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Abstract

Anselmo F., Maslikov A., Volkov G. Universal Calabi-Yau Algebra: Towards an Unification of Geometry
with SU(n) Holonomy: IHEP Preprint 2002–39. – Protvino, 2002. – p. 22, figs. 9, tables 3, refs.: 12.

We discuss some results in Calabi-Yau universal-gebra suitable for constructing and classifying the
infinite series of the compact complex spaces with SU(n) holonomy. This universal-gebraic approach
includes natural extensions of reflexive weight vectors to higher dimensions. It includes a ‘dual’ construc-
tion based on the Diophantine decomposition of invariant monomials, which provides explicit recurrence
formulae for the numbers of Calabi-Yau spaces in arbitrary dimensions.
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Dedicated to the memories of Maria Volkova and Julia Fadeeva

1. Introduction: an Algebraic Way to Unify Calabi-Yau Geometry

The way to find the correct extension of the Standard Model based on the quantum field

theory and principle of gauge invariance could be considered by taken into account both types of
geometry, compactified and uncompactified spaces with some dualities between them. The com-

pactified spaces and their singularities are responsible for the origin of the internal symmetries
and can naturally explain the principle of the local gauge Young-Mills symmetry. Correspond-
ingly, the uncompactified geometry gives an origin of the external symmetries which are really

exist as the global gauge symmetries, like Lorentz symmetry and also some disrete gauge sym-
metries, like P,T,C unified in CPT-theorem. The advantage of such geometrical approach is

that there should also exist the duality between these two types of of symmetries used in the
SM, the duality between the external and internal symmetries. Thus in such approach one can

naturally overcome the no-go Coleman-Mandula-theorem.
To explain the dynamics of an appearence of electromagnetism was enough to introduce only

one extra dimension with very famous circle topology. In geometry the equivalence between the
U(1) symmetry and circle is very famous fact. To give the geometrical correspondence for YM-

symmetries of the Standard Model, SU(3)×SU(2)×U(1), needs to consider the geometry with
more extra dimensions having more complicated topology. Also this compactified geometry gives
the direct explanation of the principle of local gauge invariance. For this we could consider, for

example, the Calabi-Yau foam-vacuum. The symplest singularity of this vacuum-geometry is
connected with U(1)em local gauge symmetry (U(1)-Coulomb phase). To produce the W,Z -

boson in this geometrical foam-vacuum, needs to produce the singularities corresponding to the
Higgs phase. So the main goal of the studying of the compactified geometry is to understand the

correspondence between the geometrical objects with its singularities and YM symmetries. Of
course, on this way one should understand how singularities can explain when appear Coulomb

or Higgs phases. The foam-vacuum structure should also geometrically explain the principle
of maximal velocity of electromagnetic wave expansion. To solve these questions one should

consider the geometrical objects with some universal properties. One can suggest that the
property of universality is general for all space dimensions. In Riemannian geometry one could

consider such property of n-dimensional compact spaces connected with holonomy symmetry.
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It is already well known that the simplest compactification on the symmetric spaces with
some isometry and corresponding holonomy groups were intensively used to extend the idea of

Kaluza-Klein in the supergravity approach and then in compactification of five superstrings and
M/F -theories. It seems that the symmetric spaces with the corresponding holonomy symmetries

it is better to use for constructing the uncompactified geometry of our world. One can use the
space-expansion cycles of some dimension to construct Cosmology. For example, the standard

cosmology is based on the one three-dimensional cycle S, the evolution of which is determined
by Einstein-Gilbert equation.

The notion of the holonomy group was induced by E.Cartan for classification of all Rie-
mannian locally symmetric spaces. The holonomy group H is one of the main characteristic of
an affine connection on a manifold M . The definition of holonomy group is directly connected

with parallel transport along the piece-smooth path joining two points x ∈M and y ∈M . The
parallel transport for a connected n-dimensional manifold M with Riemannian metric g and

Levi-Civita connection using the connection defines the isometry between the scalar products
on the tangent spaces TxM and TyM at the points x and y. So for any point x ∈ M one can

represent the set of all linear automorphisms of the associated tangent spaces TxM which are
induced by parallel translation along x-based loop.

If a connection is locally symmetric then its holonomy group equals to the local isotropy
subgroup of the isometry groupG. Hence, the holonomy group classification of these connections

is equivalent to the classification of symmetric spaces which was known completely long ago [1].
The full list of symmetric spaces is given by the theory of Lie groups through the homogeneous
spaces M = G/H , where G is a connected group Lie acting transitively on M and H is a closed

connected Lie subgroup of G, what determines the holonomy group of M . Symmetric spaces
have transitive groups of isometries. The known examples of symmetric spaces are Rn, spheres

Sn, CPn etc.
For the first time, in 1955, Berger presented the classification of irreducibly acting matrix

Lie groups occured as the holonomy of a torsion free affine connection [2]. The Berger list of
non-symmetric irreducible Riemannian manifolds with the list of holonomy groups H of M one

can see, for example, in [3] (see the Table 1 and Fig. 1).

Table 1. Some examples of symmetric Riemannian spaces and the list of Berger classification for non-
symmetric Riemannian spaces.

M GISOM HHol DimR metrics

SO(n+ 1)/SO(n) SO(n+ 1) SO(n) n Sn

O(n+ 1)/O(n)xO(1) O(n+ 1) O(n) n RPn

SU (n)/SU (n− 1) SU (n) SU (n− 1) 2n− 1 S2n+1

SU (n)/SU (n− 1)xU (1) SU (n) SU (n− 1)xU (1) 2n− 1 CPn = S2n+1/U (1)

Sp(n)/Sp(n− 1) Sp(n) Sp(n− 1) 4n− 1 S4n+3

Sp(n)/Sp(n− 1)xSp(1) Sp(n) Sp(n− 1)xSp(1) 4n− 1 HPn = S4n+3/Sp(1)

M − general − SO(n) n

Kahler − U (n) ⊂ O(2n) n

Calabi− Y au − SU (n) ⊂ SO(2n) 2n

Hyper −Kahler − Sp(n) ⊂ SO(4n) 4n

quaternion −−Kahler − Sp(n)xSp(1) ⊂ SO(4n) 4n

exceptional − G(2) ⊂ SO(7) 7

exceptional − spin(7) ⊂ SO(8) 8

exceptional − spin(9) ⊂ SO(8) 16
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Fig. 1. The three infinite series of the manifolds in RP n, CP n, HP n with O(n), SU(n), Sp(n) holon-
omy groups and two exceptional cases with holonomy groups, G2 and Spin7.

For H = SO(n) the holonomy principle means that there are not parallel (constant) tensor
fields apart from metric and orientation. The next example H = U(n) ⊂ SO(2n) is preserving

apart from metric the complex structure J on R2n which is parallel (constant) and orthogonal
(J ∈ SO(2n), J2 = −1). These manifolds with holonomy contained in U(n) are Riemannian

manifolds with a complex structure J called as Kähler manifolds.
We will accent here on the infinite series of Calabi-Yau spaces with SU(n) holonomy group [4].

Following Joyce [3] it is better here to define the Calabi-Yau n-folds as a quadruple (M, J, g,Ω)
where (M, J) is a complex compact n-dimensional manifold with complex structure J, g is a

Kähler metrics with SU(n)-holonomy group, and Ω is a non-zero constant (parallel) Ω = (n, 0)-
tensor called by the holomorphic volume form (see Fig. 2).

In principle, it is enough to define the Calabi-Yau n-folds a little shorter i.e. a Calabi-Yau
n-fold is a compact Kähler manifold (M, J, g) of dimension n with SU(n) holonomy group.
And then one can prove for Calabi-Yau n-folds the existence of constant (parallel) holomorphic

Ω = (n, 0) form. More exactly, using the holonomy principle one can choose for each point
x ∈M the complex coordinates (z1, ..., zn) in which
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Fig. 2. The general form of Betti-Hodge diamond defining the infinte series of CY spaces with SU(n)
holonomy. For comparision we give the infinite series of symmetric spaces Sn with SO(n)
holonomy.

g = |dz1|2 + . . . |dzn|2,

ω =
i

2
(dz1Λdz̄1 + . . . + dznΛdz̄n),

Ω = dz1Λ . . .Λdzn, (1)

where the form Ω is unique up to multiplication by exp(iφ) for φ ∈ [0, 2π). The existence of a
parallel form of type (n, 0) means that the cannonical bundle KM := ΩnM is flat. In other words,

the Ricci curvature which for Kähler manifold is just the curvature of KM is equal to zero. Due
to Yau’s proof of the Calabi conjecture one has the following: If (M, J) is a compact complex

n-fold admitting Kähler metrics with trivial cannonical bundle then there exists a unique Ricci-
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flat metrics g for each Kähler class of M and the holonomy group is H = SU(n). We would
like to present the possibility for algebraic solution of this infinite Calabi-Yau series of compact

complex n-folds with SU(n) holonomy (see Fig. 3).

Fig. 3. The genealogical tree for Calabi-Yau n-folds.

2. The Arity-Dimension Structure of Universal Calabi-Yau Algebra
(universal-gebra)

The starting point for our universal-gebraic approach to the classification of Calabi-Yau
spaces has been the construction of ‘reflexive’ weight vectors �k, whose components specify the
complex quasihomogeneous projective spaces CPn(k1, k2, ..., kn+1). These have (n+1) quasiho-

mogeneous coordinates x1, ..., xn+1, which are subject to the following identification:

(x1, . . . , xn+1) ∼ (λk1 · x1, . . . , λkn+1 · xn+1). (2)

In the case of CPn projective spaces there exists a very powerful conjecture, called Chow’s

theorem, that each analytic compact (closed) submanifold in CPn can be specified by a set of
polynomial equations. The set of zeroes of quasihomogeneous polynomial equations, hereafter

referred to as Calabi-Yau equations, define a projective algebraic variety in such a weighted
projective space.

A d-dimensional Calabi-Yau space Xd can be given by the locus of zeroes of a transversal
quasihomogeneous polynomial ℘ of degree deg(℘) = [d] : [d] =

∑n+1
j=1 kj in a complex projective

space CPn(�k) ≡ CPn(k1, ..., kn+1) [5]:

X ≡ X (n−1)(k) ≡ {�x = (x1, ..., xn+1) ∈ CPn(k)|℘(�x) = 0}. (3)
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The general quasihomogeneous polynomial of degree [d] is a linear combination

℘ =
∑

µα

c
µαx

µα (4)

of monomials x
µα = xµ1α1 xµ2α2 ...x
µ(r+1)α
r+1 with the condition:

�µα · �k = [d]. (5)

This algebraic projective variety is irreducible if and only if its polynomial is irreducible. A
hypersurface will be smooth for almost all choices of polynomials. To obtain Calabi-Yau d-folds
one should choose reflexive weight vectors (RWVs), related to Batyrev’s reflexive polyhedra or to

the set of IMs. Other examples of compact complex manifolds can be obtained as the complete
intersections (CICY) of such quasihomogeneous polynomial constraints:

X
(n−r)
CICY = {�x = (x1, . . .xn+1) ∈ CPn |℘1(�x) = . . . = ℘r(�x) = 0}, (6)

where each polynomial ℘i is determined by some weight vector �ki, i = 1, . . . , r.
A useful technique for constructing Calabi-Yau spaces in any number of dimensions is to

visualize the various possible monomials (xµ11 xµ22 ...xµn+1n )α as the mα = (µ1, ..., µn+1)α points
in the Zn+1 integer lattice of an n-dimensional polyhedron. Using this technique, Batyrev [6]

demonstrated how to associate by explicit construction a mirror polyhedron to each Calabi-Yau
space. This approach also established in a very elegant way the corresponding mirror duality

among Calabi-Yau spaces.
The Universal Calabi-Yau Algebra (UCYA) structure of reflexive weight vectors in different

dimensions depends on two integer parameters: the ‘arity’ r of the combination operation ωr,
and the dimension n of the reflexive weight vectors (RWVs), that are connected one-to-one

with Batyrev’s reflexive polyhedra. These weight-vectors could be classified using the natural
extensions of lower-dimensional vectors and their combination via binary, etc., operations (see
Fig. 4). The innovation is the introduction of a complementary universal-gebraic approach

to the construction of Calabi-Yau spaces, based on the construction of suitable monomials
�µ obeying the ‘duality’ condition: �k · �µα = d. This construction supplements the previous

geometrical method related to Batyrev polyhedra, and enables one to calculate the numbers of
eldest vectors, and hence chains, in arbitrary dimensions. We verify explicitly that the eldest

vectors found in the two different ways agree in several instances for both CY3 and CY4 spaces,
providing increased confidence in our results. The study of the Calabi-Yau equations and the

associated hypersurfaces via the remarkable composite properties of IMs provides an alternative
algebraic route to reflexive polyhedron techniques. Central rôles are played in our approach by

the composite structures in lower dimensions ≤ (d−1) of CY d-folds, and the algebraically dual
ways of expansions using weight vectors �k and invariant monomials (IMs). By analogy with the

Galois normal extension of fields, we term the first way of expanding weight vectors a normal
extension, and the dual decomposition in terms of IMs we call the Diophantine expansion.
These two expansion techniques are consistently combined in our universal-gebraic approach,

whose composition rules exhibit explicitly the internal structure of the Calabi-Yau universal-
gebra. Our method is closely connected to the well-known Cartan method for constructing Lie

algebras, and reveal various structural relationships between the sets of Calabi-Yau spaces of
different dimensions. We interpret our approach as revealing a ‘Universal Calabi-Yau Algebra’

(universal-gebra) [7] for the following reasons: ‘Universal’ because it may, in principle, be
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Fig. 4. The arity-dimension plot, showing the numbers of eldest vectors/chains obtained by normal
extensions of RWVs, including previous results for CY3 and lower-dimensional spaces, and new
results for CY4 and CY5 spaces.

used to generate all Calabi-Yau manifolds of any dimension with all possible substructures, and
‘Algebra’ (n-gebra) because it is based on a sequence of binary and higher n-ary operations on

weight vectors and monomials. We should stress that in this construction the n-ary composition
does not reduce to the (n− 1)-,...,2-ary composition rules.

Our objective is to construct an universal-gebra [7] acting on the set of reflexive weight
vectors in all dimensions, An ≡ {RWV(n)}, and the corresponding set of invariant monomials,

{IMs(n)}, which is ‘dual’ to An in the sense of (5). We note that the number of IMs is much
less the full set of monomials �mα : 1 ≤ α ≤ αmax which determine the Calabi-Yau equation.
Through the IMs one can determine the highest vectors of the chains and also the full list of

weight vectors in the corresponding chain. To see this, we start from the unit IM in some
dimension n and then, via a Diophantine expansion, can go on to determine the conic IMs, the

cubic IMs, the quartic IMs, etc.. Similarly, one can continue this process of studying the set of
IMs via the Diophantine expansions of conic IMs, of cubic IMs, etc..
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The RWVs and IMs provide independent routes for constructing explicitly Calabi-Yau spaces
of arbitrary dimension (including CICYs). The resulting UCYA structure of RWVs in different

dimensions depends on two integer parameters, including the ‘arity’ r defined below, as well as
the dimension n. An overview in the (n, r) plane is shown in Fig. 4, where the entries A(r)n label

the types of possible eldest vectors, corresponding to ‘chains’ of related Calabi-Yau spaces.
The algebraic-geometry realization [5,8] of Coxeter-Dynkin diagrams provides a general char-

acterization of the possible structures in singular limits of Calabi-Yau hypersurfaces. Thus, a
deeper understanding of the origins of gauge invariance provides an additional motivation for

studying string vacua via our unification of the complex geometry of d = 1 elliptic curves, com-
plex tori, K3 manifolds, CY3, CY4, etc. This point is illustrated in Fig. 5, where the points on
the the first three sloping lines, labelled Ar (red), Dr (green) and E (blue), correspond to those

d-folds that are characterized by the ‘maximal’ quotient A,D, E singularities, respectively1. As
we discuss later in more detail, this characterization of the types of singularities is directly con-

nected to the degrees of the associated monomials - linear, conics, cubics, quartics, etc., that
appear along the corresponding sloping lines.

3. Some Results

We have presented a Universal Calabi-Yau Algebra (UCYA) which provides a two-parameter

classification of CY − d spaces in terms of arity and dimension. This universal-gebra is based
on the following ingredients:

• Universal composition rules

• Normal expansions and Diophantine decompositions
• Mirror symmetry
• McKay and UCYA- correspondences

• Singularities and link with Cartan-Lie algebras

We have shown that this universal-gebraic approach leads us to a natural formalism for a unified
description of complex geometry in all dimensions, including K3 spaces and Calabi-Yau d-folds

for any d.
Our construction of a Universal Calabi-Yau algebra (UCYA) is based on the two integer

parameters, arity and the dimension of the reflexive weight vectors (RWVs). We discussed pre-
viously how these could be classified using the natural extensions of lower-dimensional vectors

and their combination via binary, ternary, etc., operations. It was the reason why it is better to
call this structure by universal-gebra. The main innovation in this paper is the introduction of

a complementary universal-gebraic approach to the construction of Calabi-Yau spaces, based on
the construction of suitable monomials �µ obeying the ‘duality’ condition: �k · �µα = d. This ‘dual’
approach is based on suitable decompositions of invariant monomials (IMs) of given dimension-

ality, yielding eldest vectors that could only be obtained by higher-order n-ary operations in the
previous approach. This construction supplements the previous geometrical method related to

Batyrev polyhedra, and enables one to calculate the numbers of eldest vectors, and hence chains,
in arbitrary dimensions. We verify explicitly that the eldest vectors found in the two different

ways agree in several instances for both CY3 and CY4 spaces, providing increased confidence in
our results.

1To be more precise, the D line includes also A-type singularities, and the E line includes also D-type and
A-type singularities.
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Fig. 5. The arity-dimension plot illustrating the composite structure from the types of the extended
weight-vectors for the all slope-lines.

The study of the Calabi-Yau equations and the associated hypersurfaces via the remarkable
composite properties of IMs provides an alternative algebraic route to reflexive polyhedron

techniques. We recall that the arity-dimension parameter structure is directly connected to
the singularity properties of Calabi-Yau hypersurfaces, and thereby to the types of Cartan-Lie

algebras. Using these remarkable properties one can hope to decypher the Calabi-Yau genome
in any dimension.

Since the description of the UCYA is based on structures with two integer parameters, the

arity and dimension of the reflexive weight vectors (RWVs), we have classified the structures of
CYd spaces along the diagonal Ar, Dr, Er, ... lines in this plane. In this article we have studied

only the d-folds along the first three lines, presenting new results for low d and some recurrence
formulae valid for all d.
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As an alternative to the Batyrev reflexive polyhedron method, we have proposed a new
description of CYd spaces based on the structures of the set of invariant monomials (IMs). We

have shown that the IM approach, which is based on Diophantine decompositions, is a valuable
alternative to the normal RWV expansion approach. We have demonstrated this by comparing

the results of both approaches for the first three diagonal lines, Ar, Dr and Er, in the arity-
dimension plot for CY3, CY4 cases.

We have shown that recurrence relations for conic, cubic and quartic monomials give us the
formulae for the numbers of IMs in arbitrary dimensions. This was illustrated in three cases,

for CYd spaces with {10}∆, {9}∆ and {7}∆fibres. This confirms that, in the framework of the
UCYA, the Calabi-Yau ‘genome’ can in principle be solved completely.

As an example of the extension procedure in the case of K3 manifolds, we classified [9] the

95 different possible weight vectors �k in 22 binary chains generated by pairs of extended vectors,
which included 90 of the total, and 4 ternary chains generated by triplets of extended vectors,

which yielded 91 weight vectors of which 4 were not included in the binary chains. The one
remaining K3 weight vector was found in a quaternary chain [9]. This algebraic construction

provides a convenient way of generating all the K3 weight vectors, and arranging them in chains
of related vectors whose overlaps yield further indirect relationships.

Moreover, our construction builds higher-dimensional Calabi-Yau spaces systematically out
of lower-dimensional ones, enabling us to enumerate explicitly their fibrations. As examples,

we showed previously [9,10] how our construction reveals elliptic and K3 fibrations of CY3
manifolds. Our approach may also be used to obtain the projective weight vector structure of a
mirror manifold, starting from those of a given Calabi-Yau manifold.

Table 2. The invariant monomials (linear and quadratic) for the (1)+(11) RWVs extended to Weier-
strass, K3, CY3 and CY4 spaces, corresponding to the Dr line on the arity-dimension Fig. 4.
In the case of the Ar line, there can be only linear invariant monomials.

P L W K3 K3 Qu in tic Se x t ic

(1) (11) (111) (1111) (11111) (111111)

(20) (200) (2000) (20000) (200000)
(210) (2100) (2110) (21000) (21100) (21110) (210000) (211000) (211100) (211110)
(220) (2200) (2210) (22000) (22100) (22110) (220000) (221000) (221100) (221110)

(2220) (22200) (22210) (222000) (222100) (222110)
(22220) (222200) (222210)

(222220)

We first explain the mechanism of Diophantine expansion for the invariant unit monomials
En = (1, ..., 1)n, which is relevant for the CYd spaces with substructures corresponding to the

second Dr line with arity r = (n− 1) in Fig. 5.
Due to our universal-gebraic description the second slope Dr line is connected to the almost

trivial substructure of CYd, i.e. to those CYd having “circles” or whose reflexive polyhedra have
line-reflexive polyhedra. This structure is determined by conics monomials which we can find

through the Diophantine expansion of unit monom to the two conics, C1 and C2. For illustration
we can give also here the table of conics monoms, which before we gave in the long last article [9].

Let us remind that first Ar-line is determined by unit monoms En = (1, ..., ) The structure of
the CYd on the next third Er-line already will be determined by cubics and quartics IM and etc.
(see Fig. 5).

We can determine all the possible conic IMs for this line, starting from the unit monomial
En and two conic monomials, Ci(n) and Cj(n). These monomials should satisfy the following

Diophantine property:

10



1

2
(Ci(n) +Cj(n)) = En, (7)

where the index n notes the dimension being considered. This Diophantine expansion yields the

following numbers of possible different types of conic monomials in any dimension n,

Nconics =
(n)(n− 1)

2
. (8)

In order to enumerate the IMs and the corresponding chains of Calabi-Yau spaces, one starts

from all possible pairs of conic monomials with the required Diophantine property, r = (n− 1),
and solves the following equations:

�ki(ex) · C1(n) = �ki(ex) ·En = d(�ki(ex)). (9)

To give sense to these equations and, consequently, to evaluate the finite numbers of chains and
their eldest vectors in the case of arity r = (n− 1), we first recall that, in the UCYA, the points
on this line in the arity-dimension plane are determined by n-dimensional extensions of the two

eldest vectors �k1 = (1) and �k2 = (1, 1). This means that the possible values of d(�ki(ex)) in these
equations are only 1 and Also, the components of the extended vectors can only be 0 and 1.

Due our algebra this second slope-line is determined only by extension of the weight vectors (1)
and (1,1). So their dimensions can be only 1 or 2, respectively.

It is then simple to verify the following recurrence formula for the numbers of chains along
this line:

Nchains = k · (k + 1), if n = (2k+ 1),

Nchains = k2, if n = (2k). (10)

Thus, along the line r = (n − 1), the numbers of the eldest vectors and chains in dimensions

n = 2, 3, 4, ... are the following: 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81,
90, 100, 110, 121, 132, 144, .... Thus, if n=2, k=1—- Nchains = k2 = 1, then for n=3 k=1,

but Nchains = k · (k + 1) = 2. similarly, for n=4, k=2 and the corresponding formula is
Nchains = k2 = 4, for CY3 n=5 and k=2, Nchains = k · (k + 1) = 6 etc.

Extending our previous approach to the third line in Fig. 5, the first step is to enumerate
the cubic and quartic monomials, from which we can find all the IMs along this Er line.

The appearance of cubic monomials is connected with the following new Diophantine con-

dition for the expansion of the unit monomials En of the Ar line:

En �→ {P1, P2, P3|
1

3
(P1 + P2 + P3) = En}. (11)

However, the set of appropriate cubic monomials is somewhat more restricted. Similarly, the
appearance of quartic monomials is connected with the possible Diophantine expansion of the

conic monomials Ci(n) of the second Dr line:

Ci(n) �→ {P1, P2|
1

2
(P1 + P2) = Ci(n)}. (12)

We would like explain the structure of all IMs through the compostion structure and here
and everywhere we use the Diophantine mechanism for appearence of all higher dimension IM

through the IM of the lower dimensions.
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Table 3. The invariant monomials (cubics and quartics) for the five weight
vectors (1)+(11)+(111)+(112)+(123), extended to Weierstrass, K3, CY3 and CY4 spaces,
corresponding to the Er line on the arity-dimension plot Fig. 4.

W K3 K3 N Quin ti c N Se xt i c N

(300) (3000) 1 (30000) 1 (300000) 1
(310) (3100) (3110) 2 (31000) (31100) (31110) 3 (310000) (311000) (311100) (311110) 4

(3200) (3210) (32000) (32100) (32110) (320000) (321000) (321100) (321110)
(32200) (32210) (322000) (322100) (322110)

2 5 (322200) (322210) 9
(3300) (3310) (33000) (33100) (33110) (330000) (331000) (331100) (331110)

(33200) (33210) (332000) (332100) (332110)
(332200) (332210)

(33300) (33310) (333000) (333100) (333110)
(333200) (333210)

2 7 (333300) (333310) 16

(400) (4000) 1 (40000) 1 (400000) 1
(4100) (4110) 2 (41000) (41100) (41110) 3 (410000) (411000) (411100) (411110) 4
(4200) (4210) (42000) (42100) (42110) (420000) (421000) (421100) (421110)

(42200) (42210) (422000) (422100) (422110)
2 5 (422200) (422210) 9

(4300) (4310) (43000) (43100) (43110) (430000) (431000) (431100) (431110)
(43200) (43210) (432000) (432100) (432110)

(432200) (432210)
(43300) (43310) (433000) (433100) (433110)

(433200) (433210)
2 7 (433300) (433310) 16

(4400) (4410) (44000) (44100) (44110) (440000) (441000) (441100) (441110)
(44200) (44210) (442000) (442100) (442110)

(442200) (422210)
(44300) (44310) (443000) (443100) (443110)

(443200) (443210)
(433300) (433310)

(44400) (44410) (444000) (444100) (444110)
(444200) (444210)
(444300) (444310)

2 9 (444400) (444410) 25

As shown in Fig. 6, there are recurrence formulae for the numbers of IMs in any dimension,

which are obvious for the leading (red and green) lines in the arity-dimension plane. The
resulting expressions for the numbers of cubic and quartic monomials are, respectively:

Ncubics =
1

6
(n− 2)(n− 1)(n+ 3),

Nquartics =
1

24
(n− 2)(n− 1)(n)(n+ 5). (13)

There are remarkable links between the numbers of conics, cubics and quartics. For example, to
obtain the number of quartics in dimension n, one should sum over all the cubics in dimensions

3, 4, ..., n, i.e., N
(n)
Quart =

∑i=n
i=3N

(i)
Cub. Thus, as seen in Fig. 6, the number 105 of quartic monomials

in the septic Calabi-Yau case can be represented as follows: 2dim=3+7dim=4+16dim=5+30dim=6+

50dim=7.

12



1 1 1 1 1 1 1

5 1492 20 27 35 44 54 65

1 1

3 42 5 6 7 8 9 10 11

4 5 6 7 8 9 10 11 12

1

2 9 25 55 105 182 294 450 660

7 16 30 50 77 112 210 275156

3

2

935

CUBIC

QUARTIC

dimension

CONICS   

( + 1 )

Fig. 6. Lattice illustrating recurrence relations for the numbers of conic, cubic and quartic monomials.

Based on Fig. 6, one can convince oneself that there also exist n-dimensional recurrence

formulae for the numbers of IMs along other diagonal lines in any dimension, as we have found
for the first two lines on the arity-dimension plot in Fig. 4. However, the situation can become

complicated, because, in the construction of the cubic and quartic IMs, one must also take into
account conic and conic + cubic monomials, respectively. In the case of Calabi-Yau spaces with

Weierstrass fibres, it is also important to know the list of sextic monomials. In Weierstrass case
there should always appear six degree monomial which is not IM. We would like to note that

to deduce the recurrence it is much easier to look for not for the reccurence of three cubics IMs
(or two quartics and one conics IMs) with Diophantine condition but only for the form of one

sectic monomial. And actually, to find this recurrence one can use the recurrence of such sextic
monoms. Therefore, we firstly give the recurrence for the sextic monomials:

Cn−3n+2 =
(n+ 2)!

(n− 3)!5!
, (14)

where n ≥ 3 is the dimension of the weight-vector space. Using this formula for the sextic

monomials we obtain the following expression for the number of Weierstrass IMs, {3} and {4}:

N7∆(n) = NW (n) = Cn−3n+3 =
(n+ 3)!

(6!)(n− 3)!
, (15)

valid for all dimensions.

One can see from the Fig. 6 and the corresponding tables that the IMs determine completely
the fibration structures of the 22 K3 chains:
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{IM}4 �→
(
1 · {4}∆

)
+

(
2 · {10}∆

)

+

(
2 · {5}∆ + 1 · {5}�

)

+

(
4 · {9}∆ + 2 · {9}�

)

+

(
7 · {7}∆ + 1 · {7}�

)

+

(
1 · {6}�

)
+

(
1 · {8}�

)

�→ {22}. (16)

This expansion in terms of fibration structures is very helpful for extending these K3 results
to more general CYd spaces, via recurrence relations. As we show later, each of the terms

{10, 4, ...}∆,�,... in the expansion has its own recurrence relation, of which we later derive several
examples, indicated in bold script: 2 · {10}∆, etc., providing complete results in any number of

dimensions for the numbers of CYd spaces with these particular fibrations. A similar recurrence
formula could be derived for any analogous fibration.

There are fixed types and numbers of IMs which determine the structures of the full 259
(irreducible 161) chains, and they are similar to those we already indicated for the K3 case, as

seen, for example, in the following Fig. 6.

{IM}5 �→
(
9 · {4}∆ + 4 · {10}∆

)

+

(
16 · {5}∆ + 5 · {5}� + 1 · {5}�′

)

+

(
11 · {9}∆ + 5 · {9}� + 1 · {9}�′

)

+

(
28 · {7}∆ + 7 · {7}� + 1 · {7}Quint

)

+

(
8 · {6}� + 1 · {6}Quint

)

+

(
6 · {8}� + 1 · {8}Quint

)

�→ {161}. (17)

A further reduction in the number of chains has to be considered, from the 5,607 6-

dimensional 4-vector chains to 2111 independent chains. We have already mentioned that there
are different types of IMs even among the cubics {3} and quartics {4}, and the number of dif-

ferent conics grows monotonically with increasing dimension n. We have also already remarked
that there exists a recurrence formula for all types of IMs with arbitrary dimension n, and have
already discussed the reccurences of the Weierstrass IMs {3W} and {4W}. The possible types of
cubic {3}, quartic {4} and double conic IMs which describe the 2111 irreducible CY3 chains have
different structures, corresponding to the different types of intersections, that we can illustrate

by the following expression:
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{IM}6 �→
(
37 · {4}∆ + 7 · {10}∆

)

+

(
66 · {5}∆ + 27 · {5}� + 6 · {5}�′

)

+

(
24 · {9}∆ + 11 · {9}� + 5 · {9}�′

)

+

(
84 · {7}∆ + 28 · {7}� + 5 · {7}Quint+ 1 · {7}Sixt

)

+

(
36 · {6}� + 5 · {6}Quint

)

+

(
21 · {8}� + 5 · {8}Quint

)

�→ {2111}. (18)

The recurrence relation for Calabi-Yau spaces with elliptic fibres {10}∆ can be extended to
the cases of CYd spaces withK3 fibres, described by �k4 = (1, 1, 1, 1)[4], whose algebraic equation

includes the 35-point monomial and its mirror with 5 points. The IM4 for thisK3 space contains
the four quartic monomials P1, P2, P3, P4 obeying the Diophantine equation: (P1 + P2 + P3 +

P4)/4 = E4. These monomials have in addition one very important condition: Pi − Pj should
be divisible by 4 for each choice of i, j = 1, 2, 3, 4, i �= j. The types of different n-dimensional

{IM}4, describing the CYd : n = d+ 2 ≥ 4 spaces with {35}∆ fibres are constructed only from
the numbers 4 and 0. The number 1 will play an additional role. Therefore, similarly to the

case of the third Er line, the recurrence formulae for these IMs will be determined from the
expansions of positive integer numbers in terms of four positive integers, i.e., (see Fig. 7).
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Fig. 7. The numbers of recurrences of Calabi-Yau hypersurfaces with a (1, ..., 1)n fibre are calculable
along all lines n = r + p− 1 in the arity-dimension plot.
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The recurrence formula for Calabi-Yau spaces with elliptic fibres {10}∆ can be extended to
the cases of CYd spaces withK3 fibres, described by �k4 = (1, 1, 1, 1)[4], whose algebraic equation

includes the 35-point monomial and its mirror with 5 points. The IM4 for thisK3 space contains
the four quartic monomials P1, P2, P3, P4 obeying the Diophantine equation: (P1 + P2 + P3 +

P4)/4 = E4. These monomials have in addition one very important condition: Pi − Pj should
be divisible by 4 for each choice of i, j = 1, 2, 3, 4, i �= j. The types of different n-dimensional
{IM}4, describing the CYd : n = d+ 2 ≥ 4 spaces with such {35}∆ fibres are constructed only

from the numbers 4, 1 and 0. Therefore, similarly to the case of the third Er line, the recurrence
formulae for these IMs will be determined from the expansions of positive integer numbers in

terms of four positive integers, as illustrated in Fig. 7.

K3− line

n = 4(4) = 1 + 1 + 1 + 1

n = 5(4) = 2 + 1 + 1 + 1

N (5) = 2

........................

n = 6(4) = 3 + 1 + 1 + 1 = 2+ 2 + 1 + 1

N (6) = N (5) + 2 = 4

........................

n = 7(4) = 4 + 1 + 1 + 1 = 3+ 2 + 1 + 1 = 2 + 2 + 2 + 1

N (7) = N (6) + 3 = 7

........................

n = 8(4) = 5 + 1 + 1 + 1 = 4+ 2 + 1 + 1 = 3 + 3 + 1 + 1 =

= 3 + 2 + 2 + 1 = 2+ 2 + 2 + 2

N (8) = N (7) + 5 = 12

........................

n = 9(4) = 6 + 1 + 1 + 1 = 5+ 2 + 1 + 1 = 4 + 3 + 1 + 1 =

= 4 + 2 + 2 + 1 = 3+ 3 + 2 + 1 = 3 + 2 + 2 + 2

N (9) = N (8) + 6 = 18

........................

n = 10(4) = 7 + 1 + 1 + 1 = 6+ 2 + 1 + 1 = 5 + 3 + 1 + 1 = 5 + 2 + 2+ 1 =

= 4 + 4 + 1 + 1 = 4+ 3 + 2 + 1 = 3 + 3 + 3 + 1 = 3 + 3 + 2+ 2

N (10) = N (9) + 8 = 26

........................

n = 11(4) = 8 + 1 + 1 + 1 = 7+ 2 + 1 + 1 = 6 + 3 + 1 + 1 = 6 + 2 + 2+ 1 =

= 5 + 4 + 1 + 1 = 5+ 3 + 2 + 1 = 5 + 2 + 2 + 2 = 4 + 4 + 2+ 1

= 4 + 3 + 3 + 1 = 4+ 3 + 2 + 2 = 3 + 3 + 3 + 2

N (11) = N (10) + 11 = 37

........................

(19)
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Similarly, this example can be extended to CY4 (CYd) spaces with a CY3 (CYd−1) fibre
described by the RWV �k5 = (1, 1, 1, 1, 1)[5] (�kn = (1, ..., 1)n):

CY3 − line

n = 5(5) = 1 + 1 + 1 + 1 + 1

n = 6(5) = 2 + 1 + 1 + 1 + 1

N (6) = 2

........................

n = 7(5) = 3 + 1 + 1 + 1 + 1 = 2+ 2 + 1 + 1 + 1

N (7) = N (6) + 2 = 4

........................

n = 8(5) = 4 + 1 + 1 + 1 + 1 = 3+ 2 + 1 + 1 + 1 = 2 + 2 + 2+ 1 + 1

N (8) = N (7) + 3 = 7

........................

n = 9(5) = 5 + 1 + 1 + 1 + 1 = 4+ 2 + 1 + 1 + 1 = 3 + 3 + 1+ 1 + 1

= 3 + 2 + 2 + 1 + 1 = 2+ 2 + 2 + 2 + 1

N (9) = N (8) + 5 = 12

........................

n = 10(5) = 6 + 1 + 1 + 1 + 1 = 5+ 2 + 1 + 1 + 1 = 4 + 3 + 1+ 1 + 1

= 4 + 2 + 2 + 1 + 1 = 3+ 3 + 2 + 1 + 1 = 3 + 2 + 2+ 2 + 1 = 2+ 2 + 2 + 2 + 2

N (10) = N (9) + 7 = 19

........................

n = 11(5) = 7 + 1 + 1 + 1 + 1 = 6+ 2 + 1 + 1 + 1 = 5 + 3 + 1+ 1 + 1

= 5 + 2 + 2 + 1 + 1 = 4+ 4 + 1 + 1 + 1 = 4 + 3 + 2+ 1 + 1 = 4+ 2 + 2 + 2 + 1

= 3 + 3 + 3 + 1 + 1 = 3+ 3 + 2 + 2 + 1 = 3 + 2 + 2+ 2 + 2

N (11) = N (10) + 10 = 29

........................

(20)

The same approach can clearly be extended to establish the numbers of any other desired

IMs. Indeed, for each slope line there is a recurrence formula of the type

N...∆(n) = N...∆(n− 1) + n(p), (21)

where p is the number of the sloping line, and N...∆(nmin) = 2, nmin ≥ 3, enabling one to
establish the numbers of any other desired IMs with fibre (1, ..., 1)n.

We can also consider some other examples of CYd on the fourth K3-line with given inter-

section ( actually fibre is determined through the mirror manifold). For example, consider the
intersection which is determined by �k = (1, 1, 4, 6)[12]. We should stress that all these CYd
can be constructed through the Diophantine expansion of unit monomials En = (1, ..., 1) →
{P1, P2, P3, P4|1/4(P1+ P2 + P3 + P4) = En}, where n=d+2. Also they can be got through the

Diophantine expansion of conics monomial of the second slope-line C2 = (2, 2, ..., 2, 0), where
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C1 = (0, ..., 0, 2). This expansion is the following: C2 → {P1, P2, P3|1/3(P1 + P2 + P3) = C2}.
And at last all these CYd can be got through the Diophantine expansion of the cubics or quar-

tics monomials of the third Er line. The corresponding Diophantine expansion on the last stage
is: (Cub) → {P1, P2|1/2(P1 + P2) = (Cub)}. These results can be easily seen from the list of

monomials corresponding to the reflexive weight-vector �k = (1, 1, 4, 6)[12]. The list of possible
such CYd can be determined similarly how it was determined the list of CYd with Weierstrass
fibre. There is only one discreapence, that instead of sextic monomials we should take the IMs

of twelve degree, i.e. the degree of such monomials with respect to one fixed variable should be
of the 12-th degree. Taking into account the list of possible such monomials the corresponding

formula for CYd with the (1,1,4,6)[12]- intersection will be the next:

N39∆(n) = Cn−4n+3 =
(n+ 3)!

(7!)(n− 4)!
, (22)

where n ≥ 5 and the number (39) corresponds to the all possible monommials of such intersec-

tion.
At last we note [9] that the lattice structure of theK3 projective vectors obtained by a binary

construction exhibits a very interesting UCYA-correspondence between the Dynkin diagrams for
Cartan-Lie groups in the A,D series and E6,7,8 and particular reflexive weight vectors (see also
Fig. 8):

�k1 = (1) ↔ Ar;

�k2 = (1, 1) ↔ Dr;

�k3 = (1, 1, 1) ↔ E6;

�k3 = (1, 1, 2) ↔ E7;

�k3 = (1, 2, 3) ↔ E8. (23)

This appearance in Calabi-Yau geometry of the A,D and E series of Cartan-Lie algebras is

connected [9] with specific quotient singular structures of considered geometry like as Kleinian-
Du-Val singularities C2/Zn.

For example, resolving the C2/Zn singularity gives for rational, i.e., genus zero, (-2)-curves
an intersection matrix that coincides with the An−1 Cartan matrix. For a general form of the

C2/G singularity, one can see [5]
One can try to explain this problem better reffering at the McKay correspondence [11]. So

for G = SL(2, C) a finite group, the quotient variety X/C2/G is called a Klein-Du-Val quotient
singularity. The minimal resolution of such singularities Y → X has been well studied by Klein

and Du Val later for the cases of subgroup G which are classified as cyclic, binary dihedral
or binary group corresponding to one of the platonic solids, tetrahedron, cub-octahedron, and

icosahedron-dodecahedron.
The quotient singularity can be defined as a hypersurface X ⊂ C3 describing equation of

known functions. The resolution φ : Y → X is a surface Y with KY = φ∗KX. The exceptional

locus φ−1(0) ⊂ Y of the resolution consists of a set of rational (-2)-curves Ei, where Ei is a
sphere, or Ei ≈ CP 1 and with its selfintersection i E2i = −2. The intersections EiEk are given
by one of the Coxeter-Dynkin diagrams, An, Dn, E6, E7, E8.

Let consider the following space C2/Z2 and embedd its into C3. Consider the hypersurface

given by f(x0, x1, x2) = x0x1−x22 = 0. This hypersurfaces is smooth if and only if f = ∂f/∂xi =

18



rD

E

E

E

A
1

1

1

1

r

6

7
1

8

A r
1

icosahedral

k L R k

icosahed

octahedr

tetrahed

dihedral

cyclic

G

D

6E

7E

8E

1

1

1

r
1

n

cyclic

octahedral

tetrahedral

G

dihedral

(0,0,0,1)

(0,0,1,1)

(0,1,1,1)

(0,1,1,2)

(0,1,2,3)

3

(0,0,0,1)

(0,0,1,1)

(0,1,1,1)

(0,1,1,2)

(0,1,2,3)

ext ext

3
σ

Fig. 8. The K3 polyhedron determined by the reflexive weight vector �k4 = (1, 1, 3, 4)[9], which illustrates
the appearance of Coxeter-Dynkin diagrams. The intersection σ is determined by 7 point mono-
mials that correspond to the elliptic fibre {7}∆, and divides the polyhedron into 7(+ 3) points on
the left and 9(+7) on the right. These reproduce the Coxeter-Dynkin diagrams for affine E6 and
E8, respectively. Underneath, we also show schematically the general nature of the highest-weight
vectors obtained by arity-2 construction in the UCYA, displaying the one-to-one link between the
5-dimensional weight vectors and the ADE series of Cartan-Lie algebra in K3 hypersurfaces.
The rôles of the discrete symmetry groups were discussed in [9].

0 (i=0,1,2) has no solution. So f has only one singularity at the origin x0 = x1 = x2 = 0. One
can parametrize f = 0 by putting x0 = u2, x1 = v2, x2 = uv. One can see immediately that
the points (u, v) and (−u,−v) are the same. Thus f = 0 in C3 is really the orbifold C2/Z2,

and x0, x1, x2 can be considered as Z2 invariant polynomials. Similarly, one can consider the
singularity C2/Zn in C3 space.

Also, similarly, one can consider the example for resolution of the singular varietyX = C2/G

where G is the dihedral group BD8 [11]. The minimal resolution Y → X withKY = KX = 0 can

be built from McKay correspondence considering the conjugacy classes of groupG = BD8. After
identifying the equal and conjugate group elements one can get the McKay graph coinciding with

Dynkin D4 diagram (see Fig. 9).
Similarly, the McKay correspondence can help us to find resolution of singularities making

by the binary tetrahedral, binary octahedral and binary icosahedral finite groups and leading
to the E6, E7 and E8 Dynkin diagrams, respectively. The McKay correspondence was also well
understood for G ⊂ SL(3, C) and X = C3/G the quotient space, an affine variety with KX = 0.
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BINARY DIHEDRAL      G  = BD 8 4
singularity  resolutionD

0

0

i

− i 0−1

10
A = B = SL(2,C)

D
4

A  =  B  =   (AB)  = −1
2

Relations :
2 2

B ~  B
3

A ~  A
3

AB  ~  AB
3

GConjugacy in :

3−cyclic subgroups

32
A A

< A >:

A

< B >:
B B B

32

2
AB AB AB

3

< A B >:

−1A B

AB

Fig. 9. The D4-structure of McKay-Quiver = Dynkin diagram for the quotient C2/BD8.

Any discrete subgroup of holonomy group SU(2) can be projected into a subgroup of SO(3),
and thus can be related to the finite symmetry classification of three-dimensional space. Thus,

resolving the orbifold singularities yields a beautiful interrelation between the classification of
finite group rotations in three-space and the ADE classification of Cartan-Lie algebras. Corre-

spondingly, due these singularities in UCYA one can see that the CYn- polyhedra with (n ≥ 3)
can be also constructed from n-copies of Coxeter-Dynkin diagrams. But there is standing new

interesting question to understand the list of quotient singularities for CY3, connected with the
finite subgroups of SU(3)-holonomy [11].

4. Discussion

We would like to say that the basic ideas of UCYA are connected with the n-gebra. Therefore

it will be interesting to compare UCYA to theory of operads [12]. The notion of operad was
connected to the idea of substition: given r functions F1, . . . , Fr of n1, ..., nr variables and a given
function Gr in r-variables to yield a function Hn of {n = n1 + . . . nr} variables
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Hn(x1, . . . , xn) = gr(F1(x1, . . . , xn1), . . . , Fnr(xnj , . . . , xn)) (24)

with j = 1 +
∑i=n−1
i=1 ni. The operad is intended tp build a system of such functions and

substitions(extensions). The operad consisys of the of a sequence P (0), P (1), . . . of objects and

for every r-tuple (n1, ..., nr) of a natural numbers n1, ..., nr ≥ 0 there is a structure morphism

γ : P (r)⊗ P (n1)⊗ . . . P (n1)⊗ P (nr) �→ P (n1 + . . .+ nr). (25)

Here the ⊗ denotes the symmetric monoidal structure. Operads are more important of their
representations. There is a unit element P (1). P (2) encodes a binary operations on X. and

P(3) is for ternary operations etc. In UCYA all ni = 1 and the extension is going step by step
depending on the arity r.
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