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Abstract

Nekrasov M.L. Gauge-Invariant Description of W-pair Production in NLO Approximation: IHEP
Preprint 2000-63. – Protvino, 2000. – p. 9, figs. 2, refs.: 23.

The processes e+e− → 4f(γ) mediated by W-pair (and single) production are considered in the
framework of the modified perturbation theory, based on the expansion of probability in powers of the
coupling constant instead of amplitude. A full set of one-loop corrections to cross-section, and two-
loop corrections to self-energy of unstable particles are completely taken into consideration. It is shown
that the manifestly non-factorizable corrections do not make contributions into the next-to-leading-order
approximation. Moreover, the colour reconnection does not make contributions within this precision,
either. The rest of the corrections together with the leading-order contribution provide the gauge-invariant
description of the processes.
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1. The current requirement for the description precision of the processes mediated by pro-
duction and decay of W-bosons (as well as Z-bosons) implies the necessity of direct inclusion

of the effects of their instability [1,2,3]. A conventional way to take into account this insta-
bility consists in the Dyson resummation of self-energies of unstable particles. This procedure

makes it possible to satisfy the unitarity condition [4] and to avoid the nonintegrable phase-
space singularities that arise while calculating the probability in the framework of the standard

perturbation theory (PT). However, in the case of pair production of unstable particles the
Dyson resummation violates the Ward identities (WI) [5,6,7]. This fact creates a danger for an
uncontrolled error production in the description of particular processes.

The way to solve this problem consists in making use of the pole scheme which initially
provides the gauge-invariance [8]. In the case of W-pair production the pole scheme has been

practically applied within the double pole approximation (DPA) [9,10,11]. At present, DPA
remains the sole scheme where the radiative corrections to this process have been actually

evaluated. However, at the Born level DPA turns out to be untenable, because its direct appli-
cation leads to the numerical error of several percent (see, for instance, section 3.5 of Ref. [11]).

Therefore, the practical usage of DPA at the Born level is realized with the substitution of the
non-gauge-invariant CC03 off-shell cross-section, instead of the intrinsic gauge-invariant Born

DPA. Thereby it is supposed that this substitution leads to a reasonable result, at least in the
’t Hooft-Feynman gauge.

The latter substitution may be really numerically reasonable, at least at LEP energies.

Nevertheless, the gauge-invariant description of the W-pair production, which would be free
from the difficulties of DPA, should be found. Firstly, it should be found from a conceptual

point of view. Secondly, in order to have an opportunity to estimate the error of the above-
mentioned implementation of DPA. Thirdly, to extend the range of the description validity.

From the viewpoint of future prospects, the gauge-invariant description should be found as a
starting point to reach the greater precision of the description.

In fact, such gauge-invariant description has already been proposed [12]. Also a more effective
way, in comparison with DPA, for evaluating the radiative corrections has been found [12]. The

point is that the manifestly non-factorizable corrections actually do not contribute to the cross-
section of W-pair production within the next-to-leading-order (NLO) approximation. (Through-
out the paper we consider the order of contributions in the sense of powers of electroweak coupling

constant α.) Earlier it was known that the contributions of the soft-photons to non-factorizable
corrections were cancelled in probability, together with the infrared (IR) divergences [13]. How-

ever, it remained unknown whether the same property took place for the intermediate-energy

1



photons. In the DPA approach the fact of cancellation of the manifestly non-factorizable cor-
rections to the total cross-section and the pure angular distributions was confirmed by explicit

calculations [14]. Nevertheless, the nature of this phenomenon was not realized. Consequently,
it remained unclear how general this phenomenon was, and whether it occurred in other cases.

The purpose of the present paper is twofold. First, I present the general proof of the absence
of contributions of the manifestly non-factorizable corrections to the total cross-section in the

NLO approximation, whence the validity of the result in other cases becomes clear. Then, I
propose a further development of the method. Namely, I show that within the NLO precision

the effect of colour reconnection does not make contribution to the cross-section of W-pair
production.

2. Let us start with discussing the basic concepts of the approach. Its primary idea [15]
consists in expanding the probabilities in powers of the coupling constant instead of amplitudes.

Actually this change of operations order affects the unstable-particle propagators only. Really,
while calculating the probability basing on the completely expanded amplitude, one faces the
divergences in the phase space caused by the presence of nonintegrable singularities in the free

propagators squared of unstable particles. On the other hand, the probability is finite in spite
of phase-space integration, when it is calculated on the basis of the (renormalized) amplitude

with the Dyson resummed propagators. Consequently, when the probability is calculated in this
latter way, the result of its expansion should be a series with finite coefficients.

The latter outcome may be strictly proved by analyzing the expansion of the Dyson re-
summed propagator squared. The first term of this expansion is in fact well-known in view of

the following formula for the Breit-Wigner resonance,

1

|s−M2 + iMΓ|2
Γ→0−→ π

MΓ
δ(s−M2) . (1)

Unlike the function 1/|s−M2|2 that appears as a result of the expansion before the squaring
procedure, the delta-function δ(s−M2) is integrable with respect to s. So, it produces the finite
contribution to the probability while integrating over the phase space. Obtaining the next terms

of the expansion in formula (1) is a nontrivial problem, but solvable in the framework of the
theory of generalized functions (distributions) [16] with implements of asymptotic operation [17].

Under the assumption of the absence of contributions of zero-mass particles (photons) the next
terms of the expansion have been derived in [15].1

Below we present the corresponding result within the NLO precision. We use the following
notation for the renormalized self-energy of the unstable particle:

Σ(s;α) = αΣ1(s) + α
2Σ2(s) + · · · . (2)

In on-mass-shell (OMS) scheme of UV renormalization (where ReΣ1(M
2)=ReΣ′1(M

2)=0) the
result looks as follows:

1

|s−M2 + Σ(s;α)|2
=

π

αImΣ1(M2)
δ(s−M2)−π ImΣ2(M

2)

ImΣ21(M
2)
δ(s−M2)+VP

1

(s−M2)2
+O(α) .

(3)

1Although Ref. [15] claimed that it had found some non-trivial generalization of the method for the case of
presence of the soft-photons, it was a believable result only, not actually proved, because the actual cancellation
of the IR divergences had not been shown in any physically significant case. The same was the case with the
status of the declared curing [15] of difficulties on gauge-invariance.
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Here VP means the principal-value prescription for the nonintegrable in the conventional sense
function. Owing to the unitarity relation αImΣ1(M

2) =MΓ with Γ to be the lowest-order width,

which was verified by direct calculations [18], the first term in the r.h.s. in (3) is exactly the r.h.s
in formula (1). The next terms in (3) describe the NLO corrections. It is worth noticing that in

the OMS scheme the real part of the self-energy does not contribute within the given precision.
Moreover, the self-energy contributes in the on-mass-shell only, and without derivatives. The

latter fact means that the soft-photon problem is not actually present within the given precision
in the propagator squared. However, it arises while considering the exchanges by soft photons

between different charged particles of the process. Moreover, in the next orders of the expansion
the problem arises even at the level of the propagator squared, raising thereby a question about
the validity of the expansion.

In fact, the problem of IR divergences can be simply solved by introducing the mass for soft
photons. Then, at the end of calculations it is necessary to show that the soft-photon mass is

cancelled and the gauge invariance is restored. The problem can be simplified by performing the
(secondary) Dyson resummation of the one-loop corrections. The latter operation is equivalent

to an incomplete expansion in the coupling constant of the full unstable propagator squared.
The general investigation of the problem has been carried out in [12]. For our purposes the

following resultant formula is relevant:

1

|s−M2 + Σ(s;α)|2
=

1∣∣s−M2 + αΣfer1 (s)
∣∣2 − π

ImΣ2(M
2)

ImΣ21(M
2)
δ(s−M2) + O(α) . (4)

Here Σfer1 (s) is the fermionic one-loop correction to the self-energy of W-boson. Notice, the
delta-function in the second term in (4) may be regularized by means of formula (1).

Let us discuss now the properties of formula (4). First of all it should be noted that its
first term is explicitly gauge-invariant. This fact follows immediately from the explicit gauge-

invariance of Σfer1 (s). Moreover, the first term in (4) is exactly that quantity which was used
in the framework of fermion-loop scheme [5,19], proposed for the gauge-invariant approximate
description of the W-pair production. The two-loop corrections, that are important in the

resonance region within the NLO precision [6,7] but missed in the fermion-loop scheme, are
collected in the second term in (4). Since this term, originating in probability, cannot be obtained

from the analysis of the amplitude, it has been called the anomalous additive term [12].
Actually, the anomalous term is gauge invariant, as well. This follows from the equality

ImΣ1(M
2) = ImΣfer1 (M

2) which may be derived, in particular, from the corresponding ex-
plicit expressions [3], and this follows from the gauge-invariance of ImΣ2(M

2) in the OMS-like

schemes [20]. Notice, the two-loop-level gauge-dependent part in the OMS massM2 [21] may be
neglected in the anomalous term. Indeed, the second term in (4) describes the highest-order cor-

rection within the given precision. So, any higher-order variation in the mass actually manifests
itself as the correction O(α) in formula (4).

The last but not least property which should be noted, and which is common for both formu-
las (3) and (4), is the change of the natural order of individual contributions from the viewpoint
of the standard PT. Really, the second term in (4) involves a two-loop correction. However,

it describes the NLO correction, but not the NNLO one. The importance of this property is
great — it enables one to selectively take into account only those one-loop and two-loop correc-

tions which are really needed in the NLO. Fortunately, the sum of these corrections turns out to
be gauge-invariant. The rest of the one-loop and two-loop corrections, that contribute beyond

the NLO, are gauge-dependent.
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3. Let us proceed now to the very description of the W-pair-mediated four-fermion produc-
tion in e+e− annihilation with taking into account the complete set of NLO corrections. The

proposed construction may be presented as the generalization of the fermion-loop scheme. Re-
member, the latter scheme consists in including all fermionic one-loop corrections in tree-level

amplitudes and Dyson resumming the self-energies. As a result, the amplitude becomes gauge-
independent in spite of the Dyson resummation [5,19]. However, the fermion-loop scheme does

not include certain corrections that are really important within the NLO precision [6,7]. Namely,
the fermion-loop scheme misses the two-loop correction to self-energy in the Dyson resummed

propagators, which is needed in the resonance region, and all the one-loop bosonic corrections,
both to the numerators in the amplitude and to the denominators in the Dyson resummed
propagators. The idea of the proposed generalization consists in taking into consideration these

corrections in probability but not in amplitude, i.e. in the framework of the modified PT.
So, in our approach let the first-step approximation be the cross-section obtained in the

fermion-loop scheme. Actually it includes completely the leading-order contribution and a part
of the NLO correction. In order to describe another part let us fully use the property that

it is a correction. Consequently, for its build-up it is enough to know only the leading-order
contribution to the cross-section, but not the full result of the fermion-loop scheme. It is obvious,

that the leading-order contribution includes the double propagator squared, since only it includes
as far as is possible the lower power of α. Namely, it includes the α−2, with singly one α−1 twice

arising from the leading-order term in the unstable propagator squared, cf. formula (3). (Notice,
only the transverse parts of the unstable propagators should be Dyson resummed and squared.
The longitudinal parts of the unstable propagators are to be cancelled at the end of calculations,

by virtue of the expected gauge-invariance, by contributions of the unphysical states.) Due to the
presence of the delta-function in the leading-order terms in the unstable propagators squared,

the leading-order contribution to the cross-section should be the cross-section of the on-shell
W-pair production, multiplied by the corresponding branchings. In fact, this is the cross-section

for the CC03 on-shell process.
Let us discuss now the corrections that are missed in the fermion-loop scheme. As has been

mentioned above, there are two types of these corrections — the two-loop corrections to self-
energy in the Dyson resummed propagators, and the one-loop bosonic corrections. The former

ones can be taken into consideration in a quite simple way; one needs only take into account
the anomalous term in formula (4). Since the anomalous term contributes additively and with
the delta-function — like the leading-order term in (3) — its total effect is reduced to the

additive correction of the form of the cross-section of the on-shell W-pair production multiplied
by the corresponding branchings, and multiplied by the “anomalous” factor. The latter one is

determined as follows:

δ anom =

[
π

α ImΣ1(M2)

]−1
× 2×

[
−π ImΣ2(M

2)

ImΣ21(M
2)

]
= −2αImΣ2(M

2)

ImΣ1(M2)
. (5)

Here in the middle expression the first multiplier in square brackets cancels the coefficient at the
delta-function in the leading-order term in (3), factor 2 is due to the presence of the two W’s in
the CC03 process and due to the additive character of the anomalous term. The last multiplier

in (5) is the coefficient at the delta-function in the anomalous term in (4). Remember, the
anomalous factor is completely gauge invariant due to the gauge invariance of its ingredients.

Actually, without loss of precision the anomalous factor may be considered as a factor to the
full fermion-loop-scheme cross-section, but not necessary to its leading-order contribution only,

which is the cross-section of the CC03 on-shell process.
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The problem of the one-loop bosonic corrections may be easily solved, as well. Let us group
these corrections into two classes. To the first class we refer the corrections to self-energies

of unstable particles. To the second class we refer the corrections to the vertex factors, the
corrections due to the exchange processes, and due to the real (soft) photons.

In fact, the corrections of the first class have already been taken into consideration by making
use of formula (4). Indeed, in the OMS scheme the bosonic one-loop correction to the W-boson

self-energy does not contribute to the propagator squared within the NLO precision. This is
because only the imaginary part of the one-loop on-shell self-energy in the OMS scheme is

relevant within the NLO precision. However, the bosonic part of this quantity is zero.
The bosonic corrections of the second class have not yet been taken into consideration. To

do that, let us make use of the fact that within the NLO approximation and in the presence

of the corrections, the Dyson resummed unstable propagators squared may be considered in
the leading-order approximation only. As a result, the bosonic corrections of the second class

may be taken into consideration as the corrections to the CC03 on-shell process. Examples of
the diagrams of unitarity which generate contributions of this class are shown in Fig.1. In the

presence of the finite non-zero mass for the photons all these diagrams include exactly two pairs
of unstable propagators of the identical mass and momenta in both sides of the cut. (The only

exception, the configuration of Fig.1i, is discussed below.) Therefore, they include two delta-
functions of the corresponding kinematic variables, which make these configurations on-shell.

The sum of all such configurations may be represented as the sum of two groups of terms. The
first group includes the one-loop cross-section of the pair on-shell production (Fig.1a,c,e), or
the tree-level cross section of the W-pair plus one real photon on-shell production (Fig.1b,d,f),

times the lowest-order decay blocks of W-bosons. Another group includes the Born cross-section
of the pair on-shell production times their one-loop decay blocks or the tree-level decay blocks

with one real photon (Fig.1g,h,j).
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Fig. 1. Examples for factorizable and (quasi) non-factorizable corrections to the W-pair production
which have to be taken into consideration in the NLO approximation. (The dashed lines denote
the massive bosons or the photons. The thin and thick lines represent the initial/final fermions
and the W-bosons. The vertical dot-dashed lines mean the cut of unitarity. The hatched areas
denote the corresponding lowest-order Green functions.)

It should be noted that among the diagrams of Fig.1 there are configurations of both factor-
izable and non-factorizable types. Nevertheless, at an intermediate step, when the photons are

supplied with the finite mass, the non-factorizable configurations of Fig.1 become factorizable.
All other non-factorizable corrections that do not possess this property, produce configurations

that contain less than two pairs of the unstable propagators squared of identical mass and mo-
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menta in both sides of the unitarity cut. Therefore, they do not include the leading-order factor
1/α2 . Examples of configurations of this type are shown in Fig.2. Owing to the presence of an

additional factor α which is due to the bosonic exchange, all they contribute beyond the NLO.
Really, the configurations of Fig.2a-f contain one propagator squared only, which includes the

factor 1/α . Consequently, they contribute into the NNLO. The configurations of Fig.2g,h do
not at all contain the propagators squared. Consequently, they contribute into NNNLO.
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Fig. 2. Examples for manifestly non-factorizable corrections to the W-pair production.

Let us note, that the behaviour in α of each above-discussed configuration does not depend
on the value of photon-mass. So, this behaviour in α should be the same after the proceeding
to the zero-mass limit in the sum of the corresponding groups of diagrams. The zero-mass-limit

operation can always be done in view of the continuity property of the above-mentioned cross-
sections and decay-blocks, considered as functions of the photon-mass. Notice, after proceeding

to the zero-mass limit the property of the gauge-invariance must be restored, if it has been broken
by the photon-mass. The above-mentioned properties of the continuity on the photon-mass and

of the gauge-invariance after the limiting procedure follow from the well-known theorems for the
standard on-shell cross-sections with contributions of the real soft-photons.

Now let us discuss the above-mentioned exceptional configuration of Fig.1i. Strictly speak-
ing, it should not be considered among the diagrams of unitarity, since it describes the self-energy

correction to the unstable propagator, which has already been taken into consideration in for-
mula (4). Nevertheless, while considering the cross-section of the pair on-shell production, one
has to take into account the virtual soft-photon insertions to the external legs, which are due to

the wave function renormalization. The configuration of Fig.1i was added to the list of diagrams
of Fig.1 only in order to indicate this fact.

The above discussion leads us to the following resultant formulas for the cross-section:

σ(s) =

1∫
0

dz φ(z; s) σ̂(zs) , σ̂(s) =

s∫
0

ds+

(
√
s −√s+)2∫
0

ds− σ̂0(s ; s+, s−). (6)

Here σ(s) is the experimentally measured total cross-section at the center-of-mass energy
squared s. The φ(z; s) is the “flux” function describing the contributions of the initial-state

and final-state photon radiations with large IR and collinear logarithms. Quantity σ̂(s) is the
hard scattering cross-section at the reduced center-of-mass energy squared (see Refs. [1,2,3] and

references therein). It should be noted that σ̂(s) contributes to σ(s) as distribution, because
the σ̂(s) is smeared by the flux function over the allowed range of kinematic variable (φ(z; s)

is peaked at z = 1 and has a tail until a cut at lower values of z). The second formula in (6)
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represents σ̂(s) in form with the explicit phase-volume integration (over the virtualities of the
unstable particles, which are the invariant-masses of the corresponding final states). The σ̂0(s)

is the quantity that we have discussed above. It reads as follows:

σ̂0(s ; s+, s−) = σ̂
fermion-loop-scheme
0 (s ; s+, s−)× (1 + δ anom)

+σ̂CC03-on-shell, boson-one-loop+real-photon0 (s ;M+,M−)×
∏
κ=±
δ(sκ −M2

κ)×BR treeκ

+σ̂CC03-on-shell,tree0 (s ;M+,M−)×
∏
κ=±
δ(sκ −M2

κ)× BR tree/boson-one-loop+real-photonκ . (7)

Here the first term (without the δ anom) represents the result of the conventional fermion-loop

scheme. All other terms describe the corrections. Quantities BR tree± mean the lowest-order
on-shell branchings of the W±-bosons. In the third term one of BR’s is determined as the sum

of the bosonic one-loop correction to the partial width of W-boson and the width with one real
photon, divided by the total Born width. (In fact, the third term includes the sum of four

subterms, with the modified BR for one of two unstable particle.) All the above ingredients
are IR-finite and gauge-invariant. Moreover, except for ImΣ2(M

2) in δ anom, all of them have

already been calculated [22,23].

4. In the above discussion we have omitted the corrections caused by the gluon exchanges.
However, they contribute to the real processes and, so, they have to be taken into consideration.

The gluon exchanges occur between the final-state quarks, between the final-state quarks and
W-bosons at mediating the quark-loops, and between the W-bosons at mediating the quark-

loops. Examples of the corresponding configurations are shown in Fig.1c-j and Fig.2c-h with a
modified specification. Namely, under the dashed lines we imply now a group of gluons (two
or more), and in the points of intersection between the dashed lines and the W-boson lines,

or the vertices, we imply the presence of the fermionic loop. Correspondingly, these points of
intersection are supplied with the additional factor α. (We do not take into account the strong

coupling constant αs, assuming that it is of order O(1). The latter assumption means that we
imply the soft-gluon exchanges. The hard-gluon exchanges are additionally suppressed by the

smallness of αs.)
In order to avoid the collinear and IR divergences we consider the gluons at the intermediate

stage to be massive (it is enough to make the groups of the gluons to be effectively massive).
Simultaneously, this permits to delete from the list of diagrams that contribute into the NLO

the following configurations: Fig.1c-f and Fig.1i,j as including the additional α2, Fig.2c-f as sup-
pressed by one additional α and switching off the propagator squared, and Fig.2g,h as suppressed
by switching off the two unstable propagator squared. All the above-mentioned configurations

considered with the new specification make contributions to the NNLO.
So, the configurations which are responsible for the phenomenon of color reconnection make

contributions beyond the NLO approximation. The only configurations surviving in the NLO
are those which contribute to the decay factors of W-bosons. Among the listed above config-

urations they are of Fig.1g,h. They have to be taken into consideration while calculating the
corresponding BR’s in formula (7).

5. The above results may be easily generalized to the cases of the differential cross-sections.

What one must do in these cases is to replace the expressions that stand behind the above-
discussed diagrams of unitarity by the corresponding amplitudes squared with saving the nec-

essary integrations (the configurations remain the same). Then, in the case of the pure angular
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distributions, the only modification in formulas (6) and (7) consists in replacing the cross-sections
(and branchings, if necessary) by the corresponding angular distributions. The generalization to

the cases of the invariant-mass distributions is possible, as well, although it is not so straightfor-
ward. Really, it should necessarily involve a serious modification in the structure of the integrals

in (6). Namely, at least one of the two phase-volume integrals must disappear in the second
formula in (6). As a result, the convolution becomes directly acting on the corresponding hard-
scattering distribution. This rather sharp modification may have nontrivial consequences. In

particular, it may result in the change for the worse of the convergence properties of the series in
powers of α in the modified PT. In practice exactly this change seems to have place, because the

manifestly non-factorizable corrections become non-negligible in the case of the invariant-mass
distributions [14]. Nevertheless, in view of the sharp decreasing of the effect with the increasing

s [7,14], the property of convergence seems to rapidly be improving with the energy increasing.
Since the invariant-mass distributions are not important for the practical usage, at least near

the threshold, the above-discussed effect should not have important consequences.
In the cases of the total cross-section and the pure angular distributions the property of

convergence of the modified PT remains quite satisfactory almost everywhere, except for the
range of the direct vicinity to the threshold which is numerically less than the width of W-
boson. This observation follows from the well-known property of closeness in this range of the

on-shell CC03 total cross-section to the off-shell CC03 total cross-section [1]. Actually, the
difference between these two cross-sections is a characteristic of the accuracy of the description

of the W-pair production in the leading-order approximation. The numerical accuracy of the
description within the NLO approximation is controlled by this difference, as well. The more

detailed discussion of this problem is the subject of the forthcoming paper.
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