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Deep–inelastic scattering at low Bjorken x and elastic vector meson electroproduction are analyzed
on the basis of the off-shell s–channel unitarity. We discuss behavior of the total cross–section of virtual
photon–proton scattering and obtain, in particular, that the exponent in the power-like dependence
of σtotγ∗p is related to the interaction radius of a constituent quark. The explicit mass dependence of
the exponent in the power energy behavior of the vector meson electroproduction has been obtained.
Angular distributions at large momentum transfers are considered. The energy dependence of the total
cross–section of γ∗γ∗–interactions is also obtained.
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Introduction

Rising dependence of the virtual photon–proton scattering total cross–section on the center
of mass energy W 2 discovered at HERA [1] led to the renewed interest in the mechanism of

diffraction at high energies. Such behavior was in fact predicted in [2] and expected in pertur-
bative QCD [3]. The HERA effect is consistent with various W 2 – dependencies and has been

explained in the different ways, among them is a manifestation of hard BFKL Pomeron [4],
an appearance of the DGLAP evolution in perturbative QCD [3], a transient phenomena, i.e.

preasymptotic effects [5] or a true asymptotical dependence of the off–mass–shell scattering am-
plitude [6]. There is an extensive list of papers devoted to this subject and many interesting

results are described in the review papers (cf. e.g. [1,7]). The strong rise which can be described
by the power-like dependence 1

σtotγ∗p(W
2, Q2) ∝ (W 2)λ(Q

2) (1)

with λ(Q2) rising with Q2 from about 0.1 to 0.4 is a somewhat surprising fact since according
to our knowledge of energy dependence of the total cross–sections in hadronic interactions, the

total cross–section increase is rather slow (λ ∼ 0.1). However the above difference is not a
fundamental one. First, there is no Froissart–Martin bound for the case off–shell particles [2,6].

Only under some additional assumptions this bound can be applied [9,10]. Second, it cannot
be granted that the preasymptotic effects and approach to the asymptotics are the same for
the on–shell and off–shell scattering. It seems that for some unknown reasons scattering of

virtual particles reaches the asymptotics faster than the scattering of the real particles. It
is worth noting that the space-time structure of the low–x scattering involves large distances

l ∼ 1/mx on the light–cone [11], and the region of x ∼ 0 is sensitive to the nonperturbative
contributions. Deep–inelastic scattering in this region turns out to be a coherent process where

diffraction plays a major role and nonperturbative models such as Regge or vector dominance
model can be competitive with perturbative QCD and successfully applied for description of the

experimental data.
It is essential to obey the general principles in the nonperturbative region and, in particular,

to satisfy unitarity. The most common form of unitarity solution – the eikonal one – was
generalized for the off–shell scattering in [6]. In this paper we consider off–shell extension of
the U–matrix approach to the amplitude unitarization. It is shown that this approach along

with the respective extension of the chiral quark model for the U–matrix [12] leads to (1), where

1There are other parameterizations which describe the experimental data equally well (cf. e.g. [8]).
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the exponent λ(Q2) is related to the Q2–dependent interaction radius attributed to constituent
quark. These results cannot be reproduced in the eikonal formwhich provides naked “Born” form

(with nonleading corrections) for the output amplitude in the case of the off–shell scattering [6].
The fundamental difference between the two forms of the amplitude unitarization lies in the

analytical properties in the complex energy plane [13].
It is worth noting here importance of the effective interaction radius concept [14]. The study

of the effective interaction radius dependence on the scattering variables appeared to be very
useful for understanding of the dynamics of high energy hadronic reactions [15,16]. It is widely
known nowadays that the respective geometrical considerations provide a deep insight in hadron

dynamics and deep–inelastic scattering (cf. [17]).
Besides the studies of deep–inelastic scattering (DIS) at low x the interesting measurements

of the characteristics of the elastic vector meson (VM) production were performed in the ex-
periments H1 and ZEUS at HERA [18,19]. It was shown that the integral cross section of the

elastic vector meson production increases with energy in the way similar to the σtotγ∗p(W
2, Q2)

dependence on W 2 [1]. It appeared that an increase of VM electroproduction cross–section with

energy is steeper for heavier vector mesons as well as when the virtualityQ2 is higher. Discussion
of such a behavior in various model approaches based on the nonperturbative hadron physics or

perturbative QCD can be found in (cf. e.g. [7]).
Application of approach based on the off-shell extension of the s–channel unitarity to elastic

vector meson electroproduction γ∗p → V p allows to obtain angular dependence and predict

interesting mass effects in these processes. It appears that the obtained mass and Q2 depen-
dencies are in agreement with the experimentally observed trends and again the results differ

from the eikonal unitarization, where the cross–section of these processes does not exceed the
Froissart–Martin bound [6]. It is also valid for the angular distributions at large momentum

transfers.

1. Off–shell unitarity

Extension of the U–matrix unitarization for the off-shell scattering was considered in [9].
To apply an extended unitarity to DIS at small x there was supposed that the virtual photon

fluctuates into a quark–antiquark pair qq̄ and this pair was treated as an effective virtual vector
meson state in the processes with small x. This effective virtual meson interacts then with a

hadron. We considered a single effective vector meson field and used for the amplitudes of the
processes

V ∗ + h→ V ∗ + h, V ∗ + h→ V + h and V + h→ V + h (2)

the notations F ∗∗(s, t, Q2), F ∗(s, t, Q2) and F (s, t) respectively, i.e. we denoted in that way the

amplitudes when both initial and final mesons are off mass shell, only initial meson is off mass
shell and both mesons are on mass shell.

The unitarity relation for the amplitudes F ∗∗ and F ∗ has a similar structure as the unitarity
equation for the on–shell amplitude F but relates different amplitudes. In impact parameter

representation at high energies it relates the amplitudes F ∗∗ and F ∗ in the following way:

ImF ∗∗(s, b, Q2) = |F ∗(s, b, Q2)|2 + η∗∗(s, b, Q2), (3)

where η∗∗(s, b, Q2) is the contribution to the unitarity of many–particle intermediate on–shell
states. The function η∗∗(s, b, Q2) is the sum of the n–particle production cross–section in the

process of the virtual meson interaction with a hadron h, i.e.
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η∗∗(s, b, Q2) =
∑
n

σn(s, b, Q
2).

There is a similar relation for the functions F ∗ and F

ImF ∗(s, b, Q2) = F ∗(s, b, Q2)F (s, b, Q2) + η∗(s, b, Q2). (4)

Contrary to η∗∗(s, b, Q2) the function η∗(s, b, Q2) has no simple physical meaning and it will be

discussed later.

F** =F** = U** + i U* F*

Fig. 1. The solution of the off–shell unitarity relation for the amplitude F ∗∗.

F == + i U* FU*F*

Fig. 2. The solution of the off–shell unitarity relation for the amplitude F ∗.

The solution of the off–shell unitarity relations can be graphically represented for the ampli-

tude F ∗∗ and F ∗ in the Figs. 1 and 2 respectively and has a simple form in the impact parameter
representation [9]:

F ∗∗(s, b, Q2) = U∗∗(s, b, Q2) + iU∗(s, b, Q2)F ∗(s, b, Q2),

F ∗(s, b, Q2) = U∗(s, b, Q2) + iU∗(s, b, Q2)F (s, b). (5)

It is worth noting that the solution of the off–shell unitarity in the nonrelativistic case for a

K–matrix representation was obtained for the first time in [20]. The solution of this system has
a simple form when the factorization is assumed

[U∗(s, b, Q2)]2 − U∗∗(s, b, Q2)U(s, b) = 0. (6)

Eq. (6) implies the following representation for the functions U∗∗ and U∗:

U∗∗(s, b, Q2) = ω2(s, b, Q2)U(s, b),

U∗(s, b, Q2) = ω(s, b, Q2)U(s, b). (7)

It is valid, e. g. in the Regge model with factorizable residues and theQ2–independent trajectory.
It is also valid in the off–shell extension of the chiral quark model for the U–matrix which we

will consider further. Thus, we have for the amplitudes F ∗ and F ∗∗

3



F ∗(s, b, Q2) =
U∗(s, b, Q2)

1− iU(s, b)
= ω(s, b, Q2)

U(s, b)

1− iU(s, b)
, (8)

F ∗∗(s, b, Q2) =
U∗∗(s, b, Q2)

1− iU(s, b)
= ω2(s, b, Q2)

U(s, b)

1− iU(s, b)
(9)

and unitarity provides inequalities

|F ∗(s, b, Q2)| ≤ |ω(s, b, Q2)|, |F ∗∗(s, b, Q2)| ≤ |ω2(s, b, Q2)|. (10)

It is worth noting that the above limitations are much less stringent than the limitation for the
on–shell amplitude |F (s, b)| ≤ 1.

When the function ω(s, b, Q2) is real we can write down a simple expression for the inelastic
overlap function η∗(s, b, Q2)

η∗∗(s, b, Q2) = ω2(s, b, Q2)
ImU(s, b)

|1− iU(s, b)|2 . (11)

The following relation is valid for the function η∗∗(s, b, Q2):

η∗(s, b, Q2) = [η∗∗(s, b, Q2)η(s, b)]1/2. (12)

Eq. (12) allows one to connect the integral

Σ(s, Q2) ≡ 8π

∫ ∞
0

η∗(s, b, Q2)bdb

with the total inelastic cross–section

Σ(s, Q2)|Q2→0 = σinel(s).

2. Off–shell scattering in the U–matrix method

In this section we consider off–shell extension of the model for hadron scattering [12], which
uses the notions of chiral quark models. Valence quarks located in the central part of a hadron

are supposed to scatter in a quasi-independent way by the effective field. In accordance with
that we represent the basic dynamical quantity in a factorized form. In the case when one of
the hadrons (vector meson in our case) is off mass shell the off–shell U–matrix, i.e. U∗∗(s, b, Q2)

is represented as the product

U∗∗(s, b, Q2) =
nh∏
i=1

〈fQi(s, b)〉
nV∏
j=1

〈fQ∗
j
(s, b, Q2)〉. (13)

Factors 〈fQ(s, b)〉 and 〈fQ∗(s, b, Q2)〉 correspond to the individual quark scatterings smeared
over transverse position of the constituent quark inside hadron and over fraction of longitudinal

momentum of the initial hadron carried by this quark. Under the virtual constituent quarks Q∗

we mean the ones composing the virtual meson. Factorization (13) reflects the coherence in the

valence quark scattering and may be considered as an effective implementation of constituent
quarks’ confinement. The picture of hadron structure with the valence constituent quarks located

in the central part and the surrounding condensate implies that the overlapping of hadron
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structures and interaction of the condensates occur at the first stage of the collision. Due to an
excitation of the condensates, the quasiparticles, i.e. massive quarks arise (cf. Fig. 3).
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Fig. 3. Schematic view of an initial stage of the hadron interaction and formation of the effective field.

These quarks play role of scatterers. To estimate number of such quarks one could assume

that part of hadron energy carried by the outer condensate clouds is being released in the overlap
region to generate massive quarks. Then their number can be estimated by the quantity

Ñ (s, b) ∝ (1− kQ)
√
s

mQ
Dhc ⊗DVc , (14)

where mQ – constituent quark mass; kQ – hadron energy fraction carried by the constituent
valence quarks. Function Dhc describes condensate distribution inside the hadron h, and b is

an impact parameter of the colliding hadron h and meson V . Thus, Ñ (s, b) quarks appear in
addition to N = nh+nV valence quarks. Those quarks are transient ones: they are transformed

back into the condensates of the final hadrons in elastic scattering. It should be noted that
we use subscript Q to refer the constituent quark Q and the same letter Q is used to denote a

virtuality Q2. However, they enter formulas in a way excluding confusion.

Q*

b
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Fig. 4. Schematic view of the virtual constituent quark Q∗ scattering in the effective field generated by
Nsc(s, b) scatterers, where Nsc(s, b) = Ñ(s, b) +N − 1.
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The amplitudes 〈fQ(s, b)〉 and 〈fQ∗(s, b, Q2)〉 describe elastic scattering of a single valence
on-shell Q or the off–shell Q∗ quarks with the effective field (cf. Fig. 4) and we use for the

function 〈fQ(s, b)〉 the following expression

〈fQ(s, b)〉 = [Ñ(s, b) + (N − 1)] VQ( b ), (15)

where VQ(b) has a simple form VQ(b) ∝ g exp(−mQb/ξ), which corresponds to the quark inter-
action radius rQ = ξ/mQ. The function 〈f∗Q(s, b, Q2)〉 is to be written as

〈fQ∗(s, b, Q2)〉 = [Ñ(s, b) + (N − 1)] VQ∗(b, Q
2). (16)

In the above equation

VQ∗(b, Q
2) ∝ g(Q2) exp(−mQb/ξ(Q2)) (17)

and this form corresponds to the virtual constituent quark interaction radius

rQ∗ = ξ(Q2)/mQ. (18)

Introduction of the Q2 dependence into the interaction radius of constituent quark constituent

quark which in the present approach consists of a current quark and the cloud of quark–antiquark
pairs of the different flavors [12] is the main issue of the model and the origin of this dependence

and possible physical interpretation will be discussed in Section 6.
The b–dependence of Ñ(s, b) is weak compared to the b–dependence of VQ or VQ∗ [12] and

therefore we have taken this function to be independent on the impact parameter b. Dependence
on virtuality Q2 comes through dependence of the intensity of the virtual constituent quark

interaction g(Q2) and the ξ(Q2), which determines the quark interaction radius (in the on-shell
limit g(Q2)→ g and ξ(Q2)→ ξ). According to these considerations the explicit functional forms

for the generalized reaction matrices U∗ and U∗∗ can easily be written in the form of (7) with

ω(s, b, Q2) =
〈fQ∗(s, b, Q2)〉
〈fQ(s, b)〉

. (19)

Note that (6) and (7) imply that the amplitude of the process Q∗ → Q is the following:

〈fQ∗→Q(s, b, Q2)〉 = [〈fQ∗(s, b, Q2)〉〈fQ(s, b)〉]1/2.

We consider the high–energy limit and for the simplicity assume here that all the constituent
quarks have equal masses and parameters g and ξ as well as g(Q2) and ξ(Q2) do not depend on

quark flavor. We also assume for the simplicity pure imaginary amplitudes. Then the functions
U , U∗ and U∗∗ are the following:

U(s, b) = igN
(

s

m2Q

)N/2
exp

[
−mQNb

ξ

]
, (20)

U∗(s, b, Q2) = ω(b, Q2)U(s, b), U∗∗(s, b, Q2) = ω2(b, Q2)U(s, b), (21)

where the function ω is an energy-independent one and has the following dependence on b and
Q2

ω(b, Q2) =
g(Q2)

g
exp

[
− mQb

ξ̄(Q2)

]
(22)

with

ξ̄(Q2) =
ξξ(Q2)

ξ − ξ(Q2)
. (23)
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3. Total cross–sections of γ∗p and γ∗γ∗ interactions

It is obvious that for the on–shell particles ω → 1 and we arrive to the result obtained in [9]
at large W 2

σtotγp (W
2) ∝ ξ2

m2Q
ln2

W 2

m2Q
, (24)

where the usual for DIS notation W 2 instead of s is used. Similar result is valid also for the off

mass shell particles when the interaction radius of virtual quark does not depend on Q2 and is
equal to the interaction radius of the on–shell quark, i.e. ξ(Q2) ≡ ξ. The behavior of the total
cross–section at large W 2

σtotγ∗p(W
2) ∝

[
g(Q2)ξ

gmQ

]2
ln2

W 2

m2Q
, (25)

corresponds to the result obtained in [9]. We consider further the off-shell scattering with
ξ(Q2) 
= ξ and it should be noted first that for the case when ξ(Q2) < ξ the total cross–section

would be energy-independent

σtotγ∗p(W
2) ∝

[
g(Q2)ξ

gλ(Q2)mQ

]2

in the asymptotic region. This scenario would mean that the experimentally observed rise of

σtotγ∗p is transient preasymptotic phenomena [5,9]. It can be realized when we replace in the
formula for the interaction radius of the on–shell constituent quark rQ = ξ/mQ the mass mQ by

the value mQ∗ =
√
m2Q +Q2 in order to obtain the interaction radius of the off-shell constituent

quark and write it down as rQ∗ = ξ/mQ∗, or equivalently replace ξ by ξ(Q2) = ξmQ/
√
m2Q +Q2.

The above option cannot be excluded in principle, however, it is a self-consistent choice in the

framework of the model only at largeQ2 � m2Q since it was originally supposed that the function
ξ is universal for the different quark flavors.

However, when ξ(Q2) > ξ the situation is different and we have at large W 2

σtotγ∗p(W
2, Q2) ∝ G(Q2)

(
W 2

m2Q

)λ(Q2)
ln

W 2

m2Q
, (26)

where

λ(Q2) =
ξ(Q2)− ξ

ξ(Q2)
. (27)

We shall further concentrate on this self-consistent for any Q2 values and the most interesting
case.

All the above expressions for σtotγ∗p(W
2) can be rewritten as the corresponding dependencies

of F2(x, Q
2) at small x according to the relation

F2(x, Q
2) =

Q2

4π2α
σtotγ∗p(W

2),

where x = Q2/W 2.

In particular, (26) will appear in the form

F2(x, Q
2) ∝ G̃(Q2)

(
1

x

)λ(Q2)
ln(1/x). (28)
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It is interesting that the value and Q2 dependence of the exponent λ(Q2) is related to the
interaction radius of the virtual constituent quark. The value of parameter ξ in the model is

determined by the slope of the differential cross–section of elastic scattering at large t [21], i. e.

dσ

dt
∝ exp

[
− 2πξ

mQN

√
−t
]

(29)

and from the pp-experimental data it follows ξ = 2 − 2.5. The uncertainty is related to the
ambiguity in the constituent quark mass value. Using for simplicity ξ = 2 and the data for
λ(Q2) obtained at HERA [17] we calculated the “experimental” Q2–dependence of the function

ξ(Q2)

ξ(Q2) =
ξ

1− λ(Q2)
. (30)

The results are represented in Fig. 5. It is clear that experiment leads to ξ(Q2) rising with
Q2. This rise is slow and consistent with lnQ2 extrapolation. Thus, assuming this dependence

to be kept at higher Q2 and using (27), we predict saturation in the Q2–dependence of λ(Q2),
i.e. at large Q2 the flattening will take place. This rise corresponds to the increasing interaction

radius of the constituent quarks from the virtual vector meson (Fig. 6).

Q2 (GeV2)

10-1 100 101 102 103

ξ (
Q

2 )

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Fig. 5. The “experimental” behavior of the function ξ(Q2).

Q
2

Fig. 6. The increase with virtuality of the constituent quark interaction radius.
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The extension of the above approach to the calculation of the γ∗γ∗ total cross–section is
straightforward. The following behavior of the total cross–section at large W 2 will take place:

σtotγ∗γ∗(W
2, Q21, Q

2
2) ∝ G(Q21)G(Q22)

(
W 2

m2Q

)λ(Q21)+λ(Q22)
ln

W 2

m2Q
. (31)

Such strong energy dependence of the γ∗γ∗–total cross–section is consistent with LEP data [22].

4. Elastic vector meson production

As it was already mentioned we assumed that the virtual photon before the interaction with

the proton fluctuates into the Q̄Q – pair and for simplicity we limited ourselves with light quarks
under discussion of the total cross–section. The expression for the total cross-section is given by

(26). The calculation of the the elastic and inelastic cross–sections can also be directly performed
in this approximation using (20), (21) and (22) and integrating over impact parameter (8) and
(11). Then we obtain the following dependencies for the cross–sections of elastic scattering and

inelastic interactions:

σelγ∗p(W
2, Q2) ∝ Ge(Q

2)

(
W 2

m2Q

)λ(Q2)
ln

W 2

m2Q
(32)

and

σinelγ∗p (W
2, Q2) ∝ Gi(Q

2)

(
W 2

m2Q

)λ(Q2)
ln

W 2

m2Q
(33)

with the universal exponent λ(Q2) given by the Eq. (27). The above relations mean that the

ratios of elastic and inelastic cross–sections to the the total one do not depend on energy.
Now we consider elastic (exclusive) cross–sections both for light and heavy vector mesons

production. We need to get rid of the light quark limitation and extend the above approach in
order to include the quarks with the different masses. The inclusion, in particular, heavy vector

meson production into this scheme is straightforward: the virtual photon fluctuates before the
interaction with proton into the heavy quark–antiquark pair which constitutes the virtual heavy

vector meson state. After the interaction with a proton this state turns out into the real heavy
vector meson.

Integral exclusive (elastic) cross–section of vector meson production in the process γ∗p→ V p

when the vector meson in the final state contains not necessarily light quarks can be calculated
directly according to the above scheme and formulas of Section 2:

σVγ∗p(W
2, Q2) ∝ GV (Q

2)

(
W 2

mQ2

)λV (Q2)
ln

W 2

mQ2
, (34)

where

λV (Q
2) = λ(Q2)

m̃Q
〈mQ〉

. (35)

In (35) m̃Q denotes the mass of the constituent quarks from the vector meson and 〈mQ〉 is
the mean constituent quark mass of system of the vector meson and proton system. Evidently

λV (Q
2) = λ(Q2) for the light vector mesons. This result is consistent with the most recent
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ZEUS data, but statistics is still limited [18]. In the case when the vector meson is very heavy,
i.e. m̃Q � mQ we have

λV (Q
2) =

5

2
λ(Q2).

We conclude that the respective cross–section rises faster than the corresponding cross–section
of the light vector meson production, e.g. (35) results in

λJ/Ψ(Q
2) � 2λ(Q2).

This is in a qualitative agreement with the recently observed trends in the HERA data [19].

5. Angular structure of elastic and proton–dissociative vector meson
production

Recently the first measurements of angular distributions at large t in the light vector meson
production were performed [23] and it was found that angular distribution is consistent with the

power dependence (−t)−3 in the proton–dissociative processes [24].
We apply the model described above for calculation of the differential cross–sections in elastic

vector meson production using an analysis of the singularities of the amplitudes in the complex
impact parameter plane developed in [21].

Since the integration goes over the variable b2 rather than b it is convenient to consider the

complex plane of the variable β where β = b2 and analyze singularities in the β–plane. Using
(8) we can write down the integral over the contour C around a positive axis in the β–plane:

F ∗(W 2, t, Q2) = −iW
2

2π2

∫
C

F ∗(W 2, β, Q2)K0(
√
tβ)dβ, (36)

where K0 is the modified Bessel function and the variable W 2 was used instead of the variable
s. The contour C can be closed at infinity and the value of the integral will be then determined

by the singularities of the function F ∗(W 2, β, Q2), where

F ∗(W 2, β, Q2) = ω(β, Q2)
U(W 2, β)

1− iU(W 2, β)

in a β–plane.

With explicit expressions for the functions U and ω we conclude that the positions of the
poles are

βn(W
2) =

ξ2

M2
{ln

[
gN
(

W 2

mQ2

)N/2]
+ iπn}2, n = ±1,±3, . . . ,

where M = m̃QnV +mQnh. The location of the poles in the complex impact parameter plane
does not depend on the virtuality Q2. Besides the poles F ∗(W 2, β, Q2) has a branching point at

β = 0 and
disc F ∗(W 2, β, Q2) =

disc[ω(β, Q2)U(W 2, β)]− iU(W 2, β + i0)U(W 2, β − i0)disc ω(β, Q2)

[1− iU(W 2, β + i0)][1− iU(W 2, β − i0)]
,

i.e.

disc F ∗(W 2, β, Q2) � i disc ω(β, Q2)

10



since at W 2 → ∞ the function U(W 2, β) → ∞ at fixed β. The function F ∗(W 2, t, Q2) can be
then represented as a sum of pole and cut contributions, i.e.

F ∗(W 2, t, Q2) = F ∗p (W
2, t, Q2) + F ∗c (W

2, t, Q2).

The pole and cut contributions are decoupled dynamically when W 2 →∞. Contribution of the

poles determines the amplitude F ∗(W 2, t, Q2) in the region |t|/W 2 � 1 and it can be represented
in a form of series:

F ∗(W 2, t, Q2) � iW 2(W 2)λV (Q
2)/2

∑
n=±1,±3,...

exp

{
iπn

N
λV (Q

2)

}√
βnK0(

√
tβn). (37)

At moderate values of −t when −t ≥ 1 (GeV/c)2 the amplitude (37) leads to the Orear type be-
havior of the differential cross–section which is similar to the Eq.(29) for the on–shell amplitude,

i.e.
dσV
dt
∝ exp

[
−2πξ

M

√
−t
]
. (38)

At small values of −t the behavior of the differential cross–section is complicated. The
oscillating factors exp

{
iπn
N

λV (Q
2)
}
which are absent in the on-shell scattering amplitude [12]

play a role.
At large −t the poles contributions is negligible and contribution from the cut at β = 0 is

a dominating one. It appears that the function F ∗c (W
2, t, Q2) does not depend on energy and

differential cross section depends on t in a power-like way

dσV
dt
� G̃(Q2)

(
1− ξ̄2(Q2)t

m̃2Q

)−3
. (39)

Therefore for large values of −t (−t � m̃2Q/ξ̄
2(Q2)) we have a simple (−t)−3 dependence of

the differential cross–section. This dependence significantly differs from the one in the on-shell
scattering [12] which approximates the quark counting rule [25] and this difference is in the large

extent because of the off-shell unitarity role.
It is to be noted that the ratio of the two differential cross-sections for the production of the

vector mesons V1 and V2 does not depend on the variables W 2 and t at large enough values of
−t.

The production of the vector mesons accompanied by the proton dissociation into the state
Y with mass MY can be calculated along the lines described in [26] with account for non-zero
virtuality. The extension is straightforward. Similar to the case of on–shell particles we have a

suppression of the pole contribution at high energies. It is interesting to note that the normalized
differential cross-section

1

σ0(W 2,M2
Y , Q

2)

dσ

dtdM2
Y

,

where σ0 is the value of cross-section at t = 0 will exhibit a scaling behavior

1

σ0

dσ

dtdM2
Y

=

(
1− 4ξ2t

M̃2(Q2)

)−3
, (40)

where the M̃ is the following combination

M̃(Q2) = MY

[
1− 2m̃Q

MY

λ(Q2)

]
. (41)
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Note that M(Q2) � MY at small values of Q2 or when the value of MY is large MY � m̃Q.
The dependence (40) is in agreement with the experimentally observed dependencies in the

proton–dissociative vector meson production at large values of t.
There are different approaches to the vector meson production, e.g. recent application of

the geometrical picture was given in [27]. Angular distributions can be described also in the
approaches based on the perturbative QCD [28] which provide smooth power-like t-dependence.

Brief review of the recent results of these approaches can be found in [29].

6. Impact parameter picture

The results described above rely on the off–shell unitarity and Q2–dependence of the con-
stituent quark interaction radius. It is useful to consider an impact parameter picture to get

insight into the physical origin of this Q2–dependence. Impact parameter analysis of the experi-
mental data is, in particular, a tool for the detection of unitarity effects in hadronic reactions [30]
and diffractive DIS [31]. In the present study impact parameter profile of the amplitude is pe-

ripheral when ξ(Q2) increases with Q2 (Fig. 7). The dependence on virtuality of constituent
quark interaction radius was assumed and this assumption has appeared to be consistent with

the experimental data. It was demonstrated then that the rising dependence of the constituent
quark interaction radius with virtuality is in good agreement with the experimental data which

indicate the risising Q2-dependence of the exponent λ(Q2). The relation (27) between ξ(Q2)
and λ(Q2) implies a saturation in the Q2-dependence of λ(Q2) at large values of Q2. The reason

for increase of the constituent quark interaction radius with virtuality should have a dynamical
nature and it could originate from the emission of the additional qq̄–pairs in the nonperturbative

structure of a constituent quark. In the present approach constituent quark consists of a current
quark and the cloud of quark–antiquark pairs of the different flavors [12]. It was shown that the
available experimental data imply a lnQ2–dependence of the radius of this cloud.

Im f(W ,b,Q )

R(W ,Q ) b

2

22

2

Fig. 7. The impact parameter profile of the scattering amplitude.

The peripheral profile of the amplitude in its turn can result from the increasing role of the
orbital angular momentum of the quark–antiquark cloud when the virtual particles are con-

sidered. The generation of q̄q-pairs cloud could be considered in analogy with the theory of
superconductivity. It was proposed [32] to push further this analogy and consider an anisotropic

extension of the theory of superconductivity which seems to match well with the above nonper-
turbative picture for a constituent quark. The studies [33] of that theory show that the presence

of anisotropy leads to axial symmetry of pairing correlations around the anisotropy direction

12



+̂l and to the particle currents induced by the pairing correlations. In another words it means
that a particle of the condensed fluid is surrounded by a cloud of correlated particles (“hump”)

which rotate around it with the axis of rotation +̂l. Calculation of the orbital momentum shows
that it is proportional to the density of the correlated particles.

Conclusion

We considered limitations the unitarity provides for the γ∗p–total cross-sections and geo-
metrical effects in the model dependence of σtotγ∗p. In particular, it was shown that the Q2–

dependent constituent quark interaction radius can lead to a nontrivial, asymptotical result:
σtotγ∗p ∼ (W 2)λ(Q

2), where λ(Q2) will be saturated at large values of Q2. This result is valid when

the interaction radius of the virtual constituent quark is rising with virtuality Q2. The data for
the structure functions at low values of x continue to demonstrate the rising total cross-section
of γ∗p–interactions and therefore we can consider it as a reflection of the rising with virtuality

interaction radius of a constituent quark.
The steep energy increase of γ∗γ∗ total cross–section σtotγ∗γ∗ ∼ (W 2)2λ(Q

2) was also predicted.

In elastic vector meson electroproduction processes the mass and Q2 dependencies of the integral
cross–section of vector meson production are related to the dependence of the interaction radius

of the constituent quark Q on the respective quark mass mQ and virtuality Q2. The behavior of
the differential cross–sections at large t is in the large extent determined by the off-shell unitarity

effects. The smooth power-like dependence on t is predicted which is in agreement with the
experimental data [18]. The new experimental data will be essential for the discrimination of

the model approaches and studies of the interplay between the non-perturbative and perturbative
QCD regimes (cf. e.g. [17,27]).
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J. Bartels and H. Kowalski, hep-ph/0010345.

[18] ZEUS Collaboration, J. Breitweg et al., Paper 439 submitted to the XXXth Interanational
Conference on High Energy Physics, July27 - August 2, 2000, Osaka, Japan.

[19] R. Ioshida, hep-ph/0102262 and references therein.

[20] C. Lovelace, Phys. Rev. 135, B 1225 (1964).

[21] S. M. Troshin and N. E. Tyurin, Theor. Math. Phys. 50, 150 (1982).

[22] A. De Roeck, hep-ph/0101076.

[23] ZEUS Collaboration, J. Breitweg et al., Paper 442 submitted to the XXX International

Conference on High Energy Physics, 27 July - 2 August, 2000, Osaka, Japan.

[24] J. A. Crittenden, hep-ex/0010079, references therein and private communication.

[25] V. A. Matveev, R. M. Muradyan and A. N. Tavkhelidze, Lett. Nuovo. Cim. 7, 719 (1973);

S. Brodsky and G. Farrar, Phys. Rev. Lett. 31, 1153 (1973).

14



[26] S. M. Troshin and N. E. Tyurin, hep-ph/0008274.

[27] A. C. Caldwell and M. S. Soares, hep-ph/0101085.

[28] D. Yu. Ivanov, Phys. Rev. D53, 3564;
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