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The relationships between the fundamental dynamics and diffraction phenomena in scattering from
two-body composite system are discussed. A new simple formula for the shadow corrections to the total
cross-section in scattering from deuteron has been derived and new scaling characteristics with a clear
physical interpretation have been established. The effect of weakening the inelastic screening at super-high
energies is theoretically discovered. A comparison of the obtained structure for the shadow corrections
with the experimental data on proton(antiproton)-deuteron total cross sections has been performed. It
is shown that there is quite a remarkable correspondence of the theory with the experimental data.
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Introduction

From childhood we see a mysterious play of light and shadow which is really a manifestation

of diffraction phenomena. It turns out that diffraction phenomena take place in the processes
with particles and nuclei as well. At present time it is well established that the fundamental
dynamics of particles and nuclei contains the dynamics of diffraction phenomena as a special

case. Everybody who works in diffraction (high-energy) physics has learned that profiles of
shadows are related to the fundamental dynamics. So, our intuition suggests that there are very

deep relationships between three blocks shown on the diagram below

DYNAMICS

↙ ↖

DIFFRACTION =⇒ SHADOW

Here I’d like to discuss some aspects of these relationships in the framework of general structures

in the relativistic quantum theory. It will be shown that the diffraction phenomena with a shadow
dynamics in the scattering of a high-energy particle from composite systems, like nuclei, will be

characterized by the scaling laws with a quite clear physical meaning. Deuteron is the simplest
composite nuclear system, that’s why it may serve as the best laboratory to study shadow

dynamics. I’ll also attempt to demonstrate new structures of the shadow dynamics in the light
of existing experimental data on proton(antiproton)-deuteron total cross sections. Therefore,

above all, let me remind you some well-known facts to restore what was many years ago.
First of all, experimental and theoretical studies of high-energy particle interaction with

deuterons have shown that the total cross section in scattering from deuteron cannot be treated
as equal to the sum of total cross sections in scattering from free proton and neutron even in
the range of asymptotically high energies. Glauber was the first to propose the explanation of

this effect. Using the methods of diffraction theory, the quasiclassical picture for scattering from
composite systems and eikonal approximation for high-energy scattering amplitudes, he found

long ago [1] that the total cross section in scattering from deuteron could be expressed by the
formula

σd = σp + σn − δσ, (1)
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where

δσ = δσG =
σp · σn
4π

<
1

r2
>d . (2)

Here σd, σp, σn are the total cross sections in scattering from deuteron, proton and neutron,
< r−2 >d is the average value for the inverse square of the distance between the nucleons

inside a deuteron, δσG is the Glauber shadow correction describing the effect of eclipsing or
the screening effect in the recent terminology. The Glauber shadow correction has quite a

clear physical interpretation. This correction originates from elastic rescattering of an incident
particle on the nucleons in a deuteron and corresponds to the configuration when the relative

position of the nucleons in a deuteron is such that one casts its “shadow” on the other [1].
It was soon understood that in the range of high energies the shadow effects may arise

due to inelastic interactions of an incident particle with the nucleons of a deuteron [2,3,4,5,6].

Therefore, an inelastic shadow correction had to be added to the Glauber one.
A simple formula for the total (elastic plus inelastic) shadow correction had been derived

by Gribov [4] in the assumption of Pomeron dominance in the dynamics of elastic and inelastic
interactions. However, it was observed that the calculations performed by the Gribov formula

did not meet the experimental data: The calculated values of the inelastic shadow correction
over-estimated the experimental values.

The idea, that the Pomeron dominance is not justified at the recently available energies,
has been explored in papers [5]. The authors of Refs. [5] argued that the account of the triple-

reggeon diagrams for six-point amplitude in addition to the triple-pomeron ones allowed them to
obtain a good agreement with the experiment. Alberi and Baldracchini replied [6] and pointed
out that discrepancy between theory and experiment could not be eliminated by taking into

account the triple-reggeon diagrams: In fact, it is needed to modify the dynamics of the six-
point amplitude with more complicated diagrams than the triple Regge ones. This means that

up to now we had not, in the framework of Regge phenomenology, a clear understanding for the
shadow corrections in elastic scattering from deuteron.

The theoretical understanding of the screening effects in scattering from any composite
system is of fundamental importance, because the structure of shadow corrections is deeply

related to the structure of the composite system itself. At the same time the structure of the
shadow corrections displays new aspects for the fundamental dynamics.

Here we are concerned with the study of shadow dynamics in scattering from deuteron in
some details. A new simple formula for the shadow corrections to the total cross-section in
scattering from deuteron will be presented and new scaling characteristics with a clear physical

interpretation will be established. Furthermore, the effect of weakening the inelastic screen-
ing at super-high energies is theoretically discovered here. We also made a preliminary com-

parison of the obtained structure for the shadow corrections with the experimental data on
proton(antiproton)-deuteron total cross sections. It will be shown that there is quite a remark-

able correspondence of the theory with the experimental data.

1. Scattering from deuteron

In our papers [7,8,9] the problem of scattering from two-body bound states was treated with
the help of dynamic equations obtained on the basis of single-time formalism in QFT [7]. Now

I shall briefly sketch the basic results of our analysis of high-energy particle scattering from
deuteron. As has been shown in [8,9], the total cross-section in the scattering from deuteron
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can be expressed by the formula

σtothd (s) = σtothp (ŝ) + σtothn (ŝ)− δσ(s), (3)

where σhd, σhp, σhn are the total cross-sections in scattering from deuteron, proton and neutron,

δσ(s) = δσel(s) + δσinel(s), (4)

δσel(s) =
σtothp (ŝ)σ

tot
hn(ŝ)

4π(R2d+ Bhp(ŝ) +Bhn(ŝ))
, ŝ =

s

2
, (5)

BhN (s) is the slope of the forward diffraction peak in the elastic scattering from nucleon, 1/R
2
d

is defined by the deuteron relativistic formfactor [8]

1

R2d
≡ q

π

∫
d�∆Φ(�∆)

2ωh(�q + �∆)
δ
[
ωh(�q + �∆)− ωh(�q )

]
,

s

2Md

∼= q ∼=
ŝ

2MN

, (6)

δσel is the shadow correction describing the effect of eclipsing or screening effect during the
elastic rescatterings of an incident hadron on the nucleons in a deuteron.

The quantity δσinel in our approach represents the contribution of the three-body forces to
the total cross-section in the scattering from deuteron. For the definition of three-body forces

in relativistic quantum theory see recent paper [10] and references therein. For this quantity
paper [9] provides the following expression:

δσinel(s) = −(2π)
3

q

∫
d�∆Φ(�∆)

2Ep(�∆/2)2En(�∆/2)
ImR(s;−

�∆

2
,
�∆

2
, �q;

�∆

2
,−

�∆

2
, �q), (7)

where q is the incident particle momentum in the lab system (rest frame of deuteron), Φ(�∆) is

the deuteron relativistic formfactor, normalized to unity at zero,

EN(�∆) =
√

�∆2 +M2
N N = p, n,

MN is the nucleon mass. The function R is expressed via the amplitude of the three-body forces

T0 and the amplitudes of elastic scattering from the nucleons ThN by the relation

R = T0 +
∑
N=p,n

(T0G0ThN + ThNG0T0). (8)

A physical reason for the appearance of δσinel is directly connected with the inelastic interactions
of an incident particle with the nucleons of deuteron. It can be shown that the contribution

of three-body forces to the scattering amplitude from deuteron is related to the processes of
multiparticle production of inclusive type in the inelastic interactions of the incident particle
with the nucleons of deuteron [8]. This can be done with the help of the unitarity equation.

To understand the quantity δσinel more clearly we may consider an elementary model for
three-body forces. For simplicity, let us consider the model proposed in [9] where the imaginary

part of the three-body forces scattering amplitude has the form

ImF0(s; �p1, �p2, �p3; �q1, �q2, �q3) = f0(s) exp

{
−R20(s)

4

3∑
i=1

(�pi − �qi)
2

}
, (9)
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where f0(s), R0(s) are free parameters which, in general, may depend on the total energy of
three-body system. This model assumption is not so significant for our main conclusions but

allows one to make some calculations in a closed form. Indeed, calculating all the integrals, we
obtain for the quantity δσinel [9]

δσinel(s) =
(2π)9/2f0(s)χ̄(s)

sMN [R
2
d + R20(s)]

3/2
, (10)

where

χ̄(s) =
σhN (s/2)

2π[BhN(s/2) + R̄20(s)]
− 1, (11)

R̄20(s) = R20(s)(1− β), β =
R20(s)

4[R20(s) +R2d]
, (12)

and we suppose that asymptotically

Bhp = Bhn ≡ BhN , σtothp = σtothn ≡ σtothN .

2. Three-body forces and single diffraction dissociation

From the analysis of the problem of high-energy particle scattering from deuteron we have
derived the formula relating one-particle inclusive cross-section with the imaginary part of the

three-body forces scattering amplitude. This formula looks like

2EN(�∆)
dσhN→NX

d�∆
(s, �∆) = −(2π)

3

I(s)
ImF scr0 (s̄;−�∆, �∆, �q; �∆,−�∆, �q ) , (13)

ImF scr0 (s̄;−�∆, �∆, �q; �∆,−�∆, �q ) = ImF0(s̄;−�∆, �∆, �q; �∆,−�∆, �q )−

−4π
∫

d�∆′
δ
[
EN(�∆− �∆′) + ωh(�q + �∆′)− EN(�∆)− ωh(�q)

]
2ωh(�q + �∆′)2EN(�∆− �∆′)

×

ImFhN(ŝ; �∆, �q; �∆− �∆′, �q + �∆′ )ImF0(s̄;−�∆, �∆− �∆′, �q + �∆′; �∆,−�∆, �q ), (14)

EN(�∆) =

√
�∆2 +M2

N , ωh(�q) =
√

�q 2 +m2h, I(s) = 2λ1/2(s,m2h,M
2
N),

ŝ =
s̄ +m2h − 2M2

N

2
, s̄ = 2(s+M2

N )−M2
X , t = −4�∆2. (15)

I’d like to draw attention to the minus sign in the R.H.S. of Eq.(13). The simple model for the

three-body forces considered above (see Eq.(9)) gives the following result for the one-particle
inclusive cross-section in the region of diffraction dissociation

s

π

dσhN→NX
dtdM2

X

=
(2π)3

I(s)
χ(s̄)ImF0(s̄;−�∆, �∆, �q; �∆,−�∆, �q ) =

(2π)3

I(s)
χ(s̄)f0(s̄) exp

[
R20(s̄)

2
t

]
, (16)

where

χ(s̄) =
σtothN (s̄/2)

2π[BhN(s̄/2) + R20(s̄)]
− 1. (17)
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The configuration of particles momenta and kinematical variables are shown in Fig.1. The
variable s̄ in the R.H.S. of Eq.(16) is related to the kinematical variables of one-particle inclusive

reaction by equation (15).
We may call the quantity I(s)χ−1(s̄) a renormalized flux a là Goulianos. However, it should

be pointed out that in our approach we have a flux of real particles and function χ(s) has quite
a clear physical meaning. The function χ(s) originates from initial and final states interactions

and describes the screening effect or the effect of eclipsing of the three-body forces by two-body
ones [9,10].

If we take the usual parameterization for one-particle inclusive cross-section in the region of
diffraction dissociation

s

π

dσ

dtdM2
X

= A(s.M2
X) exp[b(s,M

2
X)t], (18)

then we obtain for the quantities A and b

A(s,M2
X) =

(2π)3

I(s)
χ(s̄)f0(s̄), b(s,M2

X) =
R20(s̄)

2
. (19)

Eq.(19) shows that the effective radius of three-body forces is related to the slope of diffrac-

tion cone for inclusive diffraction dissociation processes in the same way as the effective radius
of two-body forces is related to the slope of diffraction cone in elastic scattering processes.

Moreover, it follows from the expressions

R0(s̄) =
r0
M0

ln s̄/s′0, s̄ = 2(s+M2
N )−M2

X (20)

that the slope of diffraction cone for inclusive diffraction dissociation processes at a fixed energy
decreases with the growth of missing mass. This property agrees well qualitatively with the

experimentally observable picture. Actually, we have even a more remarkable fact: Shrinkage
or narrowing of diffraction cone for inclusive diffraction dissociation processes with the growth

of energy at a fixed missing mass and widening of this cone with the growth of missing mass
at a fixed energy is of universal character. As it follows from Eq.(16) this property is the
consequence of the fact that the one-particle inclusive cross-section depends on the variables s

and M2
X via one variable s̄ which is a linear combination of s and M2

X . This peculiar “scaling”
is the manifestation of O(6)-symmetry of the three-body forces (9). It would be very desirable

to experimentally study this new scaling law related to the symmetry of the new fundamental
(three-body) forces.

Now let us take into account that the functions χ and χ̄ are almost the same. In fact, χ(s) =
χ̄(s) if the condition R20(s) << R2d is realized, because in that case β << 1, but in a general

case we have a bound β < 1/4. Therefore, we can eliminate one and the same combination χf0
entered into equations (10), (16) and express it through experimentally measurable quantities.

We obtain in this way

A(s,M2
X) =

s̄MN [R
2
0(s̄) +R2d]

3/2

(2π)3/2I(s)
δσinel(s̄). (21)

Eq.(21) establishes a deep connection of inelastic shadow correction with one-particle inclusive

cross-section. This relation allows one to express the inelastic shadow correction via a total
single diffractive dissociation cross-section. This will be done in the next section.
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3. Elastic and inelastic scaling functions

We’ll start the derivation of the desired expression with the definition of total single diffractive
dissociation cross-section

σεsd(s) = π

∫ εs
M2
min

dM2
X

s

∫ t+(M2
X )

t−(M2
X)

dt
dσ

dtdM2
X

. (22)

Here we have specially labeled the total single diffractive dissociation cross-section by the index

ε. It’s clear the parameter ε defines the range of integration in the variable M2
X. Unfortunately,

there is no common consent in the choice of this parameter today. However, we would like to

point out an exceptional value for the parameter ε which naturally arises from our approach.
Namely, let us put

εex =
√
2π/2MNRd, (23)

then we define the exceptional total single diffractive dissociation cross-section

σexsd(s) = σεsd(s)|ε=εex. (24)

The exceptional value (23) for the parameter ε has a very deep physical meaning: It tells us that
the range of integration in (22) in the variableM2

X is to be determined by internucleon distances

where the two-nucleon bound state may be organized. The weaker (the larger the internucleon
distances) two-nucleon bound state is, the smaller the range of integration in (22) in the variable

M2
X and vice versa. As a result we immediately obtain from Eqs. (18, 21, 22) [11]

δσinel(s) = 2σexsd(s)a
inel(xinel), (25)

where

ainel(xinel) =
x2inel

(1 + x2inel)
3/2

, x2inel ≡
R20(s)

R2d
=
2Bsd(s)

R2d
, (26)

reminding that Bsd(s) = R20(s)/2 = b(s,M2
X)|M2

X
=2M2

N
[12].

Here is a convenient place to rewrite the elastic shadow correction (5) in a similar form

δσel(s) = 2σel(s)ael(xel), σel(s) ≡ σtot2hN (s)

16πBelhN(s)
, (27)

where

ael(xel) =
x2el

1 + x2el
, x2el ≡

2BelhN (s)

R2d
=

R2hN(s)

R2d
, (28)

and we suppose as above that

Belhp = Belhn ≡ BelhN , σtothp = σtothn ≡ σtothN .

The obtained expressions for the shadow corrections have quite a transparent physical meaning,
both the elastic ael and inelastic ainel scaling functions have a clear physical interpretation. The

function ael measures out a portion of elastic rescattering events among of all the events during
the interaction of an incident particle with a deuteron as a whole, and this function attached

to the total probability of elastic interaction of an incident particle with a separate nucleon
in a deuteron. Correspondingly, the function ainel measures out a portion of inelastic events

of inclusive type among of all the events during the interaction of an incident particle with
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a deuteron as a whole, and this function attached to the total probability of single diffraction
dissociation of an incident particle on a separate nucleon in a deuteron. The scaling variables xel
and xinel have quite a clear physical meaning too. The dimensionless quantity xel characterizes
the effective distances measured in the units of “fundamental length”, which the deuteron size

is, in elastic interactions, but the similar quantity xinel characterizes the effective distances
measured in the units of the same “fundamental length” during inelastic interactions.

The functions ael and ainel have quite different behaviour: ael is a monotonic function while
ainel has the maximum at the point xmaxinel =

√
2 where ainel(xmaxinel ) = 2/3

√
3. The graph of ainel

is shown in Fig.2. This graph displays an interesting physical effect of weakening the inelastic
eclipsing (screening) at superhigh energies. The energy at the maximum of ainel can easily be
calculated from the equation R20(s) = 2R

2
d and it will be done later on.

Account of the real part for the hadron-nucleon elastic scattering amplitude modifies the
scaling function ael in the following way:

ael(xel) −→ ael(xel, ρel) = ael(xel)
1− ρ2el
1 + ρ2el

, ρel ≡
ReF elhN
ImF elhN

. (29)

We see that nonzero value for ρel violates the scaling behaviour of a
el. However, ρel has a small

value at high energy and moreover ρel → 0 at s→∞, therefore, the violation of the scaling law
is small at high energy and we have the restoring scaling in the limit s→∞.
The scaling function ainel is not modified because all the information on the real parts of

the amplitudes is contained in the function χ, which is eliminated in the derivation of formula

(21). However, if we would like to speculate in inessential but subtle distinction between the
functions χ and χ̄, then the function ainel should be modified to the form

ainel(xinel) −→ ainel(xinel, X, α, β, γ) = ainel(xinel) · rχ(X, α, β, γ), (30)

where

rχ(X, α, β, γ)≡ χ̄

χ
=
[8αX − 1− 2γ(1− β)](1 + 2γ)

(8αX − 1− 2γ)[1 + 2γ(1− β)]
, (31)

X ≡ σel

σtot
, α ≡ 1− ρelρ0

1 + ρ2el
, ρ0 ≡

ReF0
ImF0

, β ≡ x2inel
4(1 + x2inel)

, γ ≡ R20
2Bel

=
Bsd
Bel

.

It can easily be seen that

rχ(0, α, β, γ) = rχ(X, 0, β, γ) = rχ(X, α, 0, γ) = rχ(X, α, β, 0) = 1. (32)

Besides, we have

0 ≤ β ≤ 1/4 =⇒ 1 ≤ rχ ≤ r̄χ, r̄χ =
(8αX − 1− 3γ/2)(1+ 2γ)
(8αX − 1− 2γ)(1+ 3γ/2). (33)

From the Froissart bound it follows γ ≤ 2. So, in the case that ρel = 0 or ρel = −ρ0, taking into
account that X ≤ 1, we obtain r̄χ ≤ 5/3.
Of course, it would be desirable to compare the obtained new structure for the shadow

corrections in elastic scattering from deuteron with the existing experimental data on hadron-

deuteron total cross sections. The next section will be consecrated to this comparison.
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4. Comparison with the experimental data

Here we have tried to make a preliminary comparison of the new structure for the shadow
corrections in elastic scattering from deuteron with the existing experimental data on proton-

deuteron and antiproton-deuteron total cross sections. To make this comparison in a more
transparent manner, let us rewrite formula (3) for the hadron-deuteron total cross section in a
simplified form

σtothd = 2σ
tot
hN − δσ, δσ = δσel + δσinel, (34)

δσel = 2σelael =
σtot 2hN

4π(R2d + 2B
el
hN )

, (35)

δσinel = 2σexsda
inel, ainel =

x2inel
(1 + x2inel)

3/2
, x2inel ≡

R20
R2d

. (36)

All the quantities entered in formulas (34 – 36) are the functions of the energy per nucleon.
In the first step we analysed the experimental data on antiproton–deuteron total cross sec-

tions. We have used our theoretical formula describing the global structure of antiproton-proton
total cross sections [10,13] as σtotp̄p = σtotp̄n ≡ σtotp̄N . A new fit to the data on the total single

diffraction dissociation cross sections in p̄p collision with our formula [10]

σtotsd (s) = 2σ
ex
sd(s) =

A0 +A2 ln
2(
√
s/
√
s0)

R20(s)
(37)

has been made as well using a wider set of the data (see Table I). The new fit yielded

A0 = 28.05± 0.66mbGeV−2, A2 = 4.99± 0.57mbGeV−2.

The fit result is shown in Fig.3. It is seen that the fitting curve, as in the previous fit [10], goes
excellently over the experimental points of the CDF group at Fermilab [14].

We can substitute 2σexsd in Eq.(36) for formula (37), after that the expression for the total
shadow correction may be rewritten in the form

δσp̄d(s) =
σtot2p̄N (s)

4π[R2d + 2B
el
p̄N(s)]

+
A0 +A2 ln

2(
√
s/
√
s0)

R2d[1 + R20(s)/R
2
d]
3/2

, (38)

where all the parameters are fixed according to our previous fits [10,13] apart from R2d, which is
considered as a single free fit parameter. Our fit yielded

R2d = 66.61± 1.16GeV −2.

The fit result is shown in Fig.4. For completeness the theory prediction for antiproton-deuteron
total cross section is plotted up to Tevatron energies. Fig.8 displays the significance of shadow

corrections in elastic scattering from deuteron.
At this place it should be make the following remark. It is known the latest experimental

value for the deuteron matter radius rd,m = 1.963(4) fm [20]. The fitted value for the R
2
d satisfies

with a good accuracy to the equality

R2d =
2

3
r2d,m, (r2d,m = 3.853 fm

2 = 98.96GeV−2). (39)
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Now it would be very intriguing for us to make a comparison of theoretical formula (38)
with the data on proton-deuteron total cross sections where R2d has to be fixed by the previous

fit to the data on antiproton-deuteron total cross sections. As in the previous fit we supposed
σtotpp = σtotpn ≡ σtotpN and σtotpp had been taken from our global description of proton-proton total

cross sections [10,13]. We also assumed that BelpN = Belp̄N . So, in this case we have not any free
parameters. The result of the comparison is shown in Fig.5. As you can see the correspondence
of the theory to the experimental data is quite remarkable apart from the resonance region. The

resonance region requires a more careful consideration than that performed here.

5. Summary and Discussion

In this paper we have been concerned with a study of shadow corrections to the total cross
section in scattering from deuteron. The dynamic apparatus based on the single-time formalism

in QFT has been used as a tool and subsequently applied to describe the properties of high-
energy particle interaction in scattering from two-body composite system. As we have repeatedly

emphasized in our previous works, the conceptual notion of the new fundamental forces i.e. three-
body forces appeared as a consequence of consistent consideration of the dynamics for three

particle system in the framework of relativistic quantum theory. In our previous investigation,
we have provided the general framework and described some general properties of the three-

body (in general many-body) forces to implement the crucial property of any theory such as
the general requirements of unitarity and analyticity [21,22]. Within this framework we have

established a profound relationship of the three-body forces to the dynamics of one-particle
inclusive reactions.
The main topic of our studies was to develop the methods which form the basis for both

analytical calculations and phenomenological investigations. Such developments are necessary
for providing an understanding of the relation between the general structure of the relativistic

quantum theory and relevant hadronic phenomena described, as a rule, in the frame of the
phenomenological models.

Even though our motivation to construct the general formalism to study the dynamics of a
relativistic three-particle system has been, in the main, a theoretical one, we have applied this

formalism to investigate the properties of the resultant hadron-deuteron interaction.
We have calculated explicitly the contribution of three-body forces to the total cross section in

scattering from any two-body composite system and investigated the resulting strong interaction
phenomena by applying our approach to the well-known relevant case, i.e hadron–deuteron
scattering. It seems that very weakly bound two-nucleon state, the deuteron, exhibits the

dynamics which leaves the clustering of the quarks into hadrons essentially intact during the
interaction with the incident hadron and therefore makes, in a natural way, the dynamical

scheme accessible to a description in terms of nucleonic degrees of freedom only. In this way we
found the new structures for the total shadow correction to the total cross section in scattering

from deuteron.
First of all, it has been observed that the total shadow correction inherits the general struc-

ture of total cross section and contains two inherent parts as well, an elastic part and inelastic
one. This partitioning is performed explicitly in the framework of our approach. It turns out

that the elastic part can be expressed through the elastic scaling (structure) function and the
fundamental dynamical quantity, which is the total elastic cross section in scattering from an
isolated constituent (nucleon) in the composite system (deuteron). At the same time the in-
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elastic part is expressed through the inelastic scaling (structure) function and the fundamental
dynamical quantity, which is the total single diffractive dissociation cross section in scattering

from an isolated constituent in the composite system too. Thus, the general formalism in QFT
makes it possible to define properly the dynamics of particle scattering from a composite system

and express this dynamics in terms of the fundamental dynamics of particle scattering from an
isolated constituent in the composite system and the structure of the composite system as itself.
We have restricted ourselves to the simplest composite system, which a two-body composite

system (deuteron) is. However, our general formalism can be straightforwardly applied to any
multiparticle system and may be used to specify the dynamics for any many-body composite

system as well. There is no, in principle, difficulty in extending general formalism to more com-
plex compound many-particle systems such as, for example, nuclei. We have not attempted to

study such extension in this paper, hope, this will be the subject of our future studies. The main
goal of this work is to gain some insight into hadronic phenomena resulting from compositeness

in the presence of three-body (in general many-body) forces.
The general formalism, which we have outlined, tells us that the obtained results are sub-

stantially more general because they have a reliable ground in the framework of the relativistic
quantum theory. It is evident now that these results correspond to the very deep physical
phenomena in the fundamental dynamics.

What seems most important, which we have discovered in the work, is that the elastic and
inelastic structure functions have quite different behaviour. The inelastic structure function has

the maximum and tends to zero at infinity, while the elastic structure function is the monotonic
function and tends to unity at infinity. This is the most significant difference between the elastic

and inelastic structure functions and it has far reaching physical consequences. This difference
manifests itself in the effect of weakening of inelastic eclipsing (screening) at super-high energies.

What does it mean physically? To understand it let’s combine the elastic shadow correction and
the first term in Eq. (34) for the hadron-deuteron total cross section

σtothd = 2σ
inel
hN + 2σ

el
hN (1− ael)− δσinel, 1− ael =

1

1 + x2el
. (40)

We have in this way that asymptotically

σtothd = 2σ
inel
hN , s −→∞. (41)

Probably the generalization of this result to any many-nucleon systems (nuclei) looks like

σtothA = AσinelhN , s −→∞. (42)

Obviously, this result confirms theoretically the so called quark counting rules. Moreover, it

turns out that the total absorption (inelastic) cross section manifests itself as a fundamental
dynamical quantity for the constituents in a composite system.
We would also like to emphasize the different range of variation for the elastic and inelastic

structure functions
0 ≤ ael ≤ 1, 0 ≤ ainel ≤ 2/3

√
3. (43)

The inelastic shadow correction in a wide range of energies (up to Planck scale) is shown

in Figs.6–7. The energy, where the inelastic shadow correction has a maximum, has to be
calculated from the equality R20(sm) = 2R

2
d. Taking R2d = 66.61 from the fit and R20(s) from

paper [13], we obtain
√
sm = 9.01 10

8GeV = 901PeV . Of course, such energies are not available
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at now working accelerators. However, we always have room for a speculative discussion. For
example, let us consider a proton as a two-body (quark-diquark) composite system. From the

experiment it is known that the value for the charge radius of the proton rp,ch = 0.88 fm. If we
put R2p = 2/3 r

2
p,ch, then resolving the equation R20(sp) = R2p, we obtain

√
sp = 1681GeV . This

is just the energy of Tevatron. Furthermore in the point
√
s0 = 20.74GeV of the minimum for

proton-proton(antiproton) total cross sections, we find R0(s0) = 0.45 fm. This is just one half

of the proton charge radius.
So, a realistic and fundamental property of our approach is that it exhibits two clearly

distinct energy regions, associated with the energies where the range of three-body forces is
small compared with the size of two-body composite system, on the one hand, and with the
energies where the range of three-body forces is large compared with the two-body bound state

size, on the other hand. The size of two-body compound system plays a role of “fundamental
scale” separating these two distinct energy regions.

The elastic and inelastic shadow corrections to the proton(antiproton)-deuteron total cross
sections are plotted in Fig.9. Our analysis shows that the magnitude of inelastic shadow correc-

tion is about 10 percent of elastic one at available energies. Figuratively speaking, if we called
the elastic shadow corrections a fine structure in the total cross sections, then we might call the

inelastic shadow corrections a super-fine structure in the total cross sections. In this sense three-
body forces make a “fine tuning” in the dynamics of the relativistic three-body system. That is

why the precise measurements of hadron-deuteron total cross-sections at high energies are most
important. Therefore, it would be very desirable to think about the creation of accelerating
deuterons beams instead of protons ones at the now working accelerators and colliders.

At last, let me remember a unique phenomenon in the history of human civilization related
to Pythagoras, a Greek mathematician and philosopher, who lived in the sixth century B.C.

Gathering together a group of pupils in the Greek sity of Croton in southern Italy, he organized
a brotherhood devoted to both learning and virtuous living. The Pythagorean brotherhoods

remained active for several centuries. The great ideas of Pythagoras and his followers exerted
great influence on the intellectual development of human civilization and had a fundamental

importance all time. The well known Pythagoras Theorem, a major step in the devlopment
of geometry, is that the square of the hypotenuse of a right-angle triangle equals the sum of

squares of the two other sides, together with its corollary, namely, that the diagonal of a square
is incommensurable with its side. The next theorem is that the sum of the angles within any
triangle is 180 degrees. Of great influence were the Pythagorean doctrines that numbers were the

basis of all things and possessed a mystic significance, in particular the idea that the cosmos is a
mathematically ordered whole. Pythagoras was led to this conception by his discovery that the

notes sounded by stringed instrument are related to the length of the strings, he recognized that
first four numbers, whose sum equals 10 (so called Pythagorean quaternion 1 + 2+ 3+ 4 = 10),

contained all basic musical intervals: the octave, the fifth and the fourth. In fact, all the major
consonances, that is, the octave, the fifth and the fourth are produced by vibrating strings

whose lengths stand to one another in the ratios of 1 : 2, 2 : 3 and 3 : 4 respectively. The
resemblance which he perceived between the orderlines of music, as expressed in the ratios which

he had discovered and the idea that cosmos is an orderly whole, made up of parts harmoniously
related to one another, led him to conceive of the cosmos too as mathematically ordered. The
Pythagoreans supposed that the universe was a sphere in which the planets revolved. The

revolving planets were thought to produce musical notes – “the music of the spheres”. The
importance of this conception is very great, for example, it is the ultimate source of Galileo’s
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belief that “the book of nature is written in mathematical symbols” and hence the ultimate
source of modern physics in the form in which it came to us from Galileo. The Pythagoreans

believed also in reincarnation, that is, the soul, after death, passes into another living thing,
which presupposes the ability of the soul to survive the death of the body, and hence some sort

of belief in its immortality.
As it was established above in our study the inelastic structure function ainel has the maxi-

mum and at the maximum this function equals 2/3
√
3. The number 2/3

√
3 may be considered

as a fundamental number calculated in the theory with a clear physical interpretation. We also

found the relations R20(sm) : R
2
d = 2 : 1 and R0(s0) : Rp = 1 : 2 which looked like harmonic

ratios mentioned above and hence might be considered as “the music” produced by diffraction
phenomena in high energy elementary particle physics. It seems, we come back to the great

Pythagorean ideas reformulated in terms of the objects living in the microcosmos. The great
Pythagorean idea applied to the microcosmos might be shown by the following diagram

DIFFRACTION PHENOMENA

⇓
THE MUSIC (HARMONY) OF THE SPHERES

�

THE HARMONY (MUSIC) OF THE NUMBRERS

So, it appears that the study of diffraction phenomena in high energy elementary particle physics

makes it possible to establish a missing link between cosmos and microcosmos, between the great
ancient ideas and recent investigations in particle and nuclear physics and to confirm the unity

of physical picture of the World. Anyway, we believe in it.
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Figure 1: Kinematical notations and configuration of momenta in the relation of one-particle
inclusive cross-section to the three-body forces scattering amplitude.
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Figure 3: Total single diffraction dissociation cross-section compared with formula (37). Solid
line represents our fit to the data.
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Table I: Data on pp̄ single diffraction dissociation cross-sections.

√
s (GeV ) σpp̄sd(mb) References

14.00 3.94± 0.20 [15]

16.20 4.87± 0.08 [15]

17.60 4.96± 0.08 [15]

19.10 4.94± 0.08 [15]

20.00 4.46± 0.25 [15]

20.00 4.9± 0.55 [15]

23.30 6.50± 0.2 [15]

23.40 6.07± 0.17 [15]

23.80 5.19± 0.08 [15]

26.90 6.05± 0.22 [15]

27.20 5.42± 0.09 [15]

27.40 6.30± 0.2 [15]

30.50 6.37± 0.15 [15]

32.30 6.32± 0.22 [15]

32.40 6.50± 0.2 [15]

35.20 7.01± 0.28 [15]

35.50 7.50± 0.5 [15]

38.30 6.08± 0.29 [15]

38.50 7.30± 0.4 [15]

44.70 7.30± 0.3 [15]

53.70 7.00± 0.3 [15]

62.30 7.50± 0.3 [15]

200 4.8± 0.9 [16]

546 5.4± 1.1 [17]

546 7.89± 0.33 [14]

546 9.4± 0.7 [18]

546 8.34± 0.36 [15]

900 7.8± 1.2 [18]

1800 9.46± 0.44 [14]

1800 11.7± 2.3 [19]

1800 8.1± 1.7 [19]

1800 8.46± 1.77 [15]

1800 9.12± 0.46 [15]
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Figure 4: The total antiproton-deuteron cross-section versus
√
s compared with the theory.

Statistical and systematic errors added in quadrature.
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Figure 5: The total proton-deuteron cross-section versus
√
s compared with the theory without

any free parameters. Statistical and systematic errors added in quadrature.
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Figure 6: The three-body forces contribution (inelastic screening) to the total antiproton-
deuteron cross-section versus

√
s calculated with the theory.
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Figure 7: The three-body forces contribution (inelastic screening) to the total antiproton-

deuteron cross-section calculated with the theory in the range 30000GeV <
√
s < 1019GeV .
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Figure 8: The total antiproton-deuteron cross-section versus
√
s compared with the theory with

and without shadow corrections.
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Figure 9: Elastic and inelastic shadow corrections (vs
√
s) represented by the theory.
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