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Abstract
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A generalization of the on-mass-shell scheme of UV renormalization (the OMS scheme) to the case of
presence of unstable fundamental particles (like W and Z bosons) is proposed. Its basic ingredients are
as follows: (i) the renormalized mass coincides with a real part of the position of the complex pole of the
corresponding propagator, (ii) the imaginary part of the on-shell self-energy coincides with the imaginary
part of the complex pole position. The latter property implies the gauge-invariance of the imaginary part
of the on-shell self-energy in the OMS scheme and its connection with the lifetime of an unstable particle.
Starting with the three-loops this connection becomes nontrivial.
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The aim of this paper is to introduce an effective generalization of the on-mass-shell (OMS)
scheme of UV renormalization to the case of presence of unstable fundamental particles. This

problem is determined by the difficulties with the gauge invariance, noted in the framework
of the conventional generalization of the OMS scheme [1,2,3] in the cases of W, Z and Higgs
bosons beyond the one-loop order [4,5,6,7]. In fact, however, even in the case of non-gauge field

theories the conventional generalization [1,2,3] ceases to have those attractive properties, which
are peculiar to the standard OMS scheme in the case of stable particles. So, finding the “true”

generalization of the OMS scheme, possessing the physically-motivated (and, hence, convenient)
properties, is an important task from the general field-theoretic point of view.

Let us begin our analysis with considering the inverse renormalized propagator of a scalar
particle, or of δµν-part of a vector particle. We do not define precisely the sort of particle and the

underlying theory since the problem of renormalization is general enough in nature. In terms of
the renormalized quantities we have

∆−1(s) = s −M2 − δZ(s−M2)− δM2 +Σ(s) . (1)

Here M2 is the renormalized lagrangian mass, Σ(s) is the self-energy that depends, besides s,

also on M2 and the renormalized coupling constant α. Quantities δM2 and δZ describe the
counterterm contributions [8] (notice the minus sign in δZ in our notation). Their assigning is

to cancel UV divergencies in Σ(s).
In the framework of perturbation theory this cancellation should be performed order-by-

order. So, with

Σ(s) =
∞∑
n=1

αnΣn(s) , (2)

δZ =
∞∑
n=1

αnCZn , δM
2 =

∞∑
n=1

αnCMn , (3)

the coefficients CZn and CMn must provide finiteness of Σn(s) − CMn − CZn (s −M2). From the
unitarity of the S-matrix it follows [8] that the counterterms must be real.1 The operational use

of various renormalization schemes confirms that in the commonly used (gauge) theories two
real counterterms indeed cancel UV divergences in Σn(s).

1In the presence of unstable fundamental particles the unitarity condition is realized in the space of stable
particle states [1]. So, the reasoning of [8] remains in force in this case.
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It is worth remembering that various renormalization schemes are different in finite parts
of counterterms. This difference, in turn, means a different determination of the renormalized

lagrangian parameters and the normalizations of the Green functions. In the standard OMS
scheme the renormalized mass M2 is made equal to the physical mass M2

Ph determined by

∆−1(M2
Ph) = 0. Besides, the residue at the pole in the propagator is made equal to 1. Both

these properties make the OMS scheme very convenient for the practical usage.

In the case of unstable particles the above-mentioned properties are provided by the following
counterterms:

CMn = Σn(M
2), CZn = Σ′n(M

2) . (4)

However, when the particle under consideration is unstable, this choice of counterterms is not
admissible because of the non-vanishing imaginary parts in the self-energy. It should be men-

tioned once again that the imaginary parts in counterterms are superfluous from the viewpoint
of the problem of eliminating UV divergences and suppressed by the unitarity condition [8].

The most commonly used way [1,2,3] of solving the problem consists in replacing (4) by

CMn = ReΣn(M
2), CZn = ReΣ′n(M

2) . (5)

However, then the renormalized mass becomes defined by the condition Re∆−1(M2) = 0, which
does not provide the pole to the propagator. As a result, the renormalized mass becomes no

longer physical observable. In the case of electroweak theory this fact manifests itself in the
emergence of the gauge-dependence in the renormalized masses of the vector bosons and the

Higgs boson [4,5,6,7]. This situation is objectionable and certainly must be cured in a true
generalization of the OMS scheme.

Actually, the latter problem has been posed not once [5,9]. The idea of its solution consists
in equating the renormalized massM2 to a real part of the position of the complex pole sp of the

propagator, which is gauge-invariant [4,5,6,7,9]. In Ref. [10] this idea has been implemented in a
special case of calculation of the two-loop correction to the muon lifetime. However, the general

study of the problem has not been made. So, the true generalization of the OMS scheme is
still not completed. In particular, the proper way of fixing the second renormalization condition
for Σ′(s) is not found. The point is that the non-vanishing ImΣ′(s) prevents the residue in

the pole from being equal to 1. In Ref. [10] the second renormalization condition was chosen
rather formally, in the form of (5). In the particular case of the two-loop calculation of the

muon lifetime this choice did not have adverse consequences. However, on description of the
production and decay of unstable particles this choice may lead again to difficulties with gauge

invariance (see below).
In the present paper we propose an unconventional way of fixing the second renormalization

condition. It has a clear physical significance, so the name “physical” can be appropriated to
this scheme. We call it the OMS scheme. Under the limit of switching-off the instability, it

transforms smoothly to the standard OMS scheme.
The basic point of our consideration is the assumption of the gauge-invariance of the position

of the complex pole sp [4,5,6,7,9]. Owing to (1) the equation for sp, which is ∆−1(sp) = 0, may

be rewritten in the form

sp =M
2 + δM2 + δZ(sp −M2)− Σ(sp) . (6)

With the aid of (2) and (3) this equation can be solved by an iteration method. So, denoting

the solution up to O(αn+1) correction by spn, and introducing the short-card notation Rn =
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ReΣn(M
2), In = ImΣn(M

2), with the primed symbols indicating the derivatives, we get the
following sequence of iterative solutions:

sp0 = M2 , (7)

sp1 = sp0 + α(CM1 − R1 − iI1) , (8)

sp2 = sp1 + α(sp1 − sp0)(CZ1 −R′1 − iI ′1)

+α2(CM2 −R2 − iI2) , (9)

sp3 = sp2 + α(sp2−sp1)(CZ1 −R′1 − iI ′1)

+ 1
2α(sp1−sp0)2(−R′′1 − iI ′′1 )

+α2(sp1−sp0)(CZ2 −R′2 − iI ′2)

+α3(CM3 −R3 − iI3) , (10)

· · · · · ·

For methodological reasons we consider, at first, the conventionally generalized OMS scheme
[1,2,3] determined by (5). Then, the listed above solutions are reduced to

sp0 = M2 , (11)

sp1 = M2− iαI1 , (12)

sp2 = M2− α2I1I ′1 − iαI1 − iα2I2 , (13)

sp3 = M2− α2I1I ′1 − α3(I1I ′2 + I ′1I2 − 1
2I
2
1R
′′
1 )

− iαI1 − iα2I2 − iα3[I3 − I1(I ′1)2 − 1
2I
2
1I
′′
1 ], (14)

· · · · · ·

From formulas (11) and (12) we see that in the case of gauge theories the renormalized massM2

is gauge-invariant up to O(α2) correction. However, the O(α2) correction is gauge-dependent

since the difference M2− Re sp2 = α
2I1I

′
1 is like that. (This property follows from the gauge-

invariance of I1, which is the consequence of (12), and the gauge-dependence of I ′1. The latter
property was observed in the case of Z-boson [4,5], W-boson [6], and Higgs boson [7].) So,

the gauge-invariance of sp implies the gauge-dependence of the renormalized mass M2 at the
two-loop order [4,5,6,7].

It should be noted that from the viewpoint of underlying principles there is nothing catas-
trophic in the latter situation, since the renormalized mass is not an observable quantity. How-

ever, it is not reasonable to use in practice such renormalization scheme. A better choice is
a scheme where the renormalized mass is gauge-invariant, and it would be even better if the

renormalized mass coincided with the pseudo-observable [3] Re sp.
Now we proceed directly to the construction of the OMS scheme, paying special attention to

the choice of the second renormalization condition. We do that in an iterative manner, order-
by-order. So, in the leading order we have sp0 =M

2 without alternatives. In the one-loop order
we set

CM1 = R1 . (15)

Then, sp1 coincides with that of formula (12).
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The difference with the conventionally generalized OMS scheme [1,2,3] appears starting with
the two-loop order. Owing to (8), (9) and (15), we have

sp2 =M
2 − iαI1 − iα2I1(C

Z
1 − R′1 − iI ′1) + α

2(CM2 − R2 − iI2) . (16)

By assuming,
CZ1 = R′1 , (17)

we come to the same imaginary part in sp2 as in (13). However, in order to satisfy requirement
Re sp =M

2, we have to impose a different condition for CM2 (cf. [10]):

CM2 = R2 + I1I
′
1 . (18)

So, taking into account (17) and (18), we obtain

sp2 =M
2 − iαI1 − iα2I2 . (19)

The difference becomes more considerable in the three-loop order. Owing to (10), (12), (17)
and (19), we have

sp3 = sp2 − iα3I3 − iα3I1(C
Z
2 − R′2 − 1

2 I1I
′′
1 )

+α3(CM3 −R3 − I2I ′1 − I1I ′2 + 1
2 I
2
1R
′′
1) . (20)

Let us note, that the imaginary part of sp3 has a far complicated structure. However, by assuming

CZ2 = R′2 + 1
2 I1I

′′
1 , (21)

we can get the simplest possible expression for Im sp3, namely −iα3I3. In order to provide

Re sp =M
2, we set

CM3 = R3 + I2I
′
1 + I1I

′
2 − 1

2 I
2
1R
′′
1 . (22)

As a result, we come to
sp3 =M

2 − iαI1 − iα2I2 − iα3I3 . (23)

The above consideration may be continued up to any n, providing under the limit n → ∞
the following solution:

sp =M
2 − i ImΣ(M2) . (24)

Let us summarize the main features of the above construction. At any step n, when con-

sidering the imaginary part of spn, we fix the renormalization condition for CZn−1 by imposing
the requirement Im(spn−sp(n−1)) = −αnIn. When considering the real part of spn, we fix the

renormalization condition for CMn by imposing Re spn=M
2. The resultant formulas for CMn and

CZn−1 can be obtained for any n. However, the cases with n≥4, most likely, will not be claimed

in a foreseeable future. So, we will not be wasting time to find the general solution.

Let us turn now to the discussion.

1. The first question is about the structure of the propagator in the resonance region. By
excluding δM2 from (6) in favor of sp, one can derive from (1),

∆−1(s) = (s−sp)(1− δZ) + Σ(s)−Σ(sp)

= (s−sp) [1− δZ +Σ′(sp)] +O
(
(s−sp)2

)
. (25)
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From (25) we see that the renormalized propagator has a complex pole2 with the residue free
from UV divergences. The latter property follows from the fact that the difference Σ′(sp)−δZ is

finite, because the UV divergence in Σ′(sp) is equivalent to that in ReΣ′(M2) and the latter one
is cancelled by δZ in any scheme. However, in the unstable-particle case, in view of non-zero

ImΣ′(sp), there is no way to make the residue equal to 1. Moreover, in most cases the real
part in the residue is not equal to 1, either. For instance, in the generalized by [1,2,3,10] OMS

schemes, where the second renormalization condition is determined by the second formula in
(5), one has 1− δZ +Σ′(sp) = 1+ iαI ′1+α

2I1I
′′
1 + iα2(I ′2− I1R′′1) +O(α3). In the OMS scheme,

1− δZ +Σ′(sp) = 1 + iαI ′1 +
1
2
α2I1I

′′
1 + iα2(I ′2 − I1R′′1) +O(α3).

2. The second point concerns the renormalization of the coupling constants. Formally,
the renormalization prescription for coupling constants is imposed separately from that for

propagators. In the electroweak theory it may be the same as in the conventionally generalized
OMS scheme [3]. Namely, the U(1) constant e2 may be determined as the electric charge,

measured by the Compton process at the low-energy limit. The weak mixing and the weak
coupling constant can be determined by relations s2W = 1 −M2

W/M
2
Z and g2 = e2/s2W , which

are considered to be valid in all the orders of perturbation theory. It should be noted, however,
that the consistent implementation of these prescriptions initiates the relation between the

renormalization constants of the couplings and the wave-function renormalization constants
(in particular, via the Ward identities). Therefore, the actual renormalization of the coupling
constants, starting with the two-loop order, becomes different in the generalized by [1,2,3,10]

OMS schemes and in the OMS scheme.
3. In gauge theories considered in the framework of the renormalization scheme with the

gauge-invariant renormalized masses, there is an additional constraint on the counterterms fol-
lowing from the gauge-invariance of bare masses. Really, the bare mass connects with the

renormalized mass by means of the relation

M2
0 =M

2 + (1− δZ)−1δM2 . (26)

So, from the gauge-invariance ofM2
0 and M

2 the gauge-invariance of (1−δZ)−1δM2 follows. At
the one-loop order this condition implies the gauge-invariance of R1 ≡ ReΣ1(M

2). Notice, due

to the gauge-invariance of M2 at the one-loop order, this particular corollary is common for all
the above-considered versions of the generalized OMS schemes. In case of unstable bosons in

the electroweak theory this property was independently noted on the base of direct calculations
[3] (it was the consequence of the consistent taking into account the tadpole contributions).

At the two-loop order, in the generalized by [10] OMS scheme and in the OMS scheme, the
above condition implies the gauge-invariance of R2 + R1R

′
1 + I1I

′
1. At the higher orders the

corresponding constraints in these schemes become different.
4. In some cases the OMS scheme is preferable with respect to the OMS scheme generalized

in the sense of [10]. For instance, this is the case with unstable-particle production and decay
within the two-loop precision. Really, in view of (25), the propagator in the resonance region,
s−M2 = O(α), within this precision may be approximated by the expression

∆−1(s) � (s− sp3)
[
1 + 1

2
α(s − sp3)R′′1

]
(Res)−1, (27)

2If the given particle interacts with massless particles (photons), the pole may transform to a more complicated
singularity possessed of the branch point. However, while introducing the IR-regularizing mass for the massless
particles, this singularity is reduced to a simple pole. We consider formula (25), as well as the operation of UV
renormalization, precisely in this case.
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where Res=[1− δZ +Σ′(sp)]
−1 is the residue in the pole (see the foregoing formulas in different

schemes), and sp3 is the pole within the three-loop precision. In the OMS scheme sp3 is determined

by (23), while in the generalized by [10] OMS scheme it is determined by

sp3 =M
2 − iαI1 − iα2I2 − iα3(I3 − 1

2
I21I

′′
1 ) . (28)

Note, in both cases sp3 includes the I3 contribution. The common practice of taking into account

the imaginary contribution to self-energy is via the unitarity relation, which relates it to the
width of unstable particle at the less-loop order. However, while the width is always gauge-

invariant, the imaginary part in self-energy is not always that. Really, in the generalized by [10]
OMS scheme I3 is gauge-dependent, which is seen from (28) and the gauge-dependence of I ′′1 . At

the same time, in the OMS scheme I3 is gauge-invariant. So, in the OMS scheme I3 can directly
be related to the width of unstable particle, but not in the generalized by [10] OMS scheme.

5. The above-mentioned relation may be derived from the formula for the lifetime of an un-
stable particle. Below, pursuing the illustrative purposes, we present rather a heuristic derivation

of this formula. So, in as much as possible idealized statement of the problem, the lifetime is
directly connected with the propagator of unstable particle. Really, the amplitude of production
of unstable particle (anywhere in the Universe) and its subsequent decay after the time x0, is

proportional to

A(x0) ∼
∫
d�x

∫
dp

(2π)4
e−ipx∆(p2) =

∫
dE

2π
e−iEx

0

∆(E2) .

The remaining integral can be calculated with the aid of (25). By assuming the parameterization
Im sp =MΓp, we get

A(x0) ∼ e−ix0M
√
1−iΓp/M . (29)

Then, the normalized-to-one probability is

P (x0) =
|A(x0)|2∫∞

0 dx0|A(x0)|2 =
1

T
e−x

0/T , (30)

with T being the lifetime. The direct calculation gives

1

T
= M

√√√√
2
(
1 +

Γ 2p
M2
−

√
1 +

Γ 2p
M2

)
= Γp +

Γ 3p
8M2

+ · · · , (31)

with dots standing for O(Γ 5p /M
4) correction. By identifying T−1 with the width Γ of unstable

particle, we derive from (31) and (24) the formula

I3 =MΓ2-loop− Γ30-loop
/
(8M2) , (32)

which is valid in the OMS scheme only. The origin of the second term in (32) may be associated
with the triple cut emerging while applying the Cutkosky rules at the three-loop level.

In summary, we have constructed the OMS scheme, which, in the high measure, is possessed

of the physical significance. Namely, the renormalized mass in this scheme coincides with the
physical mass of unstable particle (the real part of the complex pole in the propagator), and the

on-shell self-energy is directly connected with the width of unstable particle (literally, coincides
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with the imaginary part of the complex pole). Both these quantities are the observables. So,
the OMS scheme absorbs all the conveniences of the well-known complex pole scheme [9], which

is the scheme for the parametrization of the amplitude.
The practical significance of the OMS scheme is obvious in the case of the processes of

unstable-particle production and decay considered with the two-loop (and higher) precision.
Such processes are to be studied at the future colliders [11].
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