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Abstract

Pirogov Yu.F. and Zenin O.V. Uncertainty of the Two-Loop RG Upper Bound on the Higgs Mass: IHEP
Preprint 2002–21. – Protvino, 2002. – p. 7, figs. 3, refs.: 10.

A modified criterion of the SM perturbative consistency is proposed. It is based on the analytic properties
of the two-loop SM running couplings. Under the criterion adopted, the Higgs mass up to 380 GeV might
not give rise to the strong coupling prior to the Planck scale. This means that the light Higgs boson
is possibly preferred for reasons other than the SM perturbative consistency, i.e. for reasons beyond the
SM.
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1. Introduction

The current experimental data restrict the Higgs mass in the Standard Model (SM) within

the range 114.1 GeV< MH < 194 GeV. The lower bound on MH comes from the absence
of the Higgs production signal at LEP II at the 95% CL [1]. The upper bound is derived

at the same CL from the fit to the precision electroweak data [2]. On the other hand, the
upper bound on the Higgs mass can be obtained from the requirement of the SM perturbative

consistency up to a cutoff energy scale Λ at which the SM might get into the strong coupling
regime. The two-loop renormalization group (RG) gives typical upper bounds MH < 200 GeV

at Λ = MGUT = 1014 GeV and MH < 180 GeV at Λ = MPl = 1019 GeV (see, e.g., [3]). Thus
both the electroweak precision data and the SM perturbative consistency up to the GUT scale

exclude the Higgs mass MH ≥ 200 GeV. This could be interpreted as though the Higgs should
be light due to the self-suppression of the strong coupling in the SM. But the question is to what
extent the Higgs upper bound from the SM perturbative consistency is reliable?

A clear-cut criterion of the strong coupling in the Higgs sector of the SM exists only in
one loop. In this case, the one-loop quartic coupling λ develops the Landau pole at a finite

energy scale Λ. In two loops, the pole is compensated but λ becomes large, λ/4π2 � 1, nearly
at the same energy scale Λ. Taken alone, this does not give the unambiguous criterion of the

nonperturbative regime any more. In the conventional assumption that the higher loops become
comparable with the first and second ones at the same scale Λ, the results of [3], [4] follow

(see also [5] for a review). On the other hand the contributions of the higher loops might be
either small, or large but mutually compensated. This would not change drastically the two-loop

running of λ and may relax the conventional upper bound on the Higgs mass.
Presently, the full set of the SM β functions is known up to the two loops only. This forces

one to study the reliability of the self-consistency criterion of the two-loop RG approximation in

the SM. This is the purpose of the present paper. The method proposed in the paper relies on
the subtracted RG and the analytic properties of the running couplings. It is similar in spirit

to methods applied to resolve the Landau singularity problem in QED [6] and, later, to improve
the infrared behaviour of the QCD running coupling αS(µ

2) [7], [8].

2. Subtracted finite-loop RG

Let us consider the system of the SM two-loop RG equations (RGE):

µ2
dai(µ

2)

dµ2
= βi

({
aj(µ

2)
})
. (1)

Here and in what follows ai(µ
2) are the SM running couplings vs. the energy squared scale µ2,

and βi are the respective β functions calculated at the given number of loops. We disregard the
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mass effects here. Conventionally, the system (1) is integrated numerically along the real axis
Reµ2 < 0:

ai(µ
2) = ai(µ

2
0) +

∫ µ2
µ20

dµ′
2

µ′2
βi
({
aj(µ

′2)
})
, (2)

where µ20 < 0 is a reference point, |µ0| ∼ MZ . The β functions can now be defined as the
functions of the real negative µ2:

βi(µ
2) ≡ βi

({
aj(µ

2)
})
. (3)

Eqs. (1) – (3) preserve their meaning for the complex µ2 as well. But the numerical solution

obtained says nothing about the analytic properties of the running couplings with respect to
µ2. In two loops, despite the absence of the real singularities of the Higgs quartic coupling λ
there could be the complex ones. They influence the strong coupling regime λ/4π2 ≥ 1 at large

enough real µ2. The extension of the two-loop RG analysis onto the complex µ2 plane allows
one to find the position of the singularities implicitly.

Fig. 1: The integration contour C and the generic complex-conjugate singularity points µ2s, µ
2
s
∗

with

|µ2s| = Λ2s. The real point (−Λ2Y ) corresponds to the U(1)Y singularity. All the complex singularities are

assumed to reside within the shadowed area at Λ2s ≤ |µ2| ≤ Λ2Y . The hatched line designates the physical

cut.

To this end, let us continue analytically the β functions and running couplings onto the
complex µ2 plane with the cut along the real axis Reµ2 > 0 (Fig. 1). The cut is chosen so

that −π < Im ln (−µ2) < π. All the running couplings are assumed to satisfy the hermiticity
condition ai(µ

2∗) = a∗i (µ
2). Let us first choose the closed contour C = C0∪C+ ∪ C̃ ∪C∗+ (Fig. 1)

so that C encircles the given point µ2, and all the singularities of the running couplings ai(µ
2)

reside outside C. Then βi(µ
2) satisfy the identity

βi(µ
2) ≡ 1

2πi

∫
C

βi(s) ds

s − µ2 , (4)
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where βi(s) ≡ βi({aj(s)}). Substituting Eq. (4) into Eq. (2) one gets

ai(µ
2) = ai(µ

2
0) +

1

2πi

∫ µ2
µ20

dµ′
2

µ′2

∫
C

βi(s) ds

s − µ′2 , (5)

where the integration path between points µ20 and µ2 should lie inside C. In what follows, the
square root Λ̃ of the radius of the outer contour C̃ is referred to as the modification radius.

Now let us spread the outer contour C̃ so that at least a part of the implicit singularities
of ai(µ

2) gets located inside C. In general, the identity (5) ceases to be valid. Moreover, the

integration of the RGE system (1) from the reference point µ20 to the real point (−Λ̃2), Λ̃ > Λs,
along the real axis and the upper half of the contour C (shown in solid in Fig. 1) does not give

the identical results. Remarkably, in the latter case the couplings ai(−Λ̃2) acquire the nonzero
complex parts while in the former case they are real by construction. This discrepancy reflects

the contribution of the implicit complex singularities. The minimal radius Λ2s of the external
contour C̃ at which all these irregularities take place gives the estimate of the upper range
of the reliability of the RG in the given loops. The value of Λs corresponds to crossing the

nearest singularities of ai(µ
2). At scales larger than Λs, the original finite-loop approximation

is definitely unreliable. It is at |µ2| ≥ Λ2s, where the contributions of higher loops are needed to

improve the analytic properties of the conventional running couplings ai(µ
2).

The above procedure suffices to give the clear-cut numerical criterion of the self-consistency

of the finite-loop RG. But to visualise, let us modify Eq. (5) and define the new running couplings

a
(Λ̃)
i (µ2) as follows

a
(Λ̃)
i (µ2) = ai(µ

2
0) +

∫ µ2
µ20

dµ′2

µ′2
β
(Λ̃)
i (µ′

2
) , (6)

with the once subtracted β functions

β
(Λ̃)
i (µ2) ≡ βi(µ20) +

1

2πi

∫
C

ds βi(s)

(
1

s− µ2 −
1

s − µ02
)
. (7)

Here the point µ20 is shifted infinitesimally inside C and βi(s), restricted to contour C, are

obtained by integrating the RGE system (1) along the contour C itself. By the very construction,

the modified couplings a
(Λ̃)
i (µ2) exactly coincide with ai(µ

2) at |µ| < Λ̃ if the integration contour

does not encompass the complex singularities, i.e. Λ̃ < Λs. Due to hermiticity, the couplings are
real at the real negative µ2. If the complex singularities get inside the contour, the procedure is

not uniquely defined. In particular a
(Λ̃)
i (µ2) cease generally to be hermitian. To improve this, we

redefine the integral in Eq. (7) as the contribution of the upper half of the contour C minus the

contribution of the symmetric lower half of the contour calculated in the similar manner. This

does not change the results at Λ̃ < Λs. So defined a
(Λ̃)
i (µ2) are regular and hermitian and differ

from ai(µ
2) by the contribution of singularities and normalization constants. The constants are

chosen so that β
(Λ̃)
i (µ20) ≡ βi(µ20) and hence a

(Λ̃)
i (µ2) = ai(µ

2) +O((µ2 − µ20)2) in a vicinity of µ20
where the finite-loop RG is believed to be reliable. The large difference between the couplings
arises as soon as the singular parts of ai(µ

2) become large.

3. Modification of the SM two-loop couplings

The SM ultraviolet behaviour has been extensively studied by the conventional RG method

up to the two loops [3] – [5]. An important outcome of this study is the range of the Higgs
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mass for which the SM remains perturbatively consistent up to the given cutoff scale Λ. The
consistency can be broken either by the heavy enough Higgs, whose quartic coupling λ “blows

up” at the scale Λ, or by the light Higgs, whose coupling λ dumps below zero at the scale
Λ1. Thus, quite a narrow corridor is retained for the Higgs mass (see, e.g., Fig. 4 of Ref. [3]).

These bounds are of special interest because the Higgs mass remains the last undetermined SM
parameter.

In two loops, the Higgs quartic coupling λ, as well as the other SM couplings, develops no
singularities prior to the Landau singularity of the U(1)Y gauge coupling at Λ ≥ 0.2 · 1041 GeV,

the latter corresponding to the Higgs mass MH ≥ 114.1 GeV [3]. The situation is obscured by
the fact that the SM two-loop RG equations can be solved only numerically. The numerical
solution vs. real µ2 provides no information about the analytic properties of the SM two-loop

running couplings.
The method of analytic modification studies the evolution of the running couplings vs. com-

plex µ2. The variation of the modification radius Λ̃ (Fig. 1) allows one to determine the two-loop
singularity scale Λs without finding the unphysical singularities explicitly. Thus one can judge

about the self-consistency of the two-loop RG at the given energy scale µ. It is sufficient to

calculate the modified couplings a
(Λ̃)
i (µ2) and compare them to the conventional ones Eq. (2).

This enables one to determine the radius Λs at which the singularity is located, making the
numerical analysis rather productive. If Λ̃ < Λs, then the conventional and the modified SM

running couplings are identical within the routine accuracy, ai(µ
2) ≡ a(Λ̃)i (µ2), |µ| < Λ̃. As soon

as Λ̃ exceeds Λs, the modified couplings depart from the respective conventional ones.
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Fig. 2: The conventional (RG) and subtracted (SRG) two-loop running of the SM Higgs quartic

coupling λ at MH =180 GeV – 380 GeV. For comparison, the one-loop RG running of λ is shown by

dots.

1The upper and the lower bounds on the Higgs mass are also known in the literature as the triviality bound
and the vacuum stability bound, respectively.
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To illustrate, consider the two-loop RG evolution of the SM with the maximally heavy Higgs,
MH = 200 GeV, nearly allowed by the electroweak precision data [2]. Varying the modification

radius Λ̃ in the range 1019 GeV < Λ̃ < 1042 GeV2, we find numerically the scale of the two-loop
hidden singularity to be Λs � 1031 GeV. This can be seen from Fig. 2 showing the conventional

(RG) and subtracted (SRG) two-loop running of the Higgs quartic coupling λ. Note that λ gets
in fact rather large decrement, of 10% or so, after the integration contour crosses over the implicit

singularities. For the lighter Higgs (not shown), λ stays actually unmodified3. Fig. 3 shows the
conventional and modified two-loop evolution of the SM gauge couplings. In these figures, the

modification radius is Λ̃ = 1042 GeV and |µ0| is equal to the Higgs VEV, v = 246.2 GeV. The
extension of Λ̃ even beyond the position of the Landau singularity results in the relative variation
of the modified running couplings at the level of 10−3. The case MH = 380 GeV corresponds to

Λs =MPl = 1019 GeV. Also shown in Fig. 3 is the evolution of α1(µ
2) at MH � 1.2 TeV which

corresponds to Λs =MGUT = 1014 GeV.
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Fig. 3: The conventional (RG) and subtracted (SRG) two-loop running of the SM gauge couplings at

MH = 200 GeV and 380 GeV. MH = 380 GeV corresponds to Λs = MPl . The running of the U(1)Y
gauge coupling at MH � 1.2 TeV corresponding to Λs =MGUT is also shown.

2I.e. well below the Landau singularity of the U(1)Y gauge coupling at Λs � 5 · 1050 GeV for this MH .
3For the 380 GeV Higgs, the modification of the t, b, and τ Yukawa couplings (not shown) cancels the unification

of the latter ones [3] above the singularity scale Λs.
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The upper Higgs bound. An important conclusion follows hereof. For the 200 GeV Higgs,

all the SM couplings demonstrate very close conventional and modified two-loop running up to
the two-loop singularity scale Λs. The Higgs massMH = 200 GeV spoils the analytic properties

of the SM two-loop running couplings only at the scale Λs � 1031 GeV, i.e. well above the Planck
scale. This can imply that to improve the analytic properties of the SM two-loop couplings, the
contributions of the third and higher loops are needed only at scales µ > MPl. To break

down the perturbativity of the SM prior to the Planck scale MPl = 1019 GeV the Higgs mass
MH > 380 GeV is required. This lifts up the commonly accepted upper bound on the Higgs

massMH ≤ 180 GeV derived in the conventional manner from the same requirement. Moreover,
to guarantee the SM perturbativity up to the GUT scale, MGUT = 1014 GeV, it is not actually

necessary to impose any upper bound onMH . Thus the Higgs is light probably for reasons other
than the absence of the strong coupling in the SM. These reasons might lie beyond the SM. E.g.,

the Higgs could be the composite pseudo-Goldstone boson having the natural mass ∼MZ [9].
To resolve the uncertainty of the Higgs upper bound the third and fourth loops in the SM are

urgently needed. Two extreme possibilities can be envisaged. First, the higher loops are large
and do not compensate each other. In this case, the conservative conventional upper bound
MH < 180 GeV at Λ = MPl would follow. Second, the higher loops are either small, or large

but mutually compensated. In this case, the more liberal modified upper bound is appropriate,
and MH up to 380 GeV would be allowed at the same Λ. More realistically, an intermediate

case may realize so that the upper bound onMH should lie somewhere in between 180 GeV and
380 GeV.

The lower Higgs bound. The low Higgs masses, MH ≤ 138.1 GeV4 , give rise to the

electroweak vacuum instability prior to the Planck scale. However at the vacuum instability
scale, the SM running couplings develop no singularities and hence require no subtractions.

Thus the analytic modification method taken as it is cannot clarify the electroweak vacuum
instability problem.

4. Conclusion

The subtracted RG is applied to study the two-loop self-consistency of the SM. It is found

that at the Higgs mass MH < 380 GeV, the two-loop singularity scale is Λs > MPl. This
implies that MH < 380 GeV does not necessarily threaten with the strong coupling prior to the

Planck scale. Even allowing Λs as low as MGUT , the SM self-consistency may actually impose
no upper bound on MH . In other words, the light Higgs might be preferred for reasons other

than the SM perturbativity, i.e. for reasons beyond the SM. To clarify the issue the third and
fourth loops in the SM RG are needed. On the other hand the method cannot resolve the SM

vacuum instability problem arising, in two loops, at MH < 138.1 GeV. Thus, out of the entire
experimentally allowed range for the Higgs mass 114.1 GeV < MH < 194 GeV, only the lowest

Higgs masses 114.1 GeV < MH < 138.1 GeV could definitely give rise to the SM inconsistency
prior to the Planck scale and would require new physics.

Acknowledgements The authors are grateful to A. I. Alekseev and V. V. Kabachenko for

useful discussions.

4This corresponds to the recalculated result of Ref. [3] for the central value 174.3 GeV [10] of the top mass.
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