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Abstract

Pirogov Yu. F. Space-time symplectic extension.: IHEP Preprint 2001–19. – Protvino, 2001. – p. 11,
refs.: 9.

It is conjectured that in the origin of space-time there lies a symplectic rather than metric structure. The
complex symplectic symmetry Sp(2l, C), l ≥ 1 instead of the pseudo-orthogonal one SO(1, d− 1), d ≥ 4
is proposed as the space-time local structure group. A discrete sequence of the metric space-times of the
fixed dimensionalities d = (2l)2 and signatures, with l(2l−1) time-like and l(2l+1) space-like directions,
defined over the set of the Hermitian second-rank spin-tensors is considered as an alternative to the
pseudo-Euclidean extra dimensional space-times. The basic concepts of the symplectic framework are
developed in general, and the ordinary and next-to-ordinary space-time cases with l = 1, 2, respectively,
are elaborated in more detail. In particular, the scheme provides the rationale for the four-dimensionality
and 1 + 3 signature of the ordinary space-time.

aNNOTACIQ

pIROGOW ‘. f. sIMPLEKTIˆESKOE RAS[IRENIE PROSTRANSTWA-WREMENI.: pREPRINT ifw— 2001–19. –
pROTWINO, 2001. – 11 S., BIBLIOGR.: 9.

pREDPOLAGAETSQ, ˆTO W OSNOWE PROSTRANSTWA-WREMENI LEVIT SIMPLEKTIˆESKAQ, A NE METRIˆESKAQ

STRUKTURA. w KAˆESTWE LOKALXNOJ PROSTRANSTWENNO-WREMENNOJ STRUKTURNOJ GRUPPY PREDLAGAETSQ

KOMPLEKSNAQ SIMPLEKTIˆESKAQ SIMMETRIQ Sp(2l, C), l ≥ 1 WMESTO PSEWDO-ORTOGONALXNOJ SO(1, d− 1),
d ≥ 4. kAK ALXTERNATIWA PSEWDO-EWKLIDOWYM PROSTRANSTWAM-WREMENAM S DOPOLNITELXNYMI IZME-
RENIQMI RASSMATRIWAETSQ DISKRETNAQ POSLEDOWATELXNOSTX PROSTRANSTW-WREMEN FIKSIROWANNYH RAZ-
MERNOSTEJ d = (2l)2 I SIGNATUR, S l(2l−1) WREMENI-PODOBNYMI I l(2l+1) PROSTRANSTWENNO-PODOBNYMI

NAPRAWLENIQMI, ZADANNYH NA MNOVESTWE “RMITOWYH SPIN-TENZOROW WTOROGO RANGA. rAZWITY OSNOW-
NYE KONCEPCII SIMPLEKTIˆESKOGO FORMALIZMA W CELOM, A SLUˆAI OBYˆNOGO I BLIVAJ[EGO K OBYˆNOMU

PROSTRANSTW-WREMEN S l = 1, 2, SOOTWETSTWENNO, RAZRABOTANY BOLEE DETALXNO. w ˆASTNOSTI, SHEMA

DAET RACIONALXNOE OB˙QSNENIE ˆETYREHMERNOSTI I 1+3 SIGNATURY OBYˆNOGO PROSTRANSTWA-WREMENI.
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Introduction

At present, the ordinary space-time is postulated to be locally the Minkowski space, i.e.,
the pseudo-Euclidean space of the dimensionality d = 4 with the Lorentz group SO(1, 3) as the
local symmetry group. Nevertheless, the spinor analysis in the Minkowski space heavily relies

on the isomorphism for the proper noncompact groups SO(1, 3)� SL(2, C)/Z2, as well as that
SO(3) � SU(2)/Z2 for their maximal compact subgroups (see, e.g., [1]). Moreover, the whole

relativistic field theory in four space-time dimensions can equivalently be formulated (and in a
sense it is even preferable) entirely in the framework of spinors of the SL(2, C) group [2]. In

this approach, to a space-time point there corresponds a Hermitian tensor of the second rank.
From this point of view, a description of the ordinary space-time by means of the real four-

vectors of the SO(1, 3) group, rather than by the Hermitian tensors of SL(2, C), is nothing
but the (historically settled) tradition of the space-time parametrization. Nevertheless, right

this parametrization underlies the proposed and widely discussed space-time extensions into
the (locally) pseudo-Euclidean spaces of the larger dimensionalities d > 4 in the Kaluza-Klein
fashion (see, e.g., [3]). These extensions assume the embedding of the local symmetry groups as

SO(1, 3)⊂ SO(1, d− 1). The pseudo-Euclidean extensions play the crucial role in the attempts
to construct a unified theory of all the interactions including gravity [4].

In what follows we stick to the viewpoint that spinors are more fundamental objects than
vectors. Thus the space-time structure group with spinors as defining representations, i.e. the

complex symplectic group Sp(2, C), is considered to be more appropriate than the pseudo-
orthogonal group SO(1, 3) with vectors as defining representations and spinors just as a kind of

artefact. In other words, we assume that the symplectic structure of the space-time has a deeper
physical origin than the metric one though both approaches, symplectic and pseudo-orthogonal,

are formally equivalent at an effective level in the ordinary space-time. Then in searching for
the space-time extra dimensional extensions, a natural step would be to look for the extensions
in the symplectic framework with the structure group Sp(2l, C), l > 1. The reason is that

the descriptions equivalent at l = 1 and d = 4 can result in principally different extensions at
l > 1 and d > 4. This is the problem dealt with in the present paper. We develop the basic

concepts of the general symplectic framework and elaborate in more detail the ordinary and
next-to-ordinary space-time cases with l = 1, 2, respectively2.

1. Structure group

It is assumed that an underlying physics described effectively by a local symmetry (structure

group) constitutes the basis for the local properties of the space-time, i.e., for its dimensionality

2An early version of the study can be found in [5].
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and signature. Hence, to find possible types of the space-time extensions it is necessary first
of all to find out all the structure groups isomorphic each other at d = 4. In addition to the

well-known isomorphism of the real and complex groups SO(1, 3)� SL(2, C)/Z2 relevant to the
ordinary space-time, there exist the following isomorphisms (up to Z2) for the proper complex

Lie groups: SL(2, C) � SO(3, C) � Sp(2, C) and, respectively, for their maximal compact (real)
subgroups SU(2) � SO(3) � Sp(2). In other terms these isomorphisms look like A1 � B1 � C1,

where the groups considered are the first ones from the complex Cartan series: Al = SL(l+1, C),
Bl = SO(2l+1, C), Cl = Sp(2l, C) and similarly for their maximal compact subgroups SU(l+1),

SO(2l+1), Sp(2l) (see, e.g., [6]). Here l ≥ 1 means the rank of the corresponding Lie algebras.
It is equal to the half-rank of the proper noncompact Lie groups and coincides with the rank
of their maximal compact subgroups. As the structure groups, all the groups from the above

series result in the (locally) isomorphic descriptions at l = 1. Therefore at l > 1, the extended
structure groups may a priori be looked for in each of the series with properly extended spinor

space. But the physical requirement for the existence of an invariant bilinear product in the
extended spinor space restricts the admissible types of extension.

Namely, for all the complex groups the complex conjugate fundamental representations ψ̄

are not equivalent to the representations ψ themselves. Besides, for all the complex series there

is no invariant tensor in the spinor space which would match a spinor representation and its
complex conjugate. Hence, the invariant bilinear product of Grassmann fields in the form ψψ

(and ψ̄ψ̄) is the only possible one (if any). The latter is admissible just for the symplectic
series Cl. This is due to the fact that, by definition, there exists in this case the invariant
(antisymmetric) second-rank tensor. It is to be noted, that the spinor representations of the

orthogonal groups Bl are realized by the embedding of the latter ones into the symplectic groups
C2l−1 over the 2

l-dimensional spinor space. Only at l = 1, 2 there take place the isomorphisms

Bl � Cl. The spinors being assumed to be more fundamental objects than vectors, it is natural
to consider directly the symplectic groups which are self-sufficient for spinors, instead of the

pseudo-orthogonal ones which inevitably should appeal to symplectic groups for justification of
the spinor representations.

Just the existence of the alternating second-rank tensor in the SL(2, C) group is, in essence,
the raison d’etre for the spinor analysis in four space-time dimensions being based traditionally

on this group. The symmetry structure which provides the alternating tensor and, as a result,
the invariant inner product for spinors, proves to be crucial for the whole physical theory. But
this structure survives in Sp(2l, C) and is absent in SL(l+ 1, C) at l > 1. This is why namely

the first groups, and not the second ones, are to be considered as the structure groups of the
extended space-time. Therefore, while constructing extra dimensional space-times we retain

symplectic structure, i.e., consider extensions in the series Cl.
To summarize: two alternative ways of the space-time extension can be pictured schemati-

cally as

SO(1, 3) � Sp(2, C)

↓ ↓
SO(1, d− 1) �� Sp(2l, C) . (1)

The first, commonly adopted way of extension, corresponds to the real structure groups while

the second one relies on the complex groups. The scheme shows that the isomorphism of the
real and complex groups, valid at d = 4 and l = 1, is no longer fulfilled at d > 4 and l > 1. In

the first way of extension the local metric properties of the space-time (i.e., dimensionality and
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signature) are put in ab initio. In the second way, these properties should not be considered as
the primary ones but, instead, they have to emerge as a manifestation of the inherent symplectic

structure.

2. Sp(2l,C)

Let ψA and ψ̄Ā ≡ (ψA)
∗, as well as their respective duals ψA and ψ̄Ā ≡ (ψA)∗, A, Ā = 1, . . . , n

(n = 2l) are the spinor representaions of Sp(2l, C). It is well known that there exist in the spinor

space the nondegenerate invariant second-rank spin-tensors εAB = −εBA and εAB = −εBA such
that εACε

CB = δA
B , with δA

B being the Kroneker symbol (and similarly for εĀB̄ ≡ (εBA)∗ and

εĀB̄ ≡ (εBA)
∗). Owing to these invariant tensors the spinor indices of the upper and lower

positions are pairwise equivalent (ψA ∼ ψA and ψ̄Ā ∼ ψ̄Ā), so that there are left just two
inequivalent spinor representaions (generically, ψ and ψ̄). Let us call ψ and ψ̄ the spinors of the

first and the second kind, respectively, and similarly for the corresponding indices A and Ā 3.
Let us put in correspondence to an event point P a second rank spin-tensor XA

B̄(P ), which

is Hermitian, i.e., XA
B̄ = (XB

Ā)∗ ≡ X̄ B̄
A, or in other terms XAB̄ = (XBĀ)

∗. One can define
the quadratic scalar product as

trXX̄ ≡ XA
B̄X̄B̄

A = XA
B̄XA

B̄ = −XAB̄XAB̄ = −XAB̄(XBĀ)∗ , (2)

the last equality being due to the Hermiticity of X . Clearly, trXX̄ is real though not sign

definite. Besides, the spin-tensor XX̄ is antisymmetric, (XX̄)AB = −(XX̄)BA, and hence it can
be decomposed into the trace relative to ε and a traceless part. Under S ∈ Sp(2l, C) one has in

compact notations:

X → SXS† ,

X̄ → S†−1X̄S−1 , (3)

so that XX̄ → SXX̄S−1 and trXX̄ is invariant, indeed. In fact, the invariant (2) is at l > 1
just the first one in a series of independent invariants tr (XX̄)k, k = 1, . . . , l. By definition,

set {X} endowed with the structure group Sp(2l, C) and the interval between points X1 and
X1 defined as tr (X1 − X2)(X̄1 − X̄2) constitutes the symplectic space-time. The noncompact

transformations from the Sp(2l, C) are counterparts of the Lorentz boosts in the ordinary space-
time, while transformations from the compact subgroup Sp(2l) = Sp(2l, C)∩SU(2l) correspond

to rotations. With account for translations XA
B̄ → XA

B̄ + ΞA
B̄, where ΞA

B̄ is an arbitrary
constant Hermitian spin-tensor, the whole theory in the flat symplectic space-time should be

invariant under the inhomogeneous symplectic group.
Let us now fix for a while the extended boosts and restrict ourselves by the extended rota-

tions, i.e., by the maximal compact subgroup Sp(2l). Relative to the latter, the indices of the
first and the second kinds are indistinguishable in their transformation properties (ψA ∼ ψ̄Ā),
and one can temporarily label XAB̄ in this case as XXY , where X, Y, . . . = 1, . . . , n generically

mean spinor indices irrespective of their kind. Hence, while restricting by the compact subgroup

3Note that both the kind and position of the indices are changed under complex conjugation, contrary the
traditional definition of the dotted indices for SL(2, C) without the position change: (ψA)∗ ≡ ψ∗

Ȧ
, etc. The

advantage of the definition adopted in the present paper is that relative to the maximal compact subgroup
Sp(2l), the two kinds of indices A and Ā in the same position are completely indistinguishable, while the similar
A and Ȧ would enjoy this property only after the implicit position change for Ȧ.
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one can reduce the tensor XXY into two irreducible parts, symmetric and antisymmetric ones:
XXY =

∑
±(X±)XY , where (X±)XY = ±(X±)YX have d± = n(n±1)/2 dimensions, respectively.

One gets from (2) the following decomposition for the scalar product:

trXX̄ =
∑
±
(∓1)(X±)XY [(X±)XY ]∗ . (4)

At l > 1, one can further reduce spin-tensor X− into the trace X
(0)
− relative to ε and a traceless

part X
(1)
− as (X−)XY = 1/

√
nX

(0)
− εXY + (X

(1)
− )XY so that

trXX̄ = X
(0)2
− + (X

(1)
− )XY [(X

(1)
− )XY ]

∗ − (X+)XY [(X+)XY ]
∗ . (5)

As a result, the whole extended space-time can be decomposed with respect to the rotation

group into three irreducible subspaces of the 1, (n − 2)(n + 1)/2 and n(n + 1)/2 dimensions.
According to their signature and transformation properties, the first two subspaces correspond to

the time dimensions, the rotationally invariant and non-invariant ones, while the third subspace
corresponds to the spatial extra dimensions. It is to be noted that the number of components

in the extended space, and hence that in the spatial momentum, is equal to the number of the
noncompact transformations (boosts). Thus, for a massive particle there exist a rest frame with

zero spatial momentum. In the case n = 2 there is a unique antisymmetric tensor (X−)XY ∼ εXY ,
so that the non-invariant time subspace is empty.

Of course, the particular decomposition of X into two parts X± is noncovariant with respect
to the whole Sp(2l, C) and depends on the boosts. Nevertheless, the decomposition being valid
at any boost, the number of the positive and negative components in trXX̄ is invariant under

the whole Sp(2l, C). In other words, the metric signature of the symplectic space-time

σd = (+1, . . .︸ ︷︷ ︸
d−

;−1, . . .︸ ︷︷ ︸
d+

) (6)

is invariant. Hence, at n = 2l > 2 the structure group Sp(2l, C) of the n-th rank and the
n(n+1)-th order, acting on the Hermitian second-rank spin-tensors with d = n2 components, is
just a restricted subgroup of the embedding pseudo-orthogonal group SO(d−, d+), of the rank

n2/2 and the order n2(n2 − 1)/2, acting on the pseudo-Euclidean space of the dimensionality
d = n2. What distinguishes Sp(2l, C) from SO(d−, d+), is the total set of independent invariants

tr(XX̄)k, k = 1, . . . , l. The isomorphism between the groups is achieved only at l = 1, i.e., for
the ordinary space-time d = 4 where there is just one invariant trXX̄.

It should be stressed that in the approach under consideration, neither the discrete set of
dimensionalities, d = (2l)2, of the extended space-time, nor its signature, nor the existence of

the rotationally invariant one-dimensional time subspace are postulated ab initio. Rather, they
are the immediate consequences of the underlying symplectic structure. In particular, the latter

seems to provide the unique rationale for the four-dimensionality of the ordinary space-time,
as well as for its signature (+ − −−). Namely, these properties directly reflect the existence

of one antisymmetric and three symmetric second-rank Hermitian spin-tensors at l = 1. The
set of such tensors, in its turn, is the lowest admissible Hermitian space to accommodate the
symplectic structure, the case l = 0 being trivial (d = 0). On the other hand, right the existence

of the one-dimensional time subspace allows one to (partially) order the events at any fixed
boosts, which serves as a basis for the causality description. Hence, the latter may ultimately

be attributed to the underlying symplectic structure, too. At l > 1, because of the extra times
being mixed via boosts with the one-dimensional time, the causality should approximately be

valid only at small boosts.
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3. C, P, T

Let us charge double the spinor space, i.e., for each ψA, (ψA)
† ≡ ψ̄Ā introduce two copies ψ±A ,

(ψ±A)
† ≡ (ψ̄∓)Ā, with ± being the “charge” sign4. In analogy to the ordinary case of SL(2, C) [1],

one can define the following discrete symmetries:

C : ψ±A → ψ∓A ,

P : ψ±A → (ψ∓A)
† ≡ (ψ±)Ā ,

T : ψ±A → (ψ±A)
† ≡ (ψ∓)Ā , (7)

and hence CPT : ψ±A → ψ±A (all up to the phase factors). Under CPT invariance, only two of the

discrete operations (7) are independent ones. Without charge doubling, just one combination
CP ≡ T : ψA → ψ̄Ā survives.

Now, let us introduce the Hermitian spin-tensor current J = J† as follows

JA
B̄ ≡

∑
±
(±1)ψ±A(ψ±B)† =

∑
±
(±1)ψ±A(ψ∓)B̄ . (8)

(ψ’s are the Grassmann fields). Under (7) the current JA
B̄ transforms as follows

C : JA
B̄ → −JAB̄ ,

P : JA
B̄ → −JBĀ ,

T : JA
B̄ → JB

Ā . (9)

Fixing boosts and decomposing current JAB̄ into the symmetric and antisymmetric parts, JXY =∑
±(J±)XY , one gets from (9):

C : (J±)XY → −(J±)XY ,

P : (J±)XY → ∓(J±)XY ,

T : (J±)XY → ±(J±)XY . (10)

This is in complete agreement with the signature association for the symmetric (antisymmetric)
part of the Hermitian spin-tensor X as the extended spatial (time) components.

4. l = 1

The noncompact group Sp(2l, C) has n(n + 1) generators MAB = (LAB, KAB), A,B =

1, . . . , n (n = 2l), so that LAB = LBA and similarly for KAB. The generators LAB are Hermitian
and correspond to the extended rotations, whereas thoseKAB are anti-Hermitian and correspond
to the extended boosts. In the space of the first-kind spinors ψA these generators can be

represented as (σAB, iσAB) with (σAB)CD = 1/2(εACεBD + εADεBC), so that σAB = σBA and
(σAB)CD = (σAB)DC , (σAB)C

C = 0. Similar expressions hold true in the space of the second-

kind spinors ψ̄Ā. In these terms, a canonical formalism can be developed at arbitrary l ≥ 1.
However, in the simplest case l = 1 corresponding to the ordinary four-dimensional space-

time, there exists the isomorphism B1 � C1 (or SO(3, C) � Sp(2, C)/Z2). Due to this property,

4We use here a dagger sign for complex conjugation to show that the Grassmann fields should undergo the
change of the order in their products.
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the structure of Sp(2, C) can be brought to the form, though equivalent mathematically, more
familiar physically5. Namely, let us introduce for the SO(3, C) group the double set of the Pauli

matrices, (σi)A
B̄ and (σi)Ā

B , i = 1, 2, 3. They should satisfy the anticommutation relations:
σiσj + σjσi = 2δijσ0 and σiσj + σjσi = 2δijσ0, where (σ0)A

B ≡ δA
B, (σ0)Ā

B̄ ≡ δĀ
B̄ are

the Kroneker symbols and δij is the metric tensor of SO(3, C). Among these matrices, σ0
and σ0 are the only independent ones which can be chosen antisymmetric, (σ0)AB ≡ εAB and
(σ0)ĀB̄ ≡ εĀB̄. On the other hand, with respect to the maximal compact subgroup SO(3), all

the matrices σi, σi can be chosen both Hermitian and symmetric as (σi)X
Y = [(σi)Y

X ]∗ and
(σi)XY = (σi)YX (and the same for σi). The matrices σij ≡ −i/2 (σiσj − σjσi), such that

σij = −σji and (σij)AB = (σij)BA (and similarly for (σij)ĀB̄ ≡ i/2 (σiσj − σjσi)ĀB̄), are not
linearly independent from σi. They can be brought to the form (σij)XY = εijk (σk)XY , with εijk
being the Levi-Civita SO(3, C) symbol.

The matrices (σij, iσij) can be identified as the generators Mij = (Lij, Kij) of the noncom-

pact SO(3, C) group in the space of the first-kind spinors. Respectively, in the space of the
second-kind spinors they are (−σij, iσij). The generators Lij of the maximal compact subgroup

SO(3) � Sp(2)/Z2 correspond to rotations, while those Kij of the noncompact transformations
describe Lorentz boosts. Relative to SO(3) one has σ̄0 = σ0, σ̄i = σi and σ̄ij = −σij. When
restricted by the maximal compact subgroup SO(3), the Hermitian second-rank spin-tensor may

be decomposed in the complete set of the Hermitian matrices (σ0, σij) with the real coefficients:
X = 1/

√
2 (x0σ0+1/2 xijσij), so that trXX̄ = x20−1/2 x2ij. With identification xij ≡ εijkxk one

gets as usually trXX̄ = x20 − x2i . Both the time and spatial representations being irreducible
under SO(3), there takes place the usual decomposition 4 = 1 ⊕ 3 relative to the embedding

SO(3, C) ⊃ SO(3).

5. l = 2

This case corresponds to the next-to-ordinary space-time symplectic extension. Similarly
to the case l = 1, there takes place the isomorphism B2 � C2, or SO(5, C) � Sp(4, C)/Z2.

Cases l = 1, 2 are the only ones when the structure of the symplectic group gets simplified
in terms of the complex orthogonal groups. The double set of Clifford matrices (ΣI)A

B̄ and

(ΣI)Ā
B , I = 1, . . . , 5 satisfies ΣIΣJ + ΣJΣI = 2δIJΣ0 and ΣIΣJ + ΣJΣI = 2δIJΣ0, where

(Σ0)A
B ≡ δA

B , (Σ0)Ā
B̄ ≡ δĀ

B̄ are the Kroneker symbols and δIJ is the metric tensor of SO(5, C).

Relative to the maximal compact subgroup SO(5) they may be chosen Hermitian, (ΣI)X
Y =

[(ΣI)Y
X]∗, but antisymmetric (ΣI)XY = −(ΣI)Y X (and similarly for ΣI), like (Σ0)AB = εAB and

(Σ0)ĀB̄ = εĀB̄. One can also require that (ΣI)X
X = 0. Therefore, under restriction by SO(5),

six matrices Σ0, ΣI provide the complete independent set for the antisymmetric matrices in the
four-dimensional spinor space. After introducing matrices ΣIJ = −i/2(ΣIΣJ − ΣJΣI), so that

ΣIJ = −ΣJI , one gets the symmetry condition for them: (ΣIJ)AB = (ΣIJ)BA (and similarly for
(ΣIJ)ĀB̄ = i/2(ΣIΣJ − ΣJΣI)ĀB̄). Hence, ten matrices ΣIJ (or ΣIJ) make up the complete set

for the symmetric matrices in the spinor space. Under SO(5) one has Σ0 = Σ0, ΣI = ΣI and
ΣIJ = −ΣIJ .

5We use here the complex group SO(3, C) instead of the real one SO(1, 3) to show the close similarity with
the next case l = 2 where there is no real structure group. Because of the complexity of SO(3, C) one should
distinguish vectors and their complex conjugate, the latter ones being omitted for simplicity in what follows. The
same remains true for the SO(5, C) case corresponding to l = 2.

6



With respect to SO(5) the Hermitian second-rank spin-tensor X may be decomposed in the
complete set of matrices Σ0, ΣI and ΣIJ with the real coefficients: X = 1/2 (x0Σ0 + xIΣI +

1/2 xIJΣIJ). In these terms one gets

trXX̄ = x20 + x2I −
1

2
x2IJ . (11)

There is one more independent invariant combination of x0, xI and xIJ stemming from the
invariant tr(XX̄)2. Relative to the embedding SO(5, C) ⊃ SO(5) one has the following decom-

position in the irreducible representations:

16 = 1⊕ 5⊕ 10 . (12)

Under the discrete transformations (7) one gets

P : x0 → x0, xI → xI , xIJ → −xIJ ,
T : x0 → −x0, xI → −xI , xIJ → xIJ . (13)

This means that from the point of view of SO(5), xI is the axial vector whereas xIJ is the

pseudo-tensor (a counterpart of xij = εijkxk in three spatial dimensions). The matrices (ΣIJ ,
iΣIJ) or (−ΣIJ , iΣIJ) represent the SO(5, C) generators MIJ = (LIJ , KIJ) in the spaces of the

spinors, respectively, of the first and the second kinds. A particular expression for the matrices
ΣI , ΣIJ in terms of σ0, σi depends on the fashion of the embedding SO(3, C) ⊂ SO(5, C).

The rank of the algebra C2 being l = 2, an arbitrary irreducible representation of the
noncompact group Sp(4, C) is uniquely characterized by two complex Casimir operators I2 and

I4, respectively, of the second and the forth order, i.e., by four real quantum numbers. Otherwise,
an irreducible representation of Sp(4, C) can be described by the mixed spin-tensor ΨB̄1...A1...

of a

proper rank. This spin-tensor should be traceless in any pair of the indices of the same kind,
and its symmetry in each kind of the indices should correspond to a two-row Young tableau. In
fact, there exists the completely antisymmetric invariant tensor of the fourth rank εA1A2A3A4 ≡
εA1A2εA3A4 − εA1A3εA2A4 + εA1A4εA2A3 which corresponds to the embedding SL(4, C) ⊃ Sp(4, C)
(and similarly for εĀ1Ā2Ā3Ā4). By means of these invariant tensors, three indices of the same kind

with antisymmetry are equivalent to one index, whereas four indices with antisymmetry can be
omitted altogether. Hence, antisymmetry is possible in no more than pairs of indices of the same

kind. Therefore an irreducible representaion of Sp(4, C) may unambiguously be characterized
by a set of four integers (r1, r2; r̄1, r̄2), r1 ≥ r2 ≥ 0 and r̄1 ≥ r̄2 ≥ 0. Here r1,2 (respectively,

r̄1,2) are the numbers of boxes in the first or the second rows of the proper Young tableau. The
rank of the maximal compact subgroup SO(5) � Sp(4)/Z2 (the rotation group) being equal to

l = 2, a state in a representation is additionally characterized under fixed boosts by two additive
quantum numbers, namely, the eigenvalues of the mutually commuting momentum components
of LIJ in two different planes, say, L12 and L45. Note, that in the Sp(2, C) case the Young

tableaux are at most one-rowed, and an irreducible representation is characterized by a pair of
integers (r; r̄), with the complex dimensionality of the representation being (r+1)(r̄+1). In this

case, there remains just one diagonal component of the total angular momentum, say, L12 ≡ L3.

6. l→ 1 reduction

The ultimate attribute of the dimensionality in the given approach is the discrete number

l = 1, 2, . . . corresponding to the dimensionality n = 2l of the spinor space. The dimensionality
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d = (2l)2 of the space-time appears just as a secondary quantity. In reality, the extended space-
time with l > 1 should compactify to the ordinary one with l = 1 by means of the symplectic

gravity. Let us restrict ourselves by the next-to-ordinary space-time case with l = 2. Three
generic inequivalent types of the spinor decomposition relative to the embedding Sp(4, C) ⊃
Sp(2, C) are conceivable: (i) 4 = 2⊕ 2, (ii) 4 = 2⊕ 2 and (iii) 4 = 2⊕ 1⊕ 1.

(i) Chiral spinor doubling

4 = 2⊕ 2 (14)

results in the decomposition of the Hermitian second-rank spin-tensor 16 ∼ 4× 4 as

16 = 4 · 4 , (15)

i.e., in a collection of four four-vectors (more precisely, of three vectors and one axial vector, as

follows from (12) and (13)). As for matter fermions, according to (14) the number of the two-
component fermions after compactification is twice that of the number of the four-component

fermions prior compactification. If a kind of the family structure reproduces itself during the
compactification, it is necessary that there should be at least two copies of the four-component

fermions in the extended space-time with at least four two-component copies of them in the
ordinary space-time. For phenomenological reasons, the fermions in excess of three families

should acquire rather large effective Yukawa couplings as a manifestation of the curled-up space-
time background. This is not in principle impossible because the two-component fermions in
(14) distinguish extra dimensions. Note, that the requirement for the renormalization group

consistency of the Standard Model (SM) disfavours the fourth heavy chiral family in the model
without a rather low cut-off [7]. But if due to the decomposition (15) for the gauge bosons,

there appeared the additional moderately heavy vector bosons with the mass comparable to
that of the heavy fermions, this constraint could in principle be evaded and the compactification

scale Λ could be envisaged to be both rather moderate and high without conflict with the SM
consistency. On the other hand, the extra time-like dimensions violate causality and the proper

compactification scale Λ in the pseudo-orthogonal case is stated to be not less than the Planck
scale [8]. Nevertheless, one may hope that the latter restriction could somehow be abandoned

in the symplectic approach due to approximate causality here. It is to be valid at small boosts
or gravitational fields, so that the compactification scale Λ could possibly be admitted to be not
very high. For this reason, the given compactification scenario could still survive at any Λ.

(ii) Vector-like spinor doubling

4 = 2⊕ 2 (16)

results in the decomposition

16 = 2 · 4⊕
(
3 + h.c.

)
⊕ 2 · 1 . (17)

In the traditional four-vector notations one hasX ∼ (x(1,2)µ , x[µν], x
(1,2)), µ, ν = 0, . . . , 3, with the

tensor x[µν] being antisymmetric and all the components x being real. According to (16), after
compactification there should emerge the pairs of the ordinary and mirror matter fermions. For

phenomenological reasons, one should require the mirror fermions to have masses supposedly
of the order of the compactification scale Λ. Modulo reservations for the preceding case, this

compactification scenario could be valid at any Λ, too.
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(iii) Spinor-scalar content

4 = 2⊕ 1⊕ 1 (18)

results in
16 = 4⊕

(
2 · 2 + h.c.

)
⊕ 4 · 1 , (19)

or in the mixed four-vector and spinor notations X ∼ (xµ, x
(1,2)
A , x(1,2,3,4)), A = 1, 2. Due

to (18), there would take place the violation of the spin-statistics connection for matter fields

in the four-dimensional space-time if this connection fulfilled in the extended space-time. The
scale of this violation should be determined by the compactification scale Λ which, in contrast

with the two preceding cases, have safely to be high enough for not to violate causality within
the experimental precision.

7. Gauge interactions

Let DA
B̄ ≡ ∂A

B̄+igGA
B̄ be the generic covariant derivative, with g being the gauge coupling,

the Hermitian spin-tensor GA
B̄ being the gauge fields and ∂A

B̄ ≡ ∂/∂XA
B̄ being the ordinary

derivative. Now let us introduce the strength tensor6

F
[B̄1 B̄2]
{A1A2} ≡

1

ig
D
[B̄1
{A1D

B̄1]
A2}

=
1

4ig

(
DB̄1A1D

B̄2
A2
−DB̄2A2D

B̄1
A1

+DB̄1A2D
B̄2
A1
−DB̄2A1D

B̄1
A2

)
(20)

and similarly for F
{B̄1B̄2}
[A1A2]

≡ (F
[Ā2Ā1]
{B2B1})

∗, where {. . .} and [. . .] mean the symmetrization and

antisymmetrization, respectively. One gets

F
[B̄1 B̄2]
{A1A2} = ∂

[B̄1
{A1G

B̄2]
A2} + igG

[B̄1
{A1G

B̄2]
A2} (21)

and similarly for F
{B̄1B̄2}
[A1A2 ]

. These tensors are clearly gauge invariant. The total number of

the real components in the tensor F
[B̄1B̄2 ]
{A1A2} is 2 · n(n − 1)/2 · n(n + 1)/2 = n2(n2 − 1)/2, and

it exactly coincides with the number of components of the antisymmetric second-rank tensor

F[αβ], α, β = 0, 1, . . . , n2 − 1, defined in the pseudo-Euclidean space of the d = n2 dimensions.
But in the symplectic case, tensor F is reducible and splits into a trace relative to ε and a

traceless part, F = F (0) + F (1), where F (0)
[B̄1B̄2]
{A1A2} ≡ F

(0)
{A1A2}ε

B̄1B̄2 and F (1)
[B̄1B̄2]
{A1A2}εB̄1B̄2 = 0 (and

similarly for F
{B̄1B̄2}
[A1A2]

). Hence, one has two independent irreducible representations with the real

dimensionalities d0 = n(n + 1) and d1 = n(n− 2)(n+ 1)2/2. At n = 4, one has in terms of the

complex tensors of SO(5, C): F
(0)
[IJ] ≡ (ΣIJ)

A1A2F
(0)
{A1A2} and F (1)

[B̄1B̄2]
[IJ] ≡ (ΣIJ)

A1A2F (1)
[B̄1B̄2 ]
{A1A2}.

At n = 2, in terms of SO(3, C) there remains only F
(0)
[ij] ≡ (σij)

A1A2F
(0)
{A1A2} or, equivalently,

F
(0)
i ≡ 1/2 εijkF

(0)
[jk].

For an unbroken gauge theory with fermions, the generic gauge, fermion and mass terms of

the Lagrangian L = LG + LF + LM are, respectively,

LG =
∑
s=0,1

(cs + iθs)F
(s)F (s) + h.c. ,

6For simplicity, we do not distinguish in what follows the relative column positions of the indices of different
kinds.
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LF =
i

2

∑
±
(ψ±)†

↔
D ψ± ,

LM = ψ+m0 ψ
− +
∑
±

ψ±m±ψ
± + h.c. , (22)

where F (s)F (s) ≡ F (s)
[B̄1B̄2]
{A1A2}F

(s){A2A1}
[B̄2B̄1 ]

. In the Lagrangian, m0 is the generic Dirac mass, m± are
Majorana masses, cs and θs are the real gauge parameters. One of the parameters cs, supposedly
c0 �= 0, can be normalized at will. Eq. (22) results in the following generalization of the Dirac

equation
iDCB̄ψ

±
C = m†0ψ

±
B̄
+
∑
±

m†± ψ∓
B̄

(23)

and the pair of Maxwell equations (c0 ≡ 1 and c1 = θ1 = 0, for simplicity)

(1 + iθ0)D
CB̄F (0){CA} − h.c. = 0 ,

(1 + iθ0)D
CB̄F (0){CA} + h.c. = 2gJA

B̄ , (24)

with the fermion Hermitian current J given by (8).

The tensors F (s), s = 1, 2 are non-Hermitian, but under restriction by the maximal compact
subgroup Sp(2l) (when there is no distinction between the indices of different kinds) they split

into a pair of the Hermitian ones E(s) and B(s) as follows: F (s) = E(s) + iB(s). Here one has
E(s)

[Y1Y2]
{X1X2} ≡ 1/2[F (s)

[Y1Y2]
{X1X2} + (F (s)

{X2X1}
[Y2Y1]

)
∗
] and B(s)

[Y1Y2]
{X1X2} ≡ 1/2i [F (s)

[Y1Y2]
{X1X2} − (F (s)

{X2X1}
[Y2Y1]

)
∗
]

with E(s)
[Y1Y2]
{X1X2} = (E(s)

{X2X1}
[Y2Y1]

)∗ and similarly for B(s). Introducing the duality transformation

F (s) → F̃ (s) ≡ −iF (s), so that Ẽ(s) = B(s) and B̃(s) = −E(s), one gets ReF (s)F (s) = E(s)2 −
B(s)2 and ImF (s)F (s) = ReF̃ (s)F (s) = 2E(s)B(s). Though the splitting into E(s) and B(s) is
noncovariant with respect to the whole Sp(2l, C), the duality transformation is covariant. The

tensors E(s) and B(s) are the counterparts of the ordinary electric and magnetic strengths,
and θ0 is the counterpart of the ordinary T -violating θ-parameter for the n = 2 case. Thus,
θ1 is an additional T -violating parameter at n > 2. Note that in the framework of symplectic

extension the electric and magnetic strengths stay on equal footing. This is to be compared with
the pseudo-orthogonal extension where these strengths have unequal number of components at

d �= 4, and hence there is no natural duality relation between them. The electric-magnetic
duality of the gauge fields (for imaginary time) plays an important role for the study of the

topological structure of the gauge vacuum in four space-time dimensions. Therefore the similar
study might be applicable to the case of the extended symplectic space-times with arbitrary

l > 1.
The field equations (23) and (24) are valid in the flat extended space-time or, otherwise,

refer to the inertial local frames. To go beyond, one can introduce the Hermitian local frames
eαA

B̄(X), eαA
B̄ = (eαB

Ā)∗, with α = 0, 1, . . . , n2− 1 being the world vector index, the real world

coordinates xα ≡ eα
A
B̄XA

B̄, as well as the generally covariant derivative ∇α(e). Now, (22) can
be adapted to the d = n2 dimensional curved space-time equipped with a pseudo-Riemannian
structure (the real symmetric metric gαβ(x) = eα

A
B̄eβA

B̄), or to the curved coordinates. In line

with [9], one can also supplement gauge equations by the generalized gravity equations in the
curved symplectic space-time. But now the group of equivalence of the local frames (structure

group) is not the whole pseudo-orthogonal group SO(d−, d+) but only its part isomorphic to
Sp(2l, C). It leaves more independent components in the local symplectic frames compared

to the pseudo-Riemannian frames. The number of components in the latter ones being equal
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to that in the metrics, the symplectic gravity is not in general equivalent to the metric one.
The curvature tensor in the symplectic case, like the gauge strength one, splits additionally

into irreducible parts which can a priori enter the gravity Lagrangian with the independent
coefficients. The ultimate reason for this may be that in the symplectic approach the space-time

is likely to be not a fundamental entity. Therefore gravity as a generally covariant theory of the
space-time distortions is to be meant just as an effective theory. The latter admits the existence

of a number of free parameters, the choice of which should be determined, in principle, by the
physical contents of the effective theory and should ultimately be clarified by an underlying

theory.

Conclusion

The hypothesis that the symplectic structure of space-time is superior to the metric one

provides, in particular, the rationale for the four-dimensionality and 1 + 3 decomposition of
the ordinary space-time. When looking for the extra dimensional space-time extensions, the

hypothesis predicts the discrete sequence of the metric space-times of the fixed dimensionalities
and signatures. The symplectic extension proves to be not a priory inconsistent and provides a
viable alternative to the pseudo-orthogonal one. The emerging dynamics in the extended space-

time is largely unorthodox and possesses a lot of new features. The physical contents of the
scheme require further investigation. But beyond the physical adequacy of the extra dimensional

space-times, by generalizing from the basic case l = 1 to its counterpart for general l > 1, a
deeper insight into the nature of the four-dimensional space-time itself may be attained.

The author is grateful to V.V. Kabachenko for useful discussions.
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