

ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ ФЕДЕРАЦИИ

ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

ИФВЭ 2002–22 ОНФ

Н.М. Агабабян¹⁾, В.В. Аммосов, М. Атаян²⁾, Н. Григорян²⁾, Г. Гулканян²⁾, А.А. Иванилов^{*}, Ж. Карамян²⁾, В.А. Коротков

ВЛИЯНИЕ ЯДЕРНОЙ СРЕДЫ НА ОБРАЗОВАНИЕ АДРОНОВ В ГЛУБОКОНЕУПРУГОМ РАССЕЯНИИ НЕЙТРИНО

Направлено в $\mathcal{P}\Phi$

Протвино 2002

¹⁾ Объединенный институт ядерных исследований, Дубна, Россия

²⁾ Ереванский физический институт, Армения

^{*} E-mail: ivanilov@mx.ihep.su

Аннотация

Агабабян Н.М., Аммосов В.В., Атаян М. и др. Влияние ядерной среды на образование адронов в глубоконеупругом рассеянии нейтрино: Препринт ИФВЭ 2002–22. – Протвино, 2002. – 12 с., 9 рис., 1 табл., библиогр.: 29.

С помощью пропан-фреоновой пузырьковой камеры СКАТ, облученной пучком нейтрино с энергией 3–30 ГэВ на Серпуховском ускорителе, измерены инклюзивные спектры адронов. Полученные данные свидетельствуют о том, что внутриядерное поглощение лидирующих продуктов фрагментации кварка усиливается с уменьшением переданной ему энергии и с увеличением доли z энергии кварка, приобретенной адроном. Анализ данных в рамках модели цветовой струны показывает, что положительные адроны с 0.7 < z < 0.9 поглощаются в ядре с сечением, близким к неупругому сечению пион-нуклонного взаимодействия.

Abstract

Agababyan N., Ammosov V.V., Atayan M. et al. The Influence of the Nuclear Medium on the Production of Hadrons in Deep Inelastic Neutrino Scattering: IHEP Preprint 2002–22. – Protvino, 2002. – p. 12, figs. 9, tables 1, refs.: 29.

The inclusive spectra of hadrons produced in neutrino-nucleus scattering are measured with the help of the propane-freen bubble chamber SKAT, irradiated to the neutrino beam with energy 3-30 GeV at the Serpukhov accelerator. The date indicate, that the intranuclear absorption of the leading products of the struck quark fragmentation strengthens with decreasing quark energy and with increasing share z of the quark energy carried by the hadron. The data analysis in the framework of the colour string model shows that the absorption cross section of positive hadrons with 0.7 < z < 0.9 is close to the inelastic pion-nucleon cross section.

 (с) Государственный научный центр Российской Федерации
 Институт физики высоких энергий, 2002

Введение

Глубоконеупругое рассеяние лептона на ядре сопровождается образованием цветовой струны между выбитым кварком и нуклонным остатком. При рассеянии на периферическом нуклоне ядра процесс фрагментации струны аналогичен ее фрагментации в случае водородной или дейтериевой мишени. При рассеянии на непериферическом нуклоне процесс фрагментации испытывает определенное влияние ядерной среды.

Согласно предсказаниям (см., например, [1-5]), средний пространственновременной промежуток l_h , необходимый для формирования адрона с массой m_h и энергией E_h , определяется лоренц-фактором ($l_h \sim E_h/m_h$). В ряде других моделей предполагается, что l_h пропорционален лоренц-фактору родительского кварка ($l_h \sim \nu/m_q^*, \nu$ — энергия, переданная кварку), причем масса m_q^* виртуального кварка зависит от квадрата переданного импульса Q^2 [6], либо определяется кинематикой "излучения" кварком адрона [7].

Более детальное рассмотрение процесса формирования адронов на основе Лундской фрагментационной модели [8], а также в рамках моделей, учитывающих торможение кварка вследствие либо натяжения цветовой струны [9], либо излучения глюонов [10,11], приводит к функциональным зависимостям l_h от переданной адрону доли $z = E_h/\nu$ энергии кварка, согласно которым длина формирования сравнительно энергичных продуктов фрагментации с увеличением z уменьшается и соответственно увеличивается вероятность их поглощения в ядерном веществе.

Сопоставление инклюзивных спектров адронов на ядрах и дейтроне [12–16] подтверждает предсказанное ослабление эффектов ядерного поглощения с ростом ν и их усиление при $z \rightarrow 1$. Такие данные получены при сравнительно высоких ν (до 400 ГэВ), в то время как данные при промежуточных энергиях ($\nu < 10$ ГэВ) весьма скудны. Для полноты картины интересно провести детальные исследования также и в этой области энергий, где, как ожидается, влияние ядерной среды на процесс фрагментации более существенно.

Отдельный интерес представляет сопоставление спектров адронов из различных выборок событий рассеяния лептона на одном и том же ядре, а именно, в выборках с отсутствием явных признаков вторичного ядерного взаимодействия и с присутствием таких признаков (в дальнейшем — выборки квазинуклонных и каскадных событий соответственно). При этом в каскадных событиях ожидается более заметное проявление ядерных эффектов. Такое сопоставление проведено для νNe —взаимодействий при сравнительно высоких W (до ~ 25 ГэВ) [17]. Целью настоящей работы является исследование эффектов ядерного поглощения в нейтрино-ядерных взаимодействиях в области промежуточных энергий $\nu = 2-15$ ГэВ и W = 2-5 ГэВ. В разделе 1 описана постановка эксперимента. Методика отбора взаимодействий каскадного и квазинуклонного типов приведена в разделе 2. В разделе 3 представлено сравнение адронных спектров каскадных и квазинуклонных событий. В разделе 4 дана количественная оценка эффектов внутриядерных взаимодействий. В разделе 5 полученные данные сравниваются с предсказаниями модели цветовой струны. Основные результаты и выводы работы приведены в заключении.

1. Методика эксперимента

Эксперимент выполнен на пузырьковой камере СКАТ [18], облученной в широкополосном пучке нейтрино Серпуховского ускорителя при энергии первичных протонов 70 ГэВ. Камера была заполнена пропан-фреоновой смесью (по объему 87% пропана C_3H_8 и 13% фреона CF_3Br) с процентным содержанием ядер H: C: F: Br = 67.9: 26.8: 4.0:1.3%. Плотность примеси составила 0.55 г/см³, радиационная длина $X_0 = 50$ см, длина ядерного взаимодействия 149 см. Полный объем камеры составлял 6.5 м³, используемый эффективный объем равен 1.73 м³. В рабочем объеме камеры обеспечивалось однородное магнитное поле напряженностью 20 кГс.

Отбирались события взаимодействий заряженного тока с импульсом μ^- -мезона $p_{\mu} > 0.5 \ \Gamma \Rightarrow B/c$. Мюоном считалась отрицательно заряженная частица, обладающая наибольшим поперечным импульсом среди частиц, не претерпевших в камере вторичного взаимодействия. Остальные отрицательные частицы считались π^- -мезонами. Протоны с импульсом менее $0.6 \ \Gamma \Rightarrow B/c$ и часть протонов с импульсом 0.6 идентифицировались по ионизационной остановке в камере. При определении энергии, переданной $адронной системе, неидентифицированным положительным частицам с импульсом <math>p < 0.85 \ \Gamma \Rightarrow B/c$ приписывалась масса протона или пиона в соответствии с предварительно оцененной относительной вероятностью. Все положительные частицы с $p > 0.85 \ \Gamma \Rightarrow B/c$ считались π^+ -мезонами. Для повышения точности восстановления ν и энергии нейтрино E_{ν} отбирались события, в которых точность измерения импульсов всех вторичных заряженных частиц (γ -квантов) была менее 27% (100%). Каждому отобранному событию приписывался вес, учитывающий потери событий. Средний вес используемой в данной работе выборки событий равняется 1.43.

Окончательная величина ν , учитывающая незарегистрированные нейтроны и γ -кванты, определялась на основе измеренной ν_{vis} при помощи соотношения $\nu = a + b\nu_{vis}$, в котором значения $a = (0.15 \pm 0.24)$ ГэВ и $b = 1.07 \pm 0.05$ были найдены по методике, примененной в работе [19]. Близкие значения a и b получаются с помощью моделирования нейтринных взаимодействий в камере методом Монте-Карло [20].

Для дальнейшего анализа было отобрано 2223 события с 3 < E_{ν} < 30 ГэВ, W > 2 ГэВ, квадратом переданного импульса Q^2 > 1 ГэВ² и $y = \nu/E_{\nu} < 0.95$.

2. Отбор квазинуклонных, каскадных и квазидейтронных событий

Отбор квазинуклонных и каскадных событий, методика которого подробно описана в [21], осуществлялся по ряду топологических и кинематических критериев. В подвыборку B_N квазинуклонных взаимодействий включались события без каких-либо признаков вторичных взаимодействий в ядре: суммарный заряд вторичных адронов равен q = +1 (для подвыборки B_n -взаимодействий с нейтроном) или q = +2 (для подвыборки B_p взаимодействий с протоном); число зарегистрированных барионов (идентифицированных протонов и Λ -гиперонов, а также нейтронов, претерпевших вторичное взаимодействие в камере) не превышает единицы, причем среди них отсутствуют барионы, летящие назад. Кроме того, накладывалось ограничение сверху на эффективную массу мишени M_t , определяемую как $M_t = \Sigma(E_i - p_{||}^i)$, где суммирование проводится по энергиям E_i вторичных частиц и продольной компоненте $p_{||}^i$ их импульсов $M_t < 1.2 \ \Gamma$ эВ/ c^2 . События, не удовлетворяющие вышеуказанным критериям, включались в подвыборку каскадных событий B_s . В итоге количество событий в подвыборках B_p , B_n и B_s оказалось равным соответственно 480; 555; 1188 (при этом количество взвешенных событий равно соответственно 685; 751 и 1731).

Указанному соотношению числа событий соответствует отношение сечений $\nu n-\mu$ и νp -взаимодействий $r = \sigma(\nu n \to \mu^- X)/\sigma(\nu p \to \mu^- X) = 1.83 \pm 0.11$, близкое известному значению $r \approx 2$ [22]. Было также проверено [21], что W-зависимости (в области $2 \leq W \leq 5$ ГэВ) средних множественностей положительных и отрицательных адронов в подвыборках B_p и B_n удовлетворительно согласуются с данными [23] по νp - и νn -взаимодействиям, причем согласие имеет место как в области отрицательных, так и положительных значений переменной Фейнмана. Кроме того, было проведено сравнение инклюзивных спектров адронов с имеющимися данными на водородной (дейтериевой) мишени в области $2 \leq W \leq 5$ ГэВ. При этом наблюдалось удовлетворительное согласие между инклюзивными спектрами π^- -мезонов как νp -взаимодействий [24] и подвыборки B_p , так и νD -взаимодействий [25] и комбинированной подвыборки B_p квазидейтронных событий, содержащей подвыборку B_n и 60% подвыборки B_p соответствуют взаимодействиям сответствиям (остальные 40% подвыборки B_p соответствуют взаимодействиям с водородом пропан-фреоновой смеси).

Удовлетворительное согласие множественных и инклюзивных характеристик квазинуклонных подвыборок с данными по протонной (дейтериевой) мишени [22–25] позволяет заключить, что подвыборки B_p и B_n могут содержать лишь несущественную примесь событий, в которых произошло вторичное внутриядерное взаимодействие.

Ряд усредненных кинематических характеристик полной выборки и подвыборок событий приведен в таблице.

Средние характеристики глубоконеупругого рассеяния нейтрино для полной выборки и для подвыборок B_p , B_n и B_s .

Выборка	$\langle E_{\nu} \rangle$	$< \nu >$	$< W^{2} >$	$\langle W \rangle$	$< Q^{2} >$	$\langle x \rangle$
	ГэВ	ГэВ	Γ э B^2	ГэВ	Γ э B^2	
Полная	10.8	6.5	9.5	3.0	3.6	0.30
B_p	11.0	6.6	9.8	3.0	3.5	0.29
B_n	10.9	6.5	9.3	2.9	3.9	0.33
B_S	10.7	6.5	9.5	3.0	3.5	0.29

3. Сопоставление инклюзивных спектров адронов в подвыборках каскадных и квазинуклонных событий

Отношение R_{y^*} (B_S/B_N) распределений по быстроте в с.ц.м. адронной системы y^* в подвыборках B_S и B_N показано на рис. 1 для двух интервалов инвариантной энергии

Рис. 1. Отношение распределений по быстроте y^* в подвыборках B_S и B_N для двух областей по W.

2 < W < 3 ГэВ и 3 < W < 5 ГэВ. Видно, что спектр адронов в подвыборке B_S смещен в сторону отрицательных y^* , что является следствием вторичных внутриядерных столкновений и сопровождающих их энергетических потерь адронов. В области фрагментации мишени $(y^* < -1)$ отношение $R_{u^*}(B_S/B_N)$ достигает нескольких единиц. В области же фрагментации кварка в подвыборке B_S наблюдается подавление выхода адронов, особенно сильное при малых W и достигающее значения R_{u^*} $(B_S/B_N) = 0.44 \pm 0.13$ для наиболее быстрых частиц $(y^* > 1.8)$. Такое значение не противоречит результатам работы [17], в которой для отношения выходов заряженных адронов с $y^* > 2$ в каскадных и квазинуклонных подвыборках *vNe*-взаимодействий получено 0.6 ± 0.1 при $W = 2 \div 7$ ГэВ. Отметим так-

же, что с ростом W эффекты поглощения быстрых продуктов фрагментации кварка ослабляются и, согласно данным работы [17], практически исчезают при W > 7 ГэВ.

Рис. 2. Распределение по переменной z для положительных адронов и π^- -мезонов в подвыборках B_S и B_N .

На рис. 2 показаны распределения $\rho^{\pm}(z) = (1/N_{tot})dN^{\pm}/dz$ по переменной z отдельно для положительных адронов (помимо идентифицированных протонов) и π^- -мезонов в подвыборках B_S и B_N . Как видно из рисунка, вследствие энергетических потерь в ядерной среде спектры адронов в подвыборке B_S смещены в сторону малых z. Как видно из рис. 3, где представлена ν -зависимость отношения $R_z(B_S/B_N) = \rho_{B_S}^{ch}(z)/\rho_{B_N}^{ch}(z)$ функций распределения для заряженных частиц, проинтегрированных в трех областях по z: z < 0.2, 0.2 < z < 0.4 и z > 0.4, это смещение, выражающееся в усилении выхода адронов с малыми z < 0.2 и ослаблении выхода при больших z > 0.4, проявляется заметнее при малых энергиях ν . Из рис. 2 и 3 следует, что данные при z < 0.4 малоинформативны при изучении эффектов ядерного поглощения, так как последние не приводят к ослаблению выхода адронов по крайней мере в области сравнительно малых $\nu < 7$ ГэВ. Более информативными представляются даннные для лидирующих адронов (z > 0.4), показывающие, что подавление их выхода имеет место во всей области рассматриваемых ν . Данные указывают также на то, что это подавление имеет тенденцию к ослаблению с ростом ν .

Рис. 4. Отношения выходов заряженных адронов (a) и положительных адронов (b, c, d) в подвыборках B_S и B_N в зависимости от кинематических переменных η , определенных в тексте.

Ниже мы будем рассматривать влияние ядерной среды на выход лидирующих адронов с z > 0.4 в зависимости от кинематических переменных (или их комбинаций), предположительно определяющих длину формирования адрона l_h . Ожидается, что экспериментально измеренное отношение $R_\eta(B_S/B_N)$ выходов адронов должно быть монотонно растущей функцией от данной кинематической переменной $\eta \sim l_h$. В противном случае теоретическое предсказание о пропорциональности $\eta \sim l_h$ не будет соответствовать экспериментальным данным по лепторождению адронов. Данные, приведенные на рис. 4, позволяют осуществить качественную проверку различных теоретических предсказаний.

Из рис. 4a следует, что, вопреки исходному предположению о линейной зависимости длины формирования l_h лидирующего адрона от E_{π}/m_{π} , степень подавленности его выхода и, следовательно, средняя длина пути, пройденного им после формирования в ядерной среде, практически не меняются в широкой области изменения этих переменных. Аналогичное заключение можно сделать из рис. 4b относительно переменной ν/m_q^* , представляющей собой лоренц-фактор кварка с эффективной массой, определяемой кинематикой распада $u \to \pi^+ d$ или $\bar{d} \to \pi^+ \bar{u}$ выбитого виртуального кварка: $m_q^* = p_T^* \sqrt{z(1-z)}$, где p_T^* – компонента импульса π^+ -мезона, перпендикулярная к направлению промежуточного бозона. Таким образом, полученные нами данные по нейтринорождению лидирующих адронов на ядрах не могут служить подтверждением для предполагаемого ослабления эффектов внутриядерного поглощения с ростом E_h или z.

Качественно иная функциональная зависимость длины формирования лидирующего адрона от кинематических переменных следует из моделей, рассматривающих пространственно-временную эволюцию цветовой струны, образованной между выбитым кварком и нуклонным остатком [8–11]. При натягивании струны происходит торможение кварка, а его энергия ν расходуется на излучение глюонов, рождение кваркантикварковых пар и, в конечном итоге, на множественное рождение адронов. Согласно [9–11], чем протяженнее пространственно-временной промежуток, предшествующий образованию лидирующего адрона, тем меньшей долей z энергии ν он может обладать. При достаточно больших z этот промежуток (или длина формирования адрона) пропорционален $l_h \sim \nu(1-z)$. Такая же зависимость при $z \to 1$ следует в рамках Лундской струнной модели [8]: $l_h \sim \nu z [-1 + \ln(z^{-2})/(1-z^2)]$. В обоих случаях с ростом z (для второго случая – в области z > 0.3) l_h монотонно убывает, следовательно, усиливается подавление выхода адрона.

Приведенная на рис. 4*c* и *d* зависимость отношения $R_{\eta}(B_S/B_N)$ от указанных переменных качественно подтверждает это предсказание. Как было показано в недавней работе [16], теоретические предсказания, основанные на зависимости $l_h \sim (1-z)\nu$, удовлетворительно согласуются с данными по электророждению адронов с z > 0.2 на ядре азота в области энергий $7 < \nu < 24$ ГэВ, в среднем заметно превышающих энергии $2 < \nu < 15$ ГэВ в настоящей работе.

4. Отношение инклюзивных спектров адронов в подвыборках ядерных и квазидейтронных событий

Для получения количественных оценок, а также для сравнения с результатами других экспериментов, необходимо представить данные в виде отношения инклюзивных спектров во взаимодействиях нейтрино с ядрами пропан-фреоновой смеси и с дейтроном. Выборку B_A ядерных взаимодействий можно получить путем исключения вклада событий взаимодействия с водородом, составляющего в нашем эксперименте примерно 40% от числа событий подвыборки B_p . Таким образом, выборку B_A можно символически представить в виде $B_A = B_S + B_N + 0.6B_p = B_S + B_D$.

Отношение инклюзивных спектров в подвыборках B_A и B_D , например по переменной z, выражается как

$$R_{z}(B_{A}/B_{D}) = \rho_{A}(z)/\rho_{D}(z) = \frac{N_{n}^{tot} + 0.6N_{p}^{tot}}{N_{S}^{tot} + N_{n}^{tot} + 0.6N_{p}^{tot}} \left[1 + \frac{\Delta N_{S}^{h}(z)}{\Delta N_{n}^{h}(z) + 0.6\Delta N_{p}^{h}(z)}\right]$$

где N_S^{tot} , N_n^{tot} и N_p^{tot} – полные числа взвешенных событий, а $\Delta N_S^h(z)$, $\Delta N_n^h(z)$ и $\Delta N_p^h(z)$ – числа адронов с данным z в подвыборках B_S , B_n и B_p соответственно.

На рис. 5 показано отношение $R_z(B_A/B_D)$ в зависимости от z для положительных адронов (за исключением идентифицированных протонов) и для π^- -мезонов. Данные указывают на то, что ядерная среда влияет по-разному на выходы π^- -мезонов (в состав которых не может входить выбитый кварк) и положительных адронов. Если подавление выхода π^- -мезонов становится существенным при z > 0.4, то для положительных адронов (в основном π^+ -мезонов) оно проявляется при z > 0.6 и достигает $R_z(B_A/B_D) = 0.65 \pm 0.05$ при z > 0.8.

Выходы заряженных адронов с z > 0.2 из ядерных мишеней по отношению к выходу на дейтериевой мишени измерены в $e^{64}Cu-$ и $e^{14}N-$ взаимодействиях [13,16], а также в $\nu(\bar{\nu})Ne-$ взаимодействиях [15] при $<\nu>\approx11.5$ ГэВ, что в нашем эксперименте соответствует области $\nu > 7.5$ ГэВ.

Рис. 5. Отношение выходов положительных адронов и π^- -мезонов в подвыборках B_A и B_D в зависимости от переменной z.

Рис. 6. А-зависимость отношения $R_z^{ch}(B_A)/B_D$) для заряженных адронов с z > 0.2 при средней энергии $\langle \nu \rangle = 11.5$ ГэВ. Черными кружками обозначены данные по $R_z^{ch}(A/D)$ из работ [13, 15, 16].

Полученное в данной работе значение $R^{ch}_{z>0.2}(A/D) = 0.92\pm0.04$, соответствующее среднему атомному весу ядра-мишени $\bar{A} = 28$, вместе с данными работ [13,15,16] представлено на рис. 6, где приведен также результат экспоненциальной аппроксимации ($\sim A^{\alpha}$) данных с показателем $\alpha = -0.043\pm0.027$. Такая слабая A-зависимость может быть обусловлена

тем, что возможное ослабление выхода адронов с 0.2 < z < 0.4 частично компенсируется за счет энергетических потерь адронов, первоначально обладающих бо́льшими значениями z. Это приводит к тому, что интегральный выход адронов с z > 0.2 подавляется слабо (примерно на 10%) даже для ядра с A = 64.

Отмеченный эффект наглядно продемонстрирован на рис. 7, где показаны наши данные ($\bar{A} = 28$) по отношению $R_z(A/D)$ при энергиях $2 < \nu < 15$ ГэВ в сравнении с данными при более высоких энергиях $7 < \nu < 24$ ГэВ для ядра азота (A = 14) [16]. Хотя в первом случае ожидаются более сильные эффекты внутриядерного поглощения, отношение $R_z(A/D)$ в области 0.2 < z < 0.4 больше, чем во втором. Заметная энергетическая и A-зависимости ослабления выхода адронов начинают проявляться в области z > 0.6, значительно усиливаясь для наиболее энергичных адронов с z > 0.8.

Зависимость от ν отношения $R_{z>0.5}^{ch}(A/D)$ для лидирующих заряженных адронов с z > 0.5 показана на рис. 8, где представлены наши данные при $2 < \nu < 4$ ГэВ ($< \nu > = 3.3$ ГэВ) и $\nu > 4$ ГэВ ($< \nu > = 7.7$ ГэВ), а также данные по $e^{14}N$ -взаимодействиям в области $\nu > 8$ ГэВ [16]. Данные указывают на то, что наблюдаемое в [16] усиление эффекта внутриядерного поглощения лидирующих адронов с уменьшением ν сохраняет тенденцию вплоть до $\nu \approx 3$ ГэВ, при которой $R_{z>0.5}^{ch}(A/D)$ достигает значения 0.84 ± 0.05 .

Рис. 7. Отношение выходов заряженных адронов в зависимости от *z* в подвыборках *B_A* и *B_D* (черные кружки) и во взаимодействиях электронов с ядрами азота и дейтерия [16] (светлые кружки).

5. Сравнение экспериментальных данных с предсказаниями модели цветовой струны

Ниже приводятся результаты сравнения измеренного отношения $R_z(A/D)$ для лидирующих положительных адронов (в состав которых с большой вероятностью входит выбитый лептоном кварк) с предсказаниями модели цветовой струны [9–11]. Согласно этой модели, при натягивании цветовой струны между нуклонным остатком и выбитым кварком энергия ν_q последнего линейно уменьшается с увеличением длины струны l: $\nu_q = \nu - \kappa l$, где коэффициент натяжения струны κ характеризует потери энергии кварка на единицу длины. В приближении, не учитывающем излучение кварком глюонов, $\kappa \approx 1 \ \Gamma$ эВ/Фм [26,27], в то время как при учете излучения эффективное значение κ определяется выражением [10] $\kappa = 8\alpha_s (Q^2)Q^2/9\pi \approx 1.8 \ \Gamma$ эВ/Фм при $< Q^2 >= 3.6 \ (\Gamma$ эВ/с)² и $\alpha_s = 0.35$ [28]. Если разрыв струны, приводящий к образованию лидирующей $q\bar{q}$ -пары (в данном случае – в основном $u\bar{d}$ -пары), происходит при $l = l_h$, то ее энергия, т.е. энергия конечного лидирующего адрона (в данном случае – в основном π^+ -мезона), приблизительно равна $E_h \approx \nu_q = \nu - \kappa l_h$, с $l_h = \nu(1-z)/\kappa$.

Непосредственно после образования $q\bar{q}$ -пары ее средний поперечный размер может быть меньше, чем радиус пиона, вследствие чего цветовой заряд кварков частично экранируется, и $q\bar{q}$ -пара взаимодействует в ядре с эффективным сечением σ_h , меньшим, чем сечение неупругого πN -взаимодействия $\sigma_{\pi N}^{in} \approx 20$ мбн. Согласно теоретическим предсказаниям [10,11], эффективное сечение σ_h (усредненное вдоль траектории $q\bar{q}$ -пары в ядре) тем меньше, чем больше ν , становясь $\sigma_h \ll \sigma_{\pi N}^{in}$ при $\nu \gg 5$ ГэВ. При энергиях же $\nu \leq 5$ ГэВ эффект цветовой экранировки ожидается несущественным. Если взаимодействие нейтрино произошло с нуклоном с поперечными \vec{b} и продольной ξ координатами относительно центра ядра, а лидирующая $u\bar{d}$ -пара образовалась в точке $(\vec{b}, \xi + l_h)$, где $l_h = \nu(1-z)/\kappa$, то ослабление выхода π^+ -мезона с долей z начальной энергии кварка равно

$$S_{z}^{A}(ec{b},\xi)=exp\left(-\sigma_{h}\int_{\xi+l_{h}}^{\infty}
ho_{A}\left(ec{b},\xi'
ight)d\xi'
ight)$$

где $\rho_A(\vec{r})$ — распределение ядерной плотности, для которого в расчетах использовалась параметризация Вудса-Саксона

$$ho_A(ec{r}) = rac{
ho_0}{1+exp(rac{|ec{r}|-r_A}{a})}$$

с параметрами, извлеченными из данных по eA-рассеянию [29]: $r_A = (1.16A^{1/3} - 1.35A^{-1/3})$ Фм и a = 0.54 Фм. Параметр ρ_0 определяется из условия нормировки и равен для ядер С, F, Br соответственно $\rho_0 = 0.193, 0.186$ и 0.163 Фм⁻³.

Для каждого ядра пропан-фреоновой смеси и каждого интервала кинематической переменной $z = E_h/\nu$ выражение для $S_z^A(\vec{b},\xi)$ усреднялось по координатам (\vec{b},ξ) , а также по комбинации кинематических переменных $\nu(1-z)$, для чего использовалось экспериментальное распределение последней в подвыборке B_D . Рассчитанные таким образом средние значения $\langle R_z^A \rangle$ усреднялись по ядрам мишени, и полученная теоретическая величина $\langle R_z \rangle$ сравнивалась с экспериментально измеренным отношением $R_z(B_A/B_D)$.

Расчеты проводились при двух значениях параметра $\kappa = 1.0$ и 1.8 ГэВ/Фм. Параметр σ_h подгонялся для достижения наилучшего описания данных в области больших $z = 0.7 \div 0.9$. Область z < 0.7 не включалась в процедуру подгонки, так как в расчетах не учитывалась частичная компенсация ослабления выхода адронов за счет вторичных взаимодействий более энергичных частиц.

В результате подгонки было получено $\sigma_h = 19^{+6}_{-4.5}$ мбн при $\kappa = 1$ ГэВ/Фм и $\sigma_h = 15.5^{+4.6}_{-3.8}$ мбн при $\kappa = 1.8$ ГэВ/Фм. Расчетные кривые при этих значениях параметров сравниваются с экспериментальными данными на рис. 9. Видно хорошее согласие при 0.7 < z < 0.9 как для всей области по $\nu = 2 \div 15$ ГэВ (< $\nu >= 6.5$ ГэВ), так и для областей малых $\nu = 2 \div 5$ ГэВ (< $\nu >= 3.8$ ГэВ) и промежуточных $\nu = 5 \div 15$ ГэВ (< $\nu >= 8.6$ ГэВ) энергий. Следует отметить, что несколько меньшая подавленность выхода

наиболее быстрых адронов при $\nu > 5$ ГэВ по сравнению с областью $\nu < 5$ ГэВ (рис. 9b и c) объясняется не уменьшением эффективного сечения σ_h с ростом ν , а увеличением средней длины формирования $l_h \sim \nu(1-z)$. По этой же причине при $\nu > 5$ ГэВ наиболее быстрые адроны взаимодействуют в ядре с меньшей вероятностью, тем самим привнося сравнительно меньший вклад в область z < 0.7. Этим, по-видимому, и обусловлено удовлетворительное описание данных в области 0.4 < z < 0.7 при $\nu > 5$ ГэВ и $\xi =$ 1 ГэВ/Фм (рис. 9c).

Несколько хуже описание при $\xi=1.8 \ \Gamma \Rightarrow B/\Phi_M$, что может служить указанием на то, что в области промежуточных энергий, рассматриваемых в данной работе, механизм излучения глюонов не играет существенной роли в процессе лепторождения адронов и, следовательно, извлеченная при $\xi = 1 \ \Gamma \Rightarrow B/\Phi_M$ оценка сечения σ_h более предпочтительна. Тем не менее, мы учли возможную неопределенность в параметре $\xi = (1.4 \pm 0.4) \ \Gamma \Rightarrow B/\Phi_M$ и, как следствие, в сечении $\sigma_h = (18.1 \pm 6.4)$ мбн, где приведенная опшбка включает в себя и статистические погрешности. В пределах опшбок σ_h не отличается от $\sigma_{\pi N}^{in}$. Поэтому можно заключить, что лидирующая $q\bar{q}$ -пара приобретает свойства сформировавшегося адрона за достаточно короткий пространственно-временной промежуток, сопоставимый с межнуклонными расстояниями в ядре.

Рис. 9. Сравнение данных по отношению $R_z^+(B_A/B_D)$ для положительных адронов с предсказаниями модели цветовой струны (сплошные и пунктирные кривые) при: *a*) 2 < ν < 15 ГэВ, *b*) 2 < ν < 5 ГэВ, *c*) 5 < ν < 15 ГэВ.

Заключение

Получены новые экспериментальные данные по нейтринорождению адронов на ядрах в области промежуточных энергий 2 < W < 5 ГэВ и $2 < \nu < 15$ ГэВ. Примененная в работе методика позволяет выделять подвыборку квазинуклонных (квазидейтронных) событий, характеристики которых соответствуют имеющимся данным, полученным на водородной (дейтериевой) мишени, а также подвыборку каскадных событий с признаком вторичного взаимодействия в ядре.

Сопоставление инклюзивных спектров адронов в этих подыборках указывает на подавление выхода наиболее быстрых продуктов фрагментации, проявляющееся сильнее с уменьшением W или ν . Показано, что величина подавления выхода лидирующих адронов с z > 0.4 (и, следовательно, длина их формирования) не находится в прямой зависимости от их энергии, а зависит от комбинации кинематических величин $(1-z)\nu$ в соответствии с предсказаниями модели цветовой струны. С целью сравнения с предсказаниями этой модели, а также с другими экспериментальными данными результаты измерений представлены в виде, адекватном отношению $R_z(B_A/B_D)$ инклюзивных спектров по переменной z в $\nu A-$ и $\nu D-$ взаимодействиях. Показано, что извлеченной величине $R_z(B_A/B_D)$ для наиболее быстрых адронов с $z = 0.7 \div 0.9$ соответствует эффективное сечение их поглощения в ядерном веществе $\sigma_h \approx (18\pm 6)$ мбн, близкое к сечению неупругого пион-нуклонного взаимодействия. Такое сечение указывает на то, что предадронное $q\bar{q}$ -состояние приобретает свойства сформировавшегося пиона за пространственно-временной промежуток, сопоставимый с межнуклонными расстояниями в ядре. Получено также указание на то, что излучение глюонов выбитым кварком не играет существенной роли в эволюции цветовой струны при сравнительно невысоких $< Q^2 > \approx 3.6 ~(\Gamma
ightarrow B/c)^2$ и $< \nu > pprox 6.5 ~\Gamma
ightarrow B$, рассмотренных в данной работе.

Список литературы

- [1] Л.Ландау, И.Померанчук. Докл. АН СССР 95, 535, 1953.
- [2] В.Н.Грибов. // ЯФ 9, 640, 1965.
- [3] K.Gottfried. // Phys.Rev.Lett. 32, 957, 1974.
- [4] F.E.Low, K.Gottfried. // Phys.Rev. D 17, 2487, 1978.
- [5] Н.Н.Николаев. // УФН 134, 370, 1981.
- [6] A.Bialas, T.Chmaj. // Phys. Lett. B 133, 241, 1983.
- [7] E.L.Berger. // Z. Phys. C 4, 289, 1980.
- [8] A.Bialas, M.Gyulassy. // Nucl. Phys. B 133, 793, 1987.
- [9] B.Z.Kopeliovich. // Phys. Lett. B 243, 141, 1990.
- [10] B.Z.Kopeliovich, J.Nemchic. JINR preprint E2-91-150, 1991.
- B.Z.Kopeliovich, J.Nemchic, E.Predazzi. In: Proceed. of the Workshop on Future Physics at HERA, nucl-th/9607036, DESY, 1996.
- [12] L.S.Osborne et al. // Phys. Rev. Lett. 40, 1624, 1978.
- [13] J.Ashman et al. // Z. Phys. C 52, 1, 1991.
- [14] M.R.Adams et al. // Z. Phys. C 70, 47, 1996.

- [15] W.Burkot et al. // Z.Phys. C 70, 47, 1996.
- [16] A.Airapetian et al. // Eur. Phys. J. C 20, 479, 2001.
- [17] Е.С.Ватага и др. // ЯФ 63, 1660, 2000.
- [18] В.В.Аммосов и др. // ЭЧАЯ 23, 648, 1992.
- [19] А.Э.Асратян и др. // ЯФ 41, 1193, 1985.
- [20] Н.Агабабян и др. Препринт ЕрФИ-1539(9), 1999.
- [21] Н.Агабабян и др. Препринт ЕрФИ-1578(3), 2002.
- [22] D.Zieminska et al. // Phys. Rev. D 27, 47, 1983.
- [23] J.Brunner et al. // Z. Phys. C 45, 361, 1989.
- [24] P.Allen et al. // Nucl. Phys. B 214, 369, 1983.
- [25] D.Allasia et al. // Z. Phys. C 24, 119, 1984.
- [26] A.Casher, H.Neuberger, S.Nussinov. // Phys. Rev. D 20, 179, 1979.
- [27] E.G.Gurvich. // Phys. Lett. 87B, 386, 1979.
- [28] Review of Particle Physics. // Eur. Phys. J. 3, 87, 1998.
- [29] H.De Vries, C.W.De Jager, C.De Vries. At. Data Nucl. Data Tables 36, 495, 1987.

Рукопись поступила 11 июня 2002 года.

Н.М. Агабабян, В.В. Аммосов, М. Атаян и др. Влияние ядерной среды на образование адронов в глубоконеупругом рассеянии нейтрино.

Оригинал-макет подготовлен с помощью системы ІАТ_ЕХ. Редактор Н.В. Ежела Технический редактор Н.В. Орлова Подписано к печати 17.06.2002. Формат 60 × 84/8. Офсетная печать. Печ.л. 1,5. Уч.-изд.л. 1,2. Тираж 130. Заказ 106. Индекс 3649.

ЛР №020498 17.04.97.

ГНЦ РФ Институт физики высоких энергий 142284, Протвино Московской обл.

Индекс 3649

 Π Р Е П Р И Н Т 2002–22, И Φ В Э, 2002