0 = −1)
where θ � 1 and π = 3.14....

Then P0x = P0cosϕ0θ, P0y = P0sinϕ0θ, and P0z = n0P0I(−θ).
In that approximation solution (1) is presented in APPENDIX B.

A low energy particle. E0 ≈ mc2 i.e. π0 � 1.

In this case we have: R = 1
m
, Z = n0P0

1
m
, P = n0, A1 = I(−n0π0), A2 =

1
m2c2

, G =
1
mc

1
P0
I(n0π0 + θ2).

E = mc2I(n0π0Γ
2 + π20), vz =

1
m
n0P0I(−n0π0Γ2 − π20).

It immediately shows that the motion of the particle is inversely related to the particle mass.
The particle frequency is nearly equal to the wave frequency. The area of quasi-spiral motion

is essentially bounded as P0 � 1. Moreover, it can be enhanced at the cost of an increase of
the wave frequency. In other words, P0 and the wave frequency balance out each other, which

narrows down this area.

A high energy particle. E0 � mc2 and thus π−10 � 1. In this case we have R = c
P0
, A2 =

1
P20
, and

E = cP0I(Γ
2 + π−20 ).

Furthermore, a distinction needs to be made between the case n0 = 1 and the case n0 = −1.
Case n0 = 1. In this case: Z = cI(Γ2 − θ2), P = I(Γ2 − θ2), and vz = cI(−θ2 − π−20 ).
Here a possibility exists that φ� 1.
In the case of n0 = 1, a distinction needs to be made between the case π−20 < θ2 and the

case θ2 < π−20 .
In the case of π−20 < θ2, we have A1 = θ2, G = 1

P20
θ2.

It immediately follows that in this case TEM becomes less and less discriminate to the
particle mass as θ increases (see Tables 4,5). In this case the area of the quasi-spiral motion
is sufficiently large, because in contrast to the foregoing case, the particle parameters and the

wave parameters complement each other from the viewpoint of expanding this area and enclose
the values of all the parameters used in APPENDIX A. In rows 7, 8 of Table 4 Γ ≈ 0.01.

In the case of θ2 < π−20 , we have A1 =
1
2
m2c2

P20
, G = 1

2
1

m2c2
I(θ2).

If φ� 1, the motion of particle varies in direct proportion to the particle mass (see Tables
3,9). The area of the quasi-spiral motion is narrowed as compared with to preceding case. For

example, in rows 7, 9 of Table 3 Γ ≈ 0.1.
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In both cases, the particle frequency ωp = A1ω falls far short of the wave frequency (see
Tables 5,6,9,10), in this with decreasing θ the particle frequency diminishes especially for electron

(cf. Tables 3,4).

Case n0 = −1.
A1 = 2, Z = −cI(Γ2 − θ2), P = −I(Γ2 − θ2), G = 1

2
1
P20
, and

vz = −cI(−θ2 − π−20 ).

That is to say, in this case the particle frequency is twice as much as the wave frequency.

The motion of particle is independent of its mass (see Table 6). At least, the quality is still
retained in the circular cone with the axis along Oz and with apex angle of cone (π− 10−3) rad
(see Table 5). In this case the area of the quasi-spiral motion is the greatest, since the particle
parameters and the wave parameters complement each other from the viewpoint of expanding

this area. For example, Γ ≈ 10−13 in rows 7, 8 of Table 5.

Conclusion

In summary let us take up the results of APPENDIX A.
Comparing rows 5, 7 of Tables 1, 2 and rows 7, 8 of Tables 7, 6 we see that the motion of

particle is practically the same in these cases. It allows one to conclude that the motion of a low
energy particle in high-powered TEM is independent of the polar angle in the range from 0 to

10−3 rad and, thus, the particles, entering TEM with an angled initial momentum in this range
move the same. Consequently, TEM may be used both as a focuser or as a means for deflecting
the beam. In the latter case, ρ remains invariant within the indicated limits of angles and it is

possible that these limits may be belled up to 10−2 rad as the estimations above show.
Further note that ∆E has a great value in rows 7, 8 of Tables 1, 2 (7, 8) and in the last rows

of Tables 4, 5. This suggest the use of TEM as an accelerator of charged particles. But here,
while the problem of radiative friction is not as challenging as the motion of a charged particle

in the stationary uniform magnetic field, this problem requires a more sophisticated treatment
with the use of TEM as an accelerater.

There is a need to note that the particle frequencies are various for the different P0, in
particular, for electrons with Θ0 = 0 (cf. Table 1 and Table 3). Here the difference of frequencies

are by thirteen orders! And the particle frequency is twice that of the wave frequency when
both the particle and TEN move to meet each other (see Table 6).

Finally, it should be noted that the particle parameters and the wave parameters given in

APPENDIX A are the limiting values for m, P0,Θ0, P , and λ for the bulk of beams and TEM
([5],[6]). Since these parameters in �r, �P0, and �a change monotoneously [3], so the results of

APPENDIX A provide a useful approximate estimate on the motion of an arbitrary particle in
an arbitrary TEM.
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Table 1.

Particle is electron.

| �P0| = 103 eVc Θ = 0rad.
N P λ Sp ρ ∆E axy az ω

1 10−3 0.5 0(x) 0.7 ∗ 10−9 0.5 ∗ 10−15 0.2 ∗ 1016 0.7 ∗ 105 0.6 ∗ 1015
2 - - 0(y) 0.4 ∗ 10−15 0.1 ∗ 10−15 - - -
3 - 103 0(x) 0.1 ∗ 10−5 0.2 ∗ 10−8 - 0.1 ∗ 109 0.3 ∗ 1012
4 - - 0(y) 0.1 ∗ 10−8 0.5 ∗ 10−9 - - -
5 1010 0.5 0(x) 0.2 ∗ 10−2 0.5 ∗ 10−2 0.8 ∗ 1022 0.5 ∗ 1018 0.6 ∗ 1015
6 - - 0(y) 0.1 ∗ 10−8 0.1 ∗ 10−2 - - -
7 - 103 0(x) 0.4 ∗ 101 0.2 ∗ 105 - 0.1 ∗ 1022 0.3 ∗ 1012
8 - - 0(y) 0.5 ∗ 10−3 0.4 ∗ 104 - - -

Table 2.

Particle is electron.

| �P0| = 103 eVc Θ = 10−3rad.
N P λ Sp ρ ∆E axy az ω

1 10−3 0.5 0(x) 0.6 ∗ 10−4 0.5 ∗ 10−15 0.2 ∗ 1016 0.6 ∗ 105 0.6 ∗ 1015
2 - - 0(y) - 0.2 ∗ 10−10 - 0.5 ∗ 1010 -
3 - 103 0(x) - 0.2 ∗ 10−8 - 0.1 ∗ 109 0.3 ∗ 1012
4 - - 0(y) - 0.2 ∗ 10−7 - 0.5 ∗ 1010 -
5 1010 0.5 0(x) 0.2 ∗ 10−2 0.5 ∗ 10−2 0.8 ∗ 1022 0.6 ∗ 1018 0.6 ∗ 1015
6 - - 0(y) 0.6 ∗ 10−4 0.1 ∗ 10−2 - - -
7 - 103 0(x) 0.4 ∗ 101 0.2 ∗ 105 - 0.1 ∗ 1022 0.3 ∗ 1012
8 - - 0(y) 0.4 ∗ 10−2 0.4 ∗ 104 - - -

Table 3.
Particle is electron.

| �P0| = 1012 eVc Θ = 0rad.

N P λ Sp ρ ∆E axy az ω

1 10−3 0.5 0(x) 0.1 ∗ 10−28 0.1 ∗ 10−21 0.8 ∗ 10−10 0.8 ∗ 10−27 0.8 ∗ 102
2 - - 0(y) 0.8 ∗ 10−12 - 0.2 ∗ 10−3 - -
3 - 103 0(x) 0.7 ∗ 10−32 - 0.4 ∗ 10−13 0.9 ∗ 10−27 0.4 ∗ 10−1
4 - - 0(y) 0.8 ∗ 10−22 - 0.2 ∗ 10−3 - -
5 1010 0.5 0(x) 0.4 ∗ 10−22 0.0 0.3 ∗ 10−3 0.8 ∗ 10−14 0.8 ∗ 102
6 - - 0(y) 0.3 ∗ 10−15 0.1 ∗ 10−8 0.5 ∗ 103 - -

7 - 103 0(x) 0.2 ∗ 10−25 0.0 0.1 ∗ 10−6 - 0.4 ∗ 10−1
8 - - 0(y) 0.3 ∗ 10−15 0.1 ∗ 10−8 0.5 ∗ 103 - -
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Table 4.
Particle is electron.

| �P0| = 1012 eVc Θ = 10−3rad.
N P λ Sp ρ ∆E axy az ω

1 10−3 0.5 0(x) 0.3 ∗ 10−1 0.2 ∗ 10−15 0.6 ∗ 103 0.9 ∗ 10−14 0.3 ∗ 109
2 - - 0(y) - −0.2 ∗ 10−1 0.2 ∗ 103 0.2 -

3 - 103 0(x) - 0.0 0.6 0.1 ∗ 10−13 0.2 ∗ 106
4 - - 0(y) - −0.4 ∗ 10−1 0.6 ∗ 103 0.6 -

5 1010 0.5 0(x) - 0.2 ∗ 10−2 0.2 ∗ 1010 0.9 ∗ 10−1 0.3 ∗ 109
6 - - 0(y) - 0.1 ∗ 106 0.6 ∗ 109 0.1 ∗ 107 -

7 - 103 0(x) - 0.1 ∗ 10−8 0.2 ∗ 107 0.1 0.2 ∗ 106
8 - - 0(y) - 0.1 ∗ 106 0.2 ∗ 1010 0.2 ∗ 107 -

Table 5.

Particle is electron (proton).

| �P0| = 1012 eVc Θ = (π − 10−3)rad.
N P λ Sp ρ ∆E axy az ω

1 10−3 0.5 0(x) 0.3 ∗ 10−1 −0.1 ∗ 10−21 0.2 ∗ 1010 0.4 ∗ 10−7 0.1 ∗ 1016
2 - - 0(y) - 0.5 ∗ 10−8 - 0.2 ∗ 107 -
3 - 103 0(x) - 0.5 ∗ 10−15 0.2 ∗ 1010 0.7 ∗ 10−4 0.6 ∗ 1012
4 - - 0(y) - 0.1 ∗ 10−4 - 0.2 ∗ 107 -
5 1010 0.5 0(x) - 0.1 ∗ 10−8 0.8 ∗ 1016 0.4 ∗ 106 0.1 ∗ 1016
6 - - 0(y) - 0.1 ∗ 10−1 - 0.8 ∗ 1013 -
7 - 103 0(x) - 0.4 ∗ 10−2 0.8 ∗ 1016 0.7 ∗ 109 0.6 ∗ 1012
8 - - 0(y) - 0.3 ∗ 102 - 0.8 ∗ 1013 -

Table 6.

Particle is electron (proton).

| �P0| = 1012 eVc Θ = πrad.

N P λ Sp ρ ∆E axy az ω

1 10−3 0.5 0(x) 0.4 ∗ 10−15 −0.2 ∗ 10−21 0.2 ∗ 1010 0.4 ∗ 10−7 0.1 ∗ 1016
2 - - 0(y) 0.9 ∗ 10−22 - - - -
3 - 103 0(x) 0.6 ∗ 10−12 0.5 ∗ 10−15 - 0.7 ∗ 10−4 0.6 ∗ 1012
4 - - 0(y) 0.4 ∗ 10−15 0.1 ∗ 10−15 - - -
5 1010 0.5 0(x) 0.1 ∗ 10−8 0.1 ∗ 10−8 0.8 ∗ 1016 0.4 ∗ 106 0.1 ∗ 1016
6 - - 0(y) 0.3 ∗ 10−15 0.3 ∗ 10−9 - - -
7 - 103 0(x) 0.2 ∗ 10−5 0.5 ∗ 10−2 - 0.7 ∗ 109 0.6 ∗ 1012
8 - - 0(y) 0.1 ∗ 10−8 0.1 ∗ 10−2 - - -
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Table 7.
Particle is proton.

| �P0| = 103 eVc Θ = 0rad.
N P λ Sp ρ ∆E axy az ω

1 10−3 0.5 0(x) 0.4 ∗ 10−12 0.3 ∗ 10−18 0.1 ∗ 1013 0.2 ∗ 10−1 0.6 ∗ 1015
2 - - 0(y) 0.2 ∗ 10−18 0.7 ∗ 10−19 - - -

3 - 103 0(x) 0.7 ∗ 10−9 0.1 ∗ 10−11 - 0.4 ∗ 102 0.3 ∗ 1012
4 - - 0(y) 0.7 ∗ 10−12 0.2 ∗ 10−12 - - -

5 1010 0.5 0(x) 0.1 ∗ 10−5 0.3 ∗ 10−5 0.4 ∗ 1019 0.2 ∗ 1012 0.6 ∗ 1015
6 - - 0(y) 0.6 ∗ 10−12 0.5 ∗ 10−6 - - -

7 - 103 0(x) 0.2 ∗ 10−2 0.1 ∗ 102 - 0.4 ∗ 1015 0.3 ∗ 1012
8 - - 0(y) 0.3 ∗ 10−5 0.2 ∗ 101 - - -

Table 8.

Particle is proton.

| �P0| = 103 eVc Θ = 10−3rad.
N P λ Sp ρ ∆E axy az ω

1 10−3 0.5 0(x) 0.3 ∗ 10−7 0.3 ∗ 10−18 0.1 ∗ 1013 0.2 ∗ 10−1 0.6 ∗ 1015
2 - - 0(y) - 0.2 ∗ 10−13 - - -
3 - 103 0(x) - 0.1 ∗ 10−11 - 0.4 ∗ 102 0.3 ∗ 1012
4 - - 0(y) - 0.2 ∗ 10−10 - 0.1 ∗ 104 - -
5 1010 0.5 0(x) 0.2 ∗ 10−5 0.3 ∗ 10−5 0.4 ∗ 1019 0.2 ∗ 1012 0.6 ∗ 1015
6 - - 0(y) 0.4 ∗ 10−7 0.5 ∗ 10−6 - - -
7 - 103 0(x) 0.2 ∗ 10−2 0.1 ∗ 102 - 0.4 ∗ 1015 0.3 ∗ 1012
8 - - 0(y) 0.3 ∗ 10−5 0.2 ∗ 101 - - -

Table 9.

Particle is proton.

| �P0| = 1012 eVc Θ = 0rad.

N P λ Sp ρ ∆E axy az ω

1 10−3 0.5 0(x) 0.1 ∗ 10−15 0.2 ∗ 10−15 0.5 ∗ 103 0.7 ∗ 10−14 0.3 ∗ 109
2 - - 0(y) 0.2 ∗ 10−15 0.1 ∗ 10−15 - - -
3 - 103 0(x) 0.8 ∗ 10−19 0.0 0.5 0.1 ∗ 10−13 0.1 ∗ 106
4 - - 0(y) 0.3 ∗ 10−15 0.4 ∗ 10−15 0.5 ∗ 103 - -
5 1010 0.5 0(x) 0.4 ∗ 10−9 0.2 ∗ 10−2 0.2 ∗ 1010 0.7 ∗ 10−1 0.3 ∗ 109
6 - - 0(y) 0.7 ∗ 10−9 0.1 ∗ 10−2 - - -
7 - 103 0(x) 0.3 ∗ 10−12 0.7 ∗ 10−9 0.1 ∗ 107 0.1 0.1 ∗ 106
8 - - 0(y) 0.8 ∗ 10−12 0.4 ∗ 10−2 0.2 ∗ 1010 - -
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Table 10.

Particle is proton.

| �P0| = 1012 eVc Θ = 10−3rad.
N P λ Sp ρ ∆E axy az ω

1 10−3 0.5 0(x) 0.3 ∗ 10−1 0.3 ∗ 10−15 0.1 ∗ 104 0.2 ∗ 10−13 0.6 ∗ 109
2 - - 0(y) - 0.2 ∗ 10−1 0.7 ∗ 102 0.1 ∗ 101 -
3 - 103 0(x) - 0.7 ∗ 10−21 0.2 ∗ 101 0.5 ∗ 10−13 0.3 ∗ 106
4 - - 0(y) - 0.4 ∗ 10−1 0.8 ∗ 102 0.1 ∗ 101 -
5 1010 0.5 0(x) - 0.3 ∗ 10−2 0.4 ∗ 1010 0.2 0.6 ∗ 109
6 - - 0(y) - 0.4 ∗ 105 0.2 ∗ 109 0.4 ∗ 107 -
7 - 103 0(x) - 0.7 ∗ 10−8 0.7 ∗ 107 0.5 0.3 ∗ 106
8 - - 0(y) - 0.1 ∗ 106 0.2 ∗ 109 0.4 ∗ 107 0.3 ∗ 106
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APPENDIX A

The particle (electron or proton) with the value of P0 = 103, 1012 ( eVc ) in the initial point of four-
dimension space [0,0,0,0] with Θ = 0, 10−3, π, π − 10−3 (rad) and with φ0 = 0 (rad) enter TEM (a
laser wave) with a wave power P = 10−3, 1010 (Watt) with a wave length λ = 0.5, 103 (µm), and with
φ = 0 (rad). TEM is a linear polarization with Sp = 0(x). This is true that TEM is polarized in the
coordinate plane Oyz and with Sp = 0(y) this is true that TEM is polarized in the coordinate plane Oxz.

The terminal time is t = 10−9 (s).
From formulae [3] we calculate the following values corresponding to the motion of particle in TEM:

ρ =
√

x2(t) + y2(t)(sm), ∆E = E(t) − E0(eV ), axy =
√

a2x + a2y(
s
s2 ), az(

sm
s2 ), and ω( 1sec) is the particle

frequency.

APPENDIX B

x = x0 +R[(P0x − 1
ω eE1sinφ0)T − A−11

1
ω2 eE1C(φ)]

y = y0 + R[(P0y + g 1
ω
eE2cosφ0)T − gA−11

1
ω2

eE2S(φ)]
z = z0 + ZT.

Px = P0x +
1
ω eE1S(φ),

PN = P0y − g 1ω eE2C(φ),

Pz = PP0.
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ax = eR[A1E1cos(φ) + A2Ax],

ay = eR[gA1E2sin(φ) +A2Ay],

az = ecA1A2Az.

where
Ax =

e2

ω2E1S(φ)[−E21S(φ)cos(φ) + E22C(φ)sin(φ)]−
e
ω [gE1E2P0yS(φ)sin(φ) + 2E

2
1P0xS(φ)cos(φ) − E22P0xC(φ)sin(φ)]−

P0x(E1P0xcos(φ) + gE2P0ysin(φ),

Ay = g e
2

ω2
E2C(φ)[E

2
1S(φ)cos(φ) −E22C(φ)sin(φ)]−

e
ω
[gE1E2P0xC(φ)cos(φ) + 2E

2
2P0yC(φ)sin(φ) −E21P0yS(φ)cos(φ)]−

P0y(E1P0xcos(φ) + gE2P0ysin(φ),

Az =
e
ω [E

2
1S(φ)cos(φ) −E22C(φ)sin(φ)] + E1P0xcos(φ) + gE2P0ysin(φ).

Case n0 = 1 and φ� 1

x = x0 +R[(P0xT − eE1A1(−12T
2cosφ0 +

1
6
A1ωT

3sinφ0)]
y = y0 + R[(P0yT + eE2A1(

1
2
T 2sinφ0 +

1
6
A1ωT

3cosφ0)]
z = z0 + ZT.

Px = P0x − A1eE1(−Tcosφ + 1
2A1T

2ωsinφ0),

Py = P0y + gA1eE2(Tsinφ+
1
2A1T

2ωcosφ0),

Pz = PP0.

ax = R[A1eE1(cosφ0 −A1ωTsinφ0) + ωA2Ax],

ax = R[gA1eE2(sinφ0 + A1ωTcosφ0) + ωA2Ay],

az = ecA1A2Az.

Here Ax, Ay, Az are the preceding Ax, Ay, Az where the trigonometrical functions are expanded in φ� 1.
In all cases

vx = RPx, vy = RPy.
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