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Abstract

Bityukov S.I., Krasnikov N.V., Taperechkina V.A. Confidence Intervals for Poisson Distribution Param-
eter: IHEP Preprint 2000-61. – Protvino, 2000. – p. 13, figs. 5, tables 4, refs.: 13.

Results of numerical procedure of constructing confidence intervals for parameter of the Poisson distri-
bution of signal events in the presence of background events with the known value of parameter of Poisson
distribution are presented. It is shown that the used procedure has both the Bayesian and frequentist
interpretations. Also the possibility to construct a continuous analogue of the Poisson distribution to
search the bounds of confidence intervals for the parameter of the Poisson distribution is discussed.

aNNOTACIQ

bIT@KOW s.i., kRASNIKOW n.w., tAPEREˆKINA w.a. k WOPROSU O DOWERITELXNOM INTERWALE NA PARA-
METR RASPREDELENIQ pUASSONA: pREPRINT ifw— 2000-61. – pROTWINO, 2000. – 13 S., 5 RIS., 4 TABL.,
BIBLIOGR.: 13.

pREDSTAWLENY REZULXTATY ˆISLENNOGO POSTROENIQ DOWERITELXNYH INTERWALOW NA PARAMETR PUAS-
SONOWSKOGO RASPREDELENIQ DLQ SIGNALA W PRISUTSTWII FONA S IZWESTNYM SREDNIM. sIGNAL I FON

IME@T PUASSONOWSKOE RASPREDELENIE. pOKAZANO, ˆTO ISPOLXZUEMAQ PROCEDURA IMEET KAK ˆASTOTNU@,
TAK I BAJESOWSKU@ INTERPRETACI@. oBSUVDAETSQ WOZMOVNOSTX POSTROENIQ NEPRERYWNOGO ANALOGA

PUASSONOWSKOGO RASPREDELENIQ DLQ ISPOLXZOWANIQ PRI POISKE GRANIC DOWERITELXNYH INTERWALOW.
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Introduction

In paper [1] the unified approach to the construction of confidence intervals and confidence

limits for a signal in the background presence, in particular, for Poisson distributions, is pro-
posed. The method is widely used for the presentation of physical results [2] though a number

of investigators criticize this approach [3].
Here we use a simple method of constructing confidence intervals for the Poisson distribution

parameter for a signal in the presence of background which has the Poisson distribution with
the known value of parameter to compare with a conventional procedure1. The method is based
on the statement that the true value of the Poisson distribution parameter (in the case of the

observed number of events x̂) has a Gamma distribution. It is shown that this statement has both
Bayesian and frequentist interpretations. The experimental results often give noninteger values

for a number of observed events x̂ (for example, after the background subtraction [4]) when the
Poisson distribution occurs. That is why there is a necessity to have a procedure for constructing

the confidence intervals in this case. The paper offers a generalization of Poisson distribution for
a continuous case2. The generalization given here allows one to construct confidence intervals

and confidence limits for the Poisson distribution parameter (for both integer and real values of
a number of observed events) using conventional methods.

In Section 1 the interrelation between the frequentist and Bayesian definitions of the confi-
dence interval is shown. The method of constructing confidence intervals for the Poisson distri-
bution parameter for a signal in the presence of background which has the Poisson distribution

with the known value of parameter is described in Section 2. The results of confidence inter-
vals construction and their comparison with the results of the unified approach are also given

in Section 2. In Section 3 the generalization of Poisson distribution for the continuous case is
introduced. The examples of confidence intervals construction for the parameter of the Poisson

distribution analogue and for the Poisson distribution parameter using the Gamma distribution
are considered in Section 4 and in Section 5. The main results of the paper are summarized in

the Conclusion.

1The early version of the study can be found in S.I. Bityukov, N.V. Krasnikov, arXiv:physics/0009064.
2The early version of the study can be found in S.I. Bityukov, N.V. Krasnikov, V.A. Taperechkina,

arXiv:physics/0008082.
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1. The interrelation between frequentist and Bayesian definitions of
confidence interval

Let us have a random value ξ, taking values from the set of numbers x ∈ X . Consider the
two-dimensional function

f(x, λ) =
λx

x!
e−λ, (1)

where x ≥ 0 and λ > 0.

Assume, that the set X includes only the whole numbers, then for each value of λ a discrete
function f(x, λ) describes the distribution of probabilities for the Poisson distribution with the

parameter λ and a random variable x, i.e. ξ ∼ Pois(λ).

Fig. 1. The behaviour of the probability density of the true value of parameter λ for the Poisson distri-

bution in case of x observed events versus λ and x. Here f(x, λ) =
λx

x!
e−λ is both the Poisson

distribution with the parameter λ along the axis x and the Gamma distribution with a shape
parameter x+ 1 and a scale parameter 1 along the axis λ.

Let us write down the density of Gamma distribution as

f(x, a, λ) =
ax+1

Γ(x + 1)
e−aλλx, (2)

where a is a scale parameter, x + 1 > 0 is a shape parameter, λ > 0 is a random variable and
Γ(x+1) is a Gamma function. Since the x is integer, then x! = Γ(x+1). Note that this notation

is also used in the case of real x. Let us set a = 1, then for each x a continuous function
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f(x, λ) =
λx

x!
e−λ, λ > 0, x > −1 (3)

is the density of Gamma distribution Γ1,x+1 with the scale parameter a = 1 (see Fig.1).
Assume that in the experiment with a fixed integral luminosity (i.e. the process under study

may be considered as a homogeneous process for a given time) the x̂ events of a Poisson process
are observed. It means that we have an experimental estimation λ̂(x̂) of the parameter λ of the
Poisson distribution. We have to construct a confidence interval (λ̂1(x̂), λ̂2(x̂)), covering the true

value of the parameter λ of the distribution under study with a confidence level 1 − α, where
α is a significance level. It is known from the theory of statistics [5], that the mean value of a

sample of data is an unbiased estimation of the mean of distribution under study. In our case
the sample consists of one observation x̂3.

For the discrete Poisson distribution the mean coincides with the estimation of parameter
value, i.e. λ̂ = x̂ in our case.

Let us consider the formula

P (λ|x̂) = P (x̂|λ) = λ
x̂

x̂!
e−λ. (5)

This formula (5) results from the Bayesian formula [6]

P (λ|x̂)P (x̂) = P (x̂|λ)P (λ) (6)

in the assumption that all the possible values of parameter λ have equal probability, i.e. P (λ) =

const. In this assumption the probability that unknown parameter λ obeys the inequalities
λ1 ≤ λ ≤ λ2 is given by the evident Bayesian formula

P (λ1 ≤ λ ≤ λ2|x̂) = P (λ1 ≤ λ|x̂)− P (λ2 ≤ λ|x̂) =
∫ λ2
λ1

P (λ|x̂)dλ, (7)

P (λ1 ≤ λ|x̂) =
∫∞
λ1
P (λ|x̂)dλ,

where P (λ|x̂) is determined by formula (5).

Formula (7) has also a well defined frequentist meaning. Using the identity

∞∑
i=x̂+1

λi1e
−λ1

i!
+

∫ λ2
λ1

λx̂e−λ

x̂!
dλ+

x̂∑
i=0

λi2e
−λ2

i!
= 1 (8)

one can rewrite formula (7) as

P (λ1 ≤ λ ≤ λ2|x̂) = 1− P (n ≤ x̂|λ2)− P (n > x̂|λ1) = P (n ≤ x̂|λ1)− P (n ≤ x̂|λ2), (9)

where P (n ≤ x̂|λ) =
x̂∑
n=0

λne−λ

n!
and P (n > x̂|λ) =

∞∑
n=x̂+1

λne−λ

n!
.

3The Poisson distributed random values have a property: if ξ ∼ Pois(λ1) and η ∼ Pois(λ2) then ξ + η ∼
Pois(λ1 + λ2). It means that if we have two measurements x̂1 and x̂2 of the same random value ξ ∼ Pois(λ), we
can consider these measurements as one measurement x̂1 + x̂2 of the random value

2 · ξ ∼ Pois(2 · λ) (4)
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The right hand side of formula (9) has a well defined frequentist meaning and it is the
definition of the confidence interval in the frequentist approach4. As an example of the shortest

90% CL confidence interval of such type in case of the observed number of events x̂ = 4 is shown
in Fig.2.

For instance, for the case λ2 =∞ formula (9) takes the form

∫ ∞
λ1

P (λ|x̂)dλ = P (λ1 ≤ λ|x̂) =
x̂∑
n=0

P (n|λ1) = P (n ≤ x̂|λ1), (10)

which has an evident frequentist meaning too.

Fig. 2. The Poisson distributions f(x, λ) for λ’s determined by the confidence limits λ̂1 = 1.51 and

λ̂2 = 8.36 in case of the observed number of events x̂ = 4 are shown. The probability density of
Gamma distribution with a scale parameter a = 1 and a shape parameter x = x̂ = 4 is shown
within this confidence interval.

4This definition for the Poisson distribution is self-consistent in case λ1 = λ2 or x̂ = 0. As a result∫ λ2
λ1
P (λ|x̂)dλ =

∫ λ2
λ1

λx̂e−λ

x̂!
dλ for any λ1 and λ2. See, however, ref. [7]. The interrelation between the fre-

quentist and Bayesian definitions of confidence interval is shown in article [7], nevertheless, the author criticizes
the Bayesian approach of the confidence interval determination.
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2. The method of confidence intervals construction

Let us consider the Poisson distribution with two components: Signal component with a
parameter λs and background component with a parameter λb, where λb is known. To construct

confidence intervals for the parameter λs of a signal in the case of observed value x̂, we must
find the distribution P (λs|x̂).

Firstly let us consider the simplest case x̂ = ŝ+ b̂ = 1. Here ŝ is the number of signal events

and b̂ is the number of background events among the observed x̂ events.
The b̂ can be equal to 0 and 1. We know that the b̂ is equal to 0 with probability

p0 = P (b̂ = 0) =
λ0b
0!
e−λb = e−λb (11)

and the b̂ is equal to 1 with probability

p1 = P (b̂ = 1) =
λ1b
1!
e−λb = λbe

−λb . (12)

Correspondingly, P (b̂ = 0|x̂ = 1) = P (ŝ = 1|x̂ = 1) =
p0

p0 + p1
and P (b̂ = 1|x̂ = 1) = P (ŝ =

0|x̂ = 1) =
p1

p0 + p1
.

It means that the distribution of P (λs|x̂ = 1) is equal to the sum of distributions

P (ŝ = 1|x̂ = 1)Γ1,2 + P (ŝ = 0|x̂ = 1)Γ1,1 =
p0

p0 + p1
Γ1,2 +

p1
p0 + p1

Γ1,1, (13)

where Γ1,1 is the Gamma distribution with the probability density P (λs|ŝ = 0) = e−λs and Γ1,2
is the Gamma distribution with the probability density P (λs|ŝ = 1) = λse

−λs . As a result, we

have

P (λs|x̂ = 1) =
λs + λb
1 + λb

e−λs . (14)

Using formula (14) for P (λs|x̂ = 1) and formula (9), we construct the shortest confidence
interval of any confidence level in a trivial way.

In this manner we can construct the distribution of P (λs|x̂) for any values of x̂ and λb. As
a result, we have obtained the known formula [8,9]

P (λs|x̂) =
(λs + λb)

x̂

x̂!
x̂∑
i=0

λib
i!

e−λs . (15)

The numerical results for the confidence intervals and the results of paper [1] are compared

in Table 1 and Table 2.
It should be noted that in our approach the dependence of the confidence intervals width for

the parameter λs on the value of λb in the case x̂ = 0 is absent. For x̂ = 0 the method proposed

in ref. [10] also gives a 90% upper limit independent of λb. This dependence is also absent in
the Bayesian approach [8,11].
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3. The Generalization of Discrete Poisson Distribution for the Continuous
Case

Let us consider the case when x ∈ X are the real values and denote x! = Γ(x + 1), then we
can consider the function

f(x, λ) =
λx

x!
e−λ (16)

as a continuous two-dimentional function. Figure 3 shows the surface described by this function.
Smooth behaviour of this function along x and λ (see Fig.4) allows one to assume that there is

such a function l(λ) > −1, that ∫ ∞
l(λ)
f(x, λ)dx = 1 (17)

for the given value of λ. It means that in this way we introduce a continued analogue of

Poisson distribution with the probability density f(x, λ) =
λx

x!
e−λ over the area of the function

definition, i.e. for x ≥ l(λ) and λ > 0. The values of the function f(x, λ) for integer x coincide

with corresponding magnitudes in the probabilities distribution of discrete Poisson distribution.
Dependences of the values of function l(λ), the means and the variances for the suggested

distribution on λ have been calculated by using the programme DGQUAD from the library
CERNLIB [12] and the results are presented in Table 3. This Table shows that the series of

properties of Poisson distribution (Eξ = λ,Dξ = λ) take place only when the value of the
parameter λ > 3.

Fig. 3. The behaviour of the function f(x, λ) versus λ and x when f(x, λ) < 1.
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Table 3. The function l(λ), mean and variance versus λ.

λ l(λ) mean (Eξ) variance (Dξ)
0.001 -0.297 -0.138 0.024
0.002 -0.314 -0.137 0.029
0.005 -0.340 -0.130 0.040
0.010 -0.363 -0.120 0.052
0.020 -0.388 -0.100 0.071
0.050 -0.427 -0.051 0.113
0.100 -0.461 0.018 0.170
0.200 -0.498 0.142 0.272
0.300 -0.522 0.256 0.369
0.400 -0.539 0.365 0.464
0.500 -0.553 0.472 0.559
0.600 -0.564 0.577 0.653
0.700 -0.574 0.681 0.748
0.800 -0.582 0.785 0.844
0.900 -0.590 0.887 0.939
1.00 -0.597 0.989 1.035
1.50 -0.622 1.495 1.521
2.00 -0.639 1.998 2.012
2.50 -0.650 2.499 2.506
3.00 -0.656 3.000 3.003
3.50 -0.656 3.500 3.501
4.00 -0.647 4.000 3.999
4.50 -0.628 4.500 4.498
5.00 -0.593 5.000 4.997
5.50 -0.539 5.500 5.497
6.00 -0.466 6.000 5.996
6.50 -0.373 6.500 6.495
7.00 -0.262 7.000 6.995
7.50 -0.135 7.500 7.494
8.00 0.000 8.000 7.993
8.50 0.000 8.500 8.496
9.00 0.000 9.000 8.997
9.50 0.000 9.500 9.498
10.0 0.000 10.00 9.999

It is appropriate at this point to say that

∫ ∞
0

f(x, λ)dx =

∫ ∞
0

λxe−λ

Γ(x+ 1)
dx = e−λν(λ). (18)

The function

ν(λ) =

∫ ∞
0

λx

Γ(x+ 1)
dx (19)

is well known and, according to ref. [13],

ν(λ) =
∞∑

n=−N

λn

Γ(n + 1)
+O(|λ|−N−0.5) = eλ + O(|λ|−N) (20)
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if λ→∞, |argλ| ≤ π
2
for any integer N . Nevertheless we have to use the function l(λ) in our

calculations in Section 4. We consider it as a mathematical trick to illustrate a possibility of

constructing confidence intervals numerically for the real value x̂.
Another approach is also possible. We can numerically transform the function f(x, λ) in the

interval x ∈ (0, 1) so that

∫ ∞
0
f(x, λ)dx= 1, Eξ =

∫ ∞
0
xf(x, λ)dx = λ, Dξ =

∫ ∞
0

(x− Eξ)2f(x, λ)dx = λ (21)

for any λ. In this case we can construct the confidence intervals without introducing l(λ).

Let us construct the central confidence intervals for the continued analogue of Poisson dis-
tribution using the function l(λ).

Fig. 4. Two-dimensional representation of the function f(x, λ) versus λ and x for the values f(x, λ) < 1.

4. The Central Confidence Intervals for the Continued Analogue of Poisson
Distribution

As we have noticed, for the discrete Poisson distribution the mean coincides with the esti-

mation of parameter value, i.e. λ̂ = x̂. This is not true for a small value of λ in the considered
case (see Table 3). That is why in order to find the estimation of λ̂(x̂) for a small value x̂ it is
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necessary to introduce the correction in accordance with Table 3. Let us construct the central
confidence intervals using a conventional method assuming that

∫ ∞
x̂

f(x, λ̂1)dx =
α

2
(22)

for the lower bound λ̂1 and

∫ x̂
l(λ̂2)

f(x, λ̂2)dx =
α

2
(23)

for the upper bound λ̂2 of the confidence interval.

Figure 5 shows the introduced distributions (Section 3) with parameters defined by the
bounds of confidence interval (λ̂1 = 1.638, λ̂2 = 8.493) for x̂ = λ̂ = 4 and the Gamma distribution
with parameters a = 1, x = x̂ = 4. The bounds of confidence interval with a 90% confidence

level for the parameter of continued analogue of Poisson distribution for different observed values
x̂ (first column) were calculated and are given in the second column of Table 4. As a result

(Table 4) the suggested approach allows one to construct confidence intervals for any real and
integer values of the observed number of events for the values of parameter λ > 3. Table 4

illustrates that the left bound of central confidence intervals is not equal to zero for small x̂. It
shows that in this case a central confidence interval is not suitable.

Fig. 5. The probability densities f(x, λ) of continued analogue Poisson distribution for λ’s determined

by the confidence limits λ̂1 and λ̂2 in case of the observed number of events x̂ = 4 and the
probability density of Gamma distribution with parameters a = 1 and x = x̂ = 4.
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Also note that 90% of the area of Gamma distributions with the parameter x = x̂ are
contained inside the constructed 90% confidence intervals for the observed value x̂. However,
for small values of x̂ we have got values of the area close to 88%, i.e. less than 90%. It must
be admitted that difficulties have been experienced in connection with this approach. The main
result of the proposed construction is to demonstrate a possibility of using a continuous two-
dimentional function (16) for the construction of confidence intervals in a frequentist meaning.

Table 4. 90% C.L. intervals for the Poisson signal mean λ for total events observed x̂.

bounds (Section 4) bounds (Section 5)

x̂ λ̂1 λ̂2 λ̂1 λ̂2
0.000 0.121E-08 2.052 0.0 2.303
0.001 0.205E-08 2.054 0.0 2.304
0.002 0.292E-08 2.056 0.0 2.306
0.005 0.666E-08 2.061 0.0 2.311
0.02 0.218E-06 2.098 0.0 2.337
0.05 0.765E-05 2.166 1.66E-05 2.389
0.10 0.137E-03 2.275 2.23E-05 2.474
0.20 0.186E-02 2.490 6.65E-05 2.642
0.30 0.696E-02 2.692 1.49E-04 2.806
0.40 0.161E-01 2.891 2.60E-03 2.969
0.50 0.295E-01 3.084 5.44E-03 3.129
0.60 0.466E-01 3.269 1.35E-02 3.290
0.70 0.673E-01 3.450 2.63E-02 3.452
0.80 0.911E-01 3.629 4.04E-02 3.611
0.90 0.1179 3.804 6.12E-02 3.773
1.0 0.1473 3.977 8.49E-02 3.933
1.5 0.3257 4.800 0.2391 4.718
2.0 0.5429 5.582 0.4410 5.479
2.5 0.7896 6.340 0.6760 6.220
3.0 1.056 7.076 0.9284 6.937
3.5 1.340 7.792 1.219 7.660
4.0 1.638 8.493 1.511 8.358
4.5 1.946 9.188 1.820 9.050
5.0 2.264 9.869 2.120 9.714
5.5 2.590 10.55 2.453 10.39
6.0 2.924 11.21 2.775 11.05
6.5 3.264 11.87 3.126 11.72
7.0 3.609 12.53 3.473 12.38
7.5 3.961 13.18 3.808 13.01
8.0 4.316 13.82 4.160 13.65
8.5 4.677 14.46 4.532 14.30
9.0 5.041 15.10 4.905 14.95
9.5 5.406 15.73 5.252 15.56
10. 5.779 16.36 5.640 16.21
20. 13.65 28.49 13.50 28.33

5. Confidence Intervals for the Parameter of Poisson Distribution in case of
the real value of observed number of events

As follows from formulae (8) and (9) (see Figs.1-2) the true value of parameter of Poisson
distribution to be λ in case of observed integer value x̂ ≥ 0 has the Gamma distribution with
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the parameters a = 1 and x = x̂, i.e. according to formula (5)

P (λ|x̂) =
λx̂

x̂!
e−λ.

The possibility of constructing the continued analogue of Poisson distribution suggests to assume
that the Gamma distribution of true value of the parameter λ takes place in case of the real value
x̂ ≥ 0 too (Figs.3-5). This supposition allows one to choose a confidence interval (for example)
of a minimum length of all the possible confidence intervals of the given confidence level. The
bounds of minimum length area, containing 90% of the corresponding Gamma distribution
square, were found numerically for several values of x̂. We took into account that x = x̂ and
found the shortest 90% confidence interval for the parameter of Poisson distribution. The results
are presented in the third column of Table 4. Obviously, the confidence intervals constructed in
this Section also have the evident Bayesian meaning. It seems, the use of Gamma distribution
in case of the real value x̂ looks more preferable than using the function l(λ).

6. Conclusion

The results of constructing the frequentist confidence intervals for the parameter λs of Pois-
son distribution for the signal in the presence of background with the known value of parameter
λb are presented. It is shown that the used procedure has both the Bayesian and frequentist
interpretations. Also the attempt of introducing a continued analogue of Poisson distribution
for the construction of confidence intervals for the parameter λ of Poisson distribution is dis-
cussed. Two approaches (with using the function l(λ) and Gamma distribution) are considered.
Confidence intervals for different integer and real values of the number of the observed events
for the Poisson process in the experiment with a given integral luminosity are constructed.
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