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Abstract

Arkhipov A.A. Harmony of the Froissart Theorem in Fundamental Dynamics of Particles and Nuclei:
IHEP Preprint 2002-42. – Protvino, 2002. – p. 21, figs. 4, refs.: 24.

It has been shown that the great ancient Pythagorean ideas have found themselves in the latest
researches in high energy elementary particles and nuclear physics. In this respect we concern and
discuss the mathematical, physical and geometrical aspects of the famous Froissart theorem and in this
way one establishes a link of this theorem to the mathematics and ideas elaborated in the Pythagorean
school. A harmony of the Froissart theorem in fundamental dynamics of particles and nuclei has been
displayed. We argue that a harmony of the Froissart theorem allow us to hear the new notes of “the
music of the spheres” just in the Pythagoreans sense.

aNNOTACIQ

aRHIPOW a.a. gARMONIQ TEOREMY fRUASSARA W FUNDAMENTALXNOJ DINAMIKE ˆASTIC I QDER: pREPRINT

ifw— 2002-42. – pROTWINO, 2002. – 21 S., 4 RIS., BIBLIOGR.: 24.

w RABOTE OBSUVDAETSQ PROQWLENIE pIFAGOROWYH GARMONIˆESKIH STRUKTUR W DINAMIKE ˆASTIC I

QDER WYSOKIH “NERGIJ. aNALIZ MATEMATIˆESKIH, FIZIˆESKIH I GEOMETRIˆESKIH ASPEKTOW IZWESTNOJ

TEOREMY fRUASSARA POZWOLIL NAM USTANOWITX GLUBOKIE SWQZI “TOJ TEOREMY S IDEQMI I MATEMATIKOJ,
RAZWITYMI W [KOLE pIFAGORA, A OBNARUVENNYE NAMI GARMONIˆESKIE STRUKTURY W FUNDAMENTALXNOJ

DINAMIKE ˆASTIC I QDER MY TRAKTUEM KAK GARMONI@, PREDOSTAWLENNU@ NAM TEOREMOJ fRUASSARA.
zDESX MY NASTAIWAEM NA TOM, ˆTO GARMONIQ TEOREMY fRUASSARA POZWOLQET NAM USLY[ATX NOWYE

ZWUKI “MUZYKI SFER” W TOM VE SMYSLE, O KOTOROM RASSUVDALI DREWNIE PIFAGOREJCY.
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“The Master said so”

Pythagorean watchword

Introduction: Pythagoreanism

11. ... ZA NERAZUMNYE POMY[LENIQ IH NEPRAWDY, PO

KOTORYM ONI SLUVILI BESSLOWESNYM PRESMYKA@]IMSQ I

PREZRENNYM ˆUDOWI]AM, tY W NAKAZANIE POSLAL NA NIH

MNOVESTWO BESSLOWESNYH VIWOTNYH, ˆTOBY ONI POZNALI,
ˆTO ˆEM KTO SOGRE[IT, TEM I NAKAZYWAETSQ ... I BEZ “TOGO

ONI MOGLI POGIBNUTX OT ODNOGO DUNOWENIQ, PRESLEDUEMYE

PRAWOSUDIEM I RASSEIWAEMYE DUHOM SILY TWOEJ; NO

tY WSE RASPOLOVIL MERO@, ˆISLOM I WESOM.
kNIGA PREMUDROSTI sOLOMONA

Once upon a time the great russian physicist-theorist and mathematician Bogoljubov said that
the last line in the above written fragment from the Book of Proverbs which is a part of the
Bible (non-canonical though!) “...; but You did all arrange by measure, number and weight”

represents the definition of the Physics [1]. Probably this – “...; but You did all arrange by
measure, number and weight” – was an earliest evidence of the principle that All in the World

have to be in harmony with each other.
In fact, the word harmony (Syn: music: accord, concord, consonance) has the Greek origin

from α̌ρµóνία which means orderliness (symmetry) of the whole, commensurability (propor-
tionality) of its parts. The idea of harmony has intensively been elaborated by Pythagoras, the

Greek philosopher and mathematician and founder of the Pythagorean school [2]. Originally
from Samos, Pythagoras founded a society which was at once a religious community and a sci-

entific school flourished at Kroton in Southern Italy about the year 530 B.C. Pythagoras was
the first genius of western culture. He had a multifaceted magnetic personality – an intelligent
mathematician and a religious thinker, both co-existed in him. His main contributions are in

geometry, numbers, music, cosmology, astronomy, philosophy and religion. Pythagoras must
have been one of the world’s greatest men, but he wrote nothing though numerous works are

attributed to him, and it is hard to say how much of the doctrine one knows as Pythagorean

1



is due to the founder of the society and how much is later development. It is also hard to say
how much of what we are told about the life of Pythagoras is trustworthy. For a mass of legend

gathered around his name: Sometimes he is represented as a man of science, and sometimes
as a preacher of mystic doctrines, and we might be tempted to regard one or other of those

characters as alone historical. Certainly, it’s true that there is no need to reject either of the
traditional views.

Even though many wonderful things related to Pythagoras, belong to legend, and seem to
have no historical foundation, similarly the description of the learned works which he wrote

is not attested by reliable historians and also belongs to the region of fable, nevertheless it
is no doubt however, that he founded a school, or, rather, a religious philosophical society,
which exerted great influence on the intellectual development of human civilization and had a

fundamental importance all the time. Of great influence were the Pythagorean doctrines that
numbers were the basis of all things and possessed a mystic significance, in particular the idea

that the cosmos is a mathematically ordered whole. Aristotle wrote: “Pythagorean having
been brought up in the study of mathematics, thought that things could be represented by

numbers ... and that the whole cosmos consists of a scale and a number”. Briefly stated, the
doctrine of Pythagoras was that all things are numbers. Pythagoras was led to this conception

by his discovery that the notes sounded by stringed instrument are related to the length of the
strings. He conducted remarkable investigation in “music” as he was a musician. Harmonies

correspond to most beautiful mathematical ratio, he stated. Melodious musical tunes could be
produced on a stringed instrument by plucking the string at particular points, which correspond
to mathematical ratios. Such beautiful mathematical ratios are 1 : 2 (an octave), 2 : 3 (a

fifth), and 3 : 4 (a fourth). Pythagoras recognized that first four numbers 1, 2, 3, 4 known as
“tetractys”, whose sum equals Ten (1 + 2 + 3 + 4 = 10), contained all basic musical intervals:

the octave, the fifth and the fourth. In fact, all the major consonances, that is, the octave, the
fifth and the fourth are produced by vibrating strings whose lengths stand to one another in the

ratios of 1 : 2, 2 : 3 and 3 : 4 respectively. Recent major scale in according to Pythagoras tune
looks like

1;
8

9
;
64

81
;
3

4
;
2

3
;
16

27
;
128

243
;
1

2
,

where 8
9

= 2
3
· 2
3
· 2 is major second (fifth of fifth with octave lowering); 16

27
= 2

3
· 8
9

is major
sixth (fifth of major second); 64

81
= 2
3
· 16
27
· 2 is major third (fifth of sixth with octave lowering);

128
243

= 2
3
· 64
81

is major seventh (fifth of third).
The resemblance which Pythagoras perceived between the orderliness of music, as expressed

in the ratios which he had discovered and the idea that cosmos is an orderly whole, made
up of parts harmoniously related to one another, led him to conceive of the cosmos too as

mathematically ordered. Pythagoras compared the eight planets (there were seven planets
known the Babylonians: Moon, Mercury, Venus, Sun, Mars, Jupiter and Saturn), including the

Earth, with the musical octave and the seven planets, excluding the Earth, as seven strings of
the musical instrument Lair. The planets situated at different distances and moving at different
speed correspond to different notes on musical octave. The planets moving with higher speed

produce higher notes and those with lower speed produce lower notes. The celestial harmony
of moving planets produces heavenly music (“the music of the spheres”) analogous to different

notes of musical octave.
According to Pythagoras, the sphere was the most beautiful solid and the circle the most

beautiful shape. Thus, a spherical planet moving in circular orbit would form a harmonious
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constellation. Pythagoras worked out the distances of the planets from the Earth. He arranged
the planets in order of increasing distances of the planets from the Earth. The order given by

him was the Moon, Mercury, Venus, the Sun, Mars, Jupiter and Saturn. Some Pythagoreans
believed that the Earth moved round a central fire. The Earth did not always face the central

fire. This accounted for day and night on the Earth. They also believed that the Moon as
well as the Sun shone because they reflected light from their surfaces received from the central

fire. Perhaps the idea of central fire later on led to the heliocentric (Sun at the centre of the
Solar system) configuration of Solar system. Pythagoras observation of heavens suggested to

him that the motion of the heavenly bodies was cyclic and that the heavenly bodies returned to
the place from which they had started. From this, Pythagoras concluded that there must be a
cycle of cycles, a greater year and on its completion the heavenly bodies returned to the original

position and the same heavenly constellation would be observed again and again. He called this
the eternal recurrence.

Pythagoras doctrine that mathematics contains the key to all philosophical knowledge, an
idea, which was by his followers afterwards developed into an elegant number-theory. The

Pythagorean philosophy in its later elaboration is dominated by the number-theory. Being the
first, apparently, to observe that natural phenomena, especially the phenomena of the astronom-

ical world, may be expressed in mathematical formulas, the Pythagoreans held that numbers
are not only the symbols of reality, but the very substance of real things. Pythagoras associated

numbers with geometrical notions and numerical ratios with shapes. He associated number one
with a point, too with a line, three with a triangle (the surface) and four with a tetrahedron
(the solid). Thus, one point generates dimensions, two points generate a line of one dimension,

three points generate a surface of two dimensions, and four points generate three-dimensional
solid figures. In geometry, numbers represent lengths, their squares represent areas, their cubes

represent volumes. Starting from numbers, numerical ratios and their powers, one can construct
geometrical figures of different shapes and geometrical solids of different sizes. Using distance

the arrangement of planets, their motion, their orbital path, their distances from the center
and their interrelations with each other can be worked out. Thus, according to Pythagoras all

relations could be reduced to number relations and hence, the whole cosmos is a scale and a
number based phenomenon.

According to Pythagoras, Ten is the perfect number, because it is the sum of one, two,
three, and four – the point, the line, the surface, and the solid. There are the second type
of perfect numbers : According to Pythagoras the second type of perfect numbers are those

were the numbers equal to sum of their factors. For instance 28 has factors 1, 2, 4, 7, 14 and
1 + 2 + 4+ 7 + 14 = 28.

From perfect numbers, Pythagoras was led to amicable numbers like 220 and 284. Amicable
numbers form a pair of numbers where each number is equal to the sum of the factors of the

other numbers. For instance 220 has factors 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110. The sum of
these factors is 1+2+4+5+10+11+20+22+44+55+110 = 284. Moreover, 284 has factors

1, 2, 4, 71 , 142 . The sum of these factors is 1 + 2 + 4 + 71 + 142 = 220.
Triangular numbers have been introduced by Pythagoras: Pythagoras called numbers 1, 3,

6, 10, 15, 21, 28, 36, 45, 55, 66 as triangular numbers because these numbers can be arranged
so as to form triangles.

If a, b, c are sides of a right-angled triangle and c is the hypotenuse then according to Pythago-

ras theorem c2 = a2+b2. The triad of positive integers (a, b, c) satisfying the relation c2 = a2+b2

is called the Pythagorean triad of numbers. About fifteen such triads were previously known like
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(3,4,5), (5,12,13), (7,24,25), (9,12,15), (15,36,39). The Pythagorean triads in which the num-
bers a, b, c do not have a common factor are called primitive Pythagorean triads. For example

(3,4,5), (5,12,13), (7,24,25) etc. are primitive Pythagorean triads. But (9,12,15), (15,36,39) are
not primitive triads. It is believed that Pythagoras himself discovered the formula for determin-

ing triads of numbers satisfying the relation c2 = a2+ b2. In fact, all Pythagorean triads can be
expressed via formulae

a = m2 − n2, b = 2mn, c = m2 + n2, (1)

where m, n are any positive integers (m > n > 0).
From his observations in music, mathematics and astronomy, Pythagoras generalized that

everything could be expressed in terms of numbers and numerical ratios. Numbers are not only
symbols of reality, but also substances of real things. Hence, he claimed - All is number. The

importance of this conception is very great, for example, it is the ultimate source of Galileo’s
belief “Il libro della natura é scritto in lingua matematica” that the book of nature is written in

mathematical symbols and hence the ultimate source of modern physics in the form in which it
came to us from Galileo.

It may be taken as certain that the union of mathematical genius and mysticism is common
enough1. Pythagoras himself discovered the numerical ratios which determine the concordant
intervals of the musical scale. Similar to musical intervals, in medicine there are opposites, such

as the hot and the cold, the wet and the dry, and it is the business of the physician to produce a
proper “blend” of these in the human body. The Pythagoreans contended that the opposites are

found everywhere in Nature, and the union of them constitutes the harmony of the real world.
They also argued for the notion that virtue is a harmony, and may be cultivated not only by

contemplation and meditation but also by the practice of gymnastics and music.
Pythagoras held the theory that what gives form to the Unlimited is the Limit. That is

the great contribution of Pythagoras to philosophy, and we must try to understand it. It was
natural for Pythagoras to look for something of the same kind in the world at large. Musical

tuning and health are alike means arising from the application of Limit to the Unlimited.
In their psychology and their ethics the Pythagoreans used the idea of harmony and the

notion of number as the explanation of the mind and its states, and also of virtue and its

various kinds. Pythagoras argued that there are three kinds of men, just as there are three
classes of strangers who come to the Olympic Games. The lowest consists of those who come

to buy and sell, and next above them are those who come to compete. Best of all are those
who simply come to look on. Men may be classified accordingly as lovers of wisdom, lovers of

honour, and lovers of gain. That seems to imply the doctrine of the tripartite soul, which is also
attributed to the early Pythagoreans on good authority.

The Pythagoreans were religiously and ethically inclined, and strove to bring philosophy into
relation with life as well as with knowledge. The Pythagoreans believed also in reincarnation

or transmigration (doctrine of Rebirth), that is, the soul, after death, passes into another living
thing, which presupposes the ability of the soul to survive the death of the body, and hence
some sort of belief in its immortality.

The above detailed introduction is made so as to show in the next sections that the great
ancient Pythagorean ideas have found themselves in the latest researches in high energy elemen-

tary particle and nuclear physics. In this respect we will concern and discuss the mathematical,

1One up-to-date outstanding mathematician contended that all scientists, working in the number-theory, have
a conversation with the God.
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physical and geometrical aspects of the famous Froissart theorem and in this way we will easily
establish a link of this theorem to the mathematics and ideas elaborated in the Pythagorean

school. In other words, we would like to show a harmony of the Froissart theorem just in the
Pythagoreans sense.

1. Froissart theorem: mathematical, physical and geometrical aspects

In the year 1961 french physicist Marcel Froissart discovered and proved a remarkable the-
orem, which stated that two-body reaction a + b → c + d amplitude, satisfying Mandelstam

representation, is bounded by expressions of the form Cs ln2s at the forward and backward
angles, and Cs

3
4 ln

3
2 s at any fixed angle in the physical region, C being a constant, s being the

total squared c.m. energy (one of the Mandelstam invariant variables s, t, u). This corresponds

to the total cross sections increasing at most like ln2s [3]. A little bit later it was shown that the
analytical properties of two-particle scattering amplitude, which may be established strictly in

the framework of axiomatic Quantum Field Theory, bring us to the Froissart statements as well.
Up-to-date derivation of the Froissart theorem can be realized in a few steps, and we briefly

sketch out it here.
For simplicity we consider a reaction of elastic scattering a + b → a + b for two scalar

particles. The scattering amplitude of the two-body reaction may be considered as a function
of the invariant variable s = (pa+pb)

2 and two unit vectors n and n′ on two-dimensional sphere

S2, which characterise the initial and final states of two-particle system: F2(s; p′ap′b, papb) =
F2(s;n′,n),n = q/|q|, q is c.m. momentum of particles in an initial state

q =
◦
pa = −

◦
pb,

◦
pa,b =

−→
L−1(Pab)pa,b, Pab = pa + pb,

L(P ) is Lorentz boost, and the same with the primes in a final state. In the first step we wright
the partial wave expansion

F2(s;n′,n) = F2(s;n′ · n) = F2(s; cosθ) =

=
1

πA2(s)

∑
lm

Ylm(n′)fl(s)
∗
Y lm (n) =

1

πΓ2(s)

∑
l

(2l + 1)fl(s)Pl(n
′ · n), (2)

where A2(s) = Γ2(s)/S2, Γ2(s) is two-particle phase space volume, S2 is a surface of two-

dimensional unit sphere, cos θ = n′ · n, and an addition theorem for the spherical harmonics in
second line of Eq. (2) has been used. The second invariant Mandelstam variable t (momentum

transfer) is related to cos θ by the following Equation

cos θ = 1+
t

2q2
. (3)

A remarkable analytic properties of scattering amplitudes as functions of momentum transfer
have been discovered in the year 1958 by Harry Lehmann [4] using Jost-Lehman-Dyson represen-

tation especially Dyson’s theorem for a representation of causal commutators in local Quantum
Field Theory [5,6,7]. Lehmann proved that imaginary part of two-body interaction amplitude

is analytic function of cos θ, regular inside an ellipse in cos θ-plane with center at the origin and
with semi-major axis

z0(s) = 1 + εL(s), εL(s) =
2(m21 −m2a)(m

2
2 −m2b)

q2[s− (m1 −m2)2]
, (4)
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where m1 and m2 define the support of spectral function in the JLD representation by the
requirements of spectral condition or spectrality. Actually, m1 and m2 are the lowest mass

values of the physical states for which the following matrix elements are not equal to zero

< 0|Ja(0)|m1 >�= 0, < 0|Jb(0)|m2 >�= 0,

where Ja(x) and Jb(x) are local Heisenberg’s currents of particles a and b. He also shown that

two-body interaction amplitude, as itself, is analytic function of cos θ, regular inside an ellipse
in cos θ-plane with center at the origin and with semi-major axis x0(s) which is related to z0(s)
by the Equation

x0(s) =

√
z0(s) + 1

2
. (5)

Afterwards the fundamental results of Harry Leman were improved by Martin [8] and Sommer
[9]: it was shown that imaginary part of two-body interaction amplitude is analytic function of

cos θ, regular inside an ellipse in cos θ-plane with semi-major axis

z0(s) = 1 + εM (s), εM (s) =
t0
2q2

, t0 = 4mπ
2, (6)

q2 =
λ(s,m2a, m

2
b)

4s
=

[s− (ma +mb)
2][s− (ma −mb)

2]

4s
, (7)

where mπ is pion mass. Correspondingly two-body interaction amplitude, as itself, appears as
analytic function of cos θ, regular inside an ellipse in cos θ-plane with semi-major axis x0(s)
which is related to z0(s) by Eq. (5).

The fundamental results derived by Lehmann and improved by his followers are of great
importance because it has been shown that the partial wave expansions (2) which define physical

scattering amplitudes continue to converge for complex values of the scattering angle, and define
uniquely the amplitudes appearing in the unphysical region of non-forward dispersion relations.

In fact, expansions converge for all values of momentum transfer for which dispersion relations
have been proved. The proved analyticity of two-body interaction amplitudes as functions of

two complex Mandelstam variables s and t in a topological product of cut s-plane with the cuts
(sthr ≤ s ≤ ∞, uthr ≤ u ≤ ∞) except for possible fixed poles and circle |t| ≤ t0 in t-plane allowed

in a more general case to save the fundamental Froissart results previously obtained at a more
restricted Mandelstam analyticity. Really, let us wright Cauchy representation for imaginary
part of two-body interaction amplitude

ImF2(s; cos θ) =
1

2πi

∮
C

dz
ImF2(s; z)
z − cos θ

,

where contour C is a boundary of an ellipse in cos θ-plane with semi-major axis given by Eq.

(6). Using Heine formula

1

z − cos θ
=

∞∑
l=0

(2l + 1)Ql(z)Pl(cos θ),

we obtain

Imfl(s) =
Γ2(s)

2i

∮
C

dzImF2(s; z)Ql(z). (8)
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From Eq. (8) it follows

Imfl(s) ≤
1

2
Γ2(s) ·max

z∈C
|ImF2(s; z)| ·max

z∈C
|Ql(z)| · L(C), (9)

where L(C) is a length of contour C. Representation (8) where estimate (9) followed from is a
good tool to study an asymptotic behaviour of partial waves at large orbital momentum. Using

asymptotic properties of the Legendre functions Ql [10]

Ql(z) �
√

π

2l
(z2 − 1)−

1
4 (z +

√
z2 − 1)−l−

1
2 , |l| → ∞, | arg l| < π, z ∈ C

and polynomial boundedness

max
z∈C
|ImF2(s; z)| ≤ P2(s),

P2(s) is some polynomial in s, we find

Imfl(s) ≤
√

2π

l
Γ2(s)P2(s)

(
z0(s) +

√
z20(s)− 1√

z20(s)− 1

)1
2

[z0(s) +
√

z20(s)− 1]−l, |l| → ∞. (10)

If we put z0(s) = 1 + ε(s), ε(s) << 1, s → ∞ then estimate (10) at large values of s may be

rewritten in the form

Imfl(s) ≤
P̃2(s)√

l
exp

(
−l
√

2ε(s)

)
, s→∞, (11)

where

P̃2(s) =

(
2π√
2ε(s)

) 1
2

Γ2(s)P2(s). (12)

Thus we have obtained a very important result: analyticity of two-body interaction ampli-

tudes as functions of cos θ, regular inside an ellipse in cos θ-plane, results in exponential decrease
of partial waves as functions of orbital momentum l at large values of l. This means that the

significant contribution to the partial wave expansion (2) is determined by partial waves for
which the orbital momentum does not exceed the quantity

L =

[
ln P̃2(s)√

2ε(s)

]
. (13)

The contribution of partial waves with l > L to the partial wave expansion will be exponentially

small. Let us decompose the partial wave expansion in two terms

ImF2(s; cos θ = 1) =
1

πΓ2(s)

L−1∑
l=0

(2l + 1)Imfl(s) + ImFL
2 (s), (14)

where the second term in Eq. (14) contains the contribution of partial waves with l ≥ L. Now

we would like to take advantage of unitarity condition which can be written for the partial waves
as the following sequence of inequalities

0 ≤ |fl(s)|2 ≤ Imfl(s) ≤ |fl(s)| ≤ 1. (15)
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Taking into account the unitarity condition we get for the first term in Eq. (14) an estimate in
the form

1

πΓ2(s)

L−1∑
l=0

(2l + 1)Imfl(s) ≤
1

πΓ2(s)

L−1∑
l=0

(2l + 1) =
L2

πΓ2(s)
=

ln2 P̃2(s)

2πε(s)Γ2(s)
, (16)

where expression (13) for the quantity L has been used.
Froissart has shown that the second term in Eq. (11) is asymptotically small compared to

the first one at large values of s, so that we finally get

ImF2(s; cosθ = 1) <
ln2 P̃2(s)

2πε(s)Γ2(s)
. (17)

The optical theorem relates a total cross section of two-body interaction with imaginary part of
two-body forward elastic scattering amplitude

σtotab (s) =
(2π)3

λ1/2(s,m2a, m
2
b)

ImF2(s; cosθ = 1),

λ-function is defined by Eq. (7). Hence from estimate (17) it follows an upper bound for the

total cross section of two-body interaction

σtotab (s) <
S2 ln

2 P̃2(s)

32sε(s)A22(s)
. (18)

where, as it was mentioned above,

A2(s) = Γ2(s)/S2 =
λ1/2(s,m2a, m

2
b)

8s
.

Here is just the place to introduce the physical notion of the effective radius of two-body
forces [12,13]. Let us define the effective radius R2(s) of two-body forces by the following
equation

R2(s)
def
=

L

|q| =
2
√

s ln P̃2(s)√
2ε(s)λ(s,m2a, m

2
b)

, (19)

where the definition (13) of the quantity L and expression (7) for q have been used. Now upper

bound (18) in terms of such defined quantity R2(s) takes the form

σtotab (s) < 4πR22(s). (20)

This form of the upper bound for experimentally measured quantity σtotab (s) has a quite transpar-
ent physical and clear geometrical meanings: it means that the total cross section of two-body

interaction is bounded by the area of a surface of two-dimensional sphere whose radius is defined
by the effective radius of two-body forces. A remarkable property of upper bound (20) consist in

the fact that here all information about analytic properties of two-body interaction amplitudes
is hidden in the physically tangible quantity (19) which is the effective radius of two-body forces.

If we put ε(s) equal to εM (s) given by Eq. (6) then from Eqs. (16) and (12) it follows that

P̃2(s) ∼ c̃2 s
9/4, s→∞.
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In that case for the the effective radius of two-body forces we find from Eq. (19)

R2(s) =
ln P̃2(s)√

t0
∼ 9

4
√

t0
ln(s/s0) =

9

8mπ

ln(s/s0), s→∞. (21)

In the article Froissart gave an excellent semiclassical explanation corroborating his theorem. We

would like to present here a remarkable fragment from section II of the Froissart paper [3]. He
wrote: “To get intuitive idea why the amplitude is bounded in the physical region, let us consider

a classical problem: Two particles interact by means of absorptive Yukawa potential g e−κr/r.
If a is the impact parameter, the total interaction seen by a particle for large a is likely to be

approximately g e−κa. If this is small compared to one, there will be practically no scattering.
If |g e−κa| is large compared to one, there will be practically complete scattering, so that the

cross section will be essentially determined by the value a = (1/κ) ln |g| where |g e−κa| = 1. It is
σ ∼= (π/κ2) ln2 |g|. If we now assume that g is a function of the energy, and increases like a power
of the energy, then σ will vary at most like the squared logarithm of the energy.” In fact, Froissart

anticipated here a running coupling and quasi-potential character of strong forces. Later on it
was shown [14] that the hypothesis about validity of the dispersion relations in the momentum

transfer leads, for any value of the energy s, to a potential which is a superposition of Yukawa
potentials with energy dependent intensities. This fact together with a theorem on single-time

reduction in Quantum Field Theory [15] provides a strong basis for semiclassical consideration
given by Froissart. However, it should be stressed that upper bound (20) has a quite different

geometrical sense compared to semiclassical consideration given by Froissart: Eq. (20) shows
that the total cross section of two-body interaction is bounded by the area of a surface of the

sphere with the radius equal to the effective radius of two-body forces but not by the area of a
disk with the same radius.

Unitarity bound (20) states that the total probability (per unit volume per unit time in

fraction of particles density flux) of all possible (elastic and inelastic) two-particle interactions,
which take place in a limited volume V during a limited interval of time T , is limited by the

area of a surface of the sphere which is, actually, a boundary of the volume V . This means that
widely discussed in the recent literature concerning some physical problems at Planck scale the

holographic principle [16] has been incorporated in the general scheme of axiomatic Quantum
Field Theory and resulted from the general principles of local Quantum Field Theory.

2. Generalized Froissart theorem

In our works [17,18] it was shown that there is a quite natural geometrical generalization of

the Froissart theorem to the case of multiparticle interaction. In this respect it should be noted
that the problem of finding such generalization is non-trivial because at least the known singu-

larities of multiparticle scattering amplitudes related to disconnected parts by cluster structure
of the amplitudes point to the fact that for the total amplitude of n-particle scattering (n ≥ 3)

there is no such generalization. Connected part of n-particle (n ≥ 3) scattering amplitudes
contains singular rescattering terms as well. Therefore, the first problem which arises in this
case is to define a suitable object connected with the n → n reaction amplitude which would

permit a correct formulation of the problem. It turns out there is a wide class of many-particle
reaction amplitudes for which such a problem would be quite meaningful. We have shown that

these amplitudes should be understood as amplitudes of true n-particle interaction or n-body

9



forces amplitudes; see details in [17,18]. Here we reproduce our results taking a line stated in
previous section.

The scattering amplitude of the n-body reaction may be considered as a function of the
invariant variable s = (p1+p2+ · · ·+pn)

2 and two unit vectors e and e′ on (D−1)-dimensional

sphere SD−1, which characterise the initial and final states of n-particle system:

Fn(s; p′1p′2 · · ·p′n, p1p2 · · ·pn) = Fn(s; e′, e).

Dimensionality D of multidimensional space is related to the number of particles n by the equa-
tion D = 3n − 3. There are many ways to introduce the spherical coordinates in multidimen-

sional space. Moreover, there are some peculiarities related to a parametrization of relativistic
n-particle system. However, we will not concern this subject here because it does not play any

role for our main goal. For the details we refer to [18] and references therein.
As above we may wright the partial wave expansion

Fn(s; e′, e) = Fn(s; cosω) =

=
1

πAn(s)

∑
lm

Ylm(e′)fl(s)
∗
Y lm (e) =

1

πΓn(s)

∑
l

(
l

ν
+ 1)fl(s)C

ν
l (cosω), (22)

where An(s) = Γn(s)/SD−1, Γn(s) is n-particle phase space volume, SD−1 = 2πD/2/Γ(D/2) is a

surface of (D−1)-dimensional unit sphere, cosω = e′ · e, and we have used in second line of Eq.
(22) an addition theorem for the (hyper)spherical harmonics in multidimensional space

M(l,ν)∑
m=1

Ylm(e′)
∗
Y lm (e) =

(
l

ν
+ 1

)
S−1D−1C

ν
l (e

′ · e),

ν =
D

2
− 1, M(l, ν) =

(2l + 2ν)Γ(l + 2ν)

Γ(l + 1)Γ(2ν + 1)
,

where Cν
l (z) is Gegenbauer polynomial. Here we contented ourself with a special class of n-body

forces scattering amplitudes which are invariant under rotation in multidimensional space (so

called O(D)-invariant amplitudes).
We will assume that for physical values of the variable s imaginary part of n-body forces

scattering amplitude is analytic function of cosω, regular inside an ellipse En(s) in cosω-plane
with center at the origin and with semi-major axis

zn(s) = 1 + εn(s), εn(s) =
M2

n

2Q2
, (23)

and for any cosω ∈ En(s) is polynomially bounded in the variable s, Mn is some constant of
mass dimensionality independent of s, Q is global momentum (dependent of s) of n-particle
system which will be defined later on. Such analyticity of n-body forces scattering amplitudes

was called global [18]. If it is so, one can wright Cauchy representation for imaginary part of
n-body interaction amplitude

ImFn(s; cosω) =
1

2πi

∮
Cn

dz
ImFn(s; z)
z − cosω

,

10



where contour Cn is a boundary of an ellipse En(s) in cosω-plane with semi-major axis given by
Eq. (23). There is a standard generalization of Heine’s expansion of the Cauchy denominator

[10]
1

z − t
= exp(−iπν)22ν[Γ(ν)]2(z2 − 1)ν−1/2

∞∑
l=0

(l + ν)
Γ(l + 1)

Γ(l + 2ν)
Dν

l (z)C
ν
l (t), (24)

which converges absolutely for

|[t+ (t2 − 1)1/2]/[z + (z2 − 1)1/2]| < 1. (25)

In Eq. (24) Dν
l (z) is a second solution to Gegenbauer’s equation. The restriction (25) requires

that the point t lie within that ellipse in the complex t-plane with foci at ±1 which passes

through the point t = z. In particular from Eq. (24) it follows

Dν
l (z) = exp(iπν)(z2− 1)−ν+1/2

1

2π

∫ 1
−1

dt
(1− t2)ν−1/2Cν

n(t)

z − t
.

As a result we obtain

Imfl(s) =
exp(−iπν)ν22ν[Γ(ν)]2Γ(l + 1)

Γ(l + 2ν)
· Γn(s)

2i

∮
Cn

dz(z2 − 1)ν−1/2Dν
l (z)ImFn(s; z). (26)

Representation (26) is very useful to study an asymptotic behaviour of partial waves at large
global orbital momentum. Taking into account asymptotic properties of the Gegenbauer func-
tions Dν

l [10]

Dν
l (z) �

exp(iπν)lν−1

2νΓ(ν)
(z2 − 1)−ν/2(z +

√
z2 − 1)−l−ν , |l| → ∞, | arg l| < π, z ∈ Cn,

and polynomial boundedness
max
z∈Cn

|ImFn(s; z)| ≤ Pn(s),

Pn(s) is some polynomial in s, we find

Imfl(s) ≤ Γn(s)Pn(s)
lν−1ν2ν+1Γ(ν)Γ(l + 1)

Γ(l + 2ν)
×

(
zn(s) +

√
z2n(s)− 1√

z2n(s)− 1

)1−ν (
zn(s) +

√
z2n(s)− 1

)−l
, |l| → ∞. (27)

Finally if we put zn(s) = 1 + εn(s), εn(s) << 1, s→∞ then we get at large values of s

Imfl(s) ≤
Pn(s, ν)

lν
exp

(
−l
√

2εn(s)

)
, s→∞, (28)

where

Pn(s, ν) = ν2ν+1Γ(ν)[2εn(s)]
(ν−1)/2Γn(s)Pn(s). (29)

Estimate (29) shows that partial waves as functions of global orbital momentum l exponentially
decrease at large values of l, i.e. the significant contribution to the partial wave expansion (22) is

resulted from partial waves for which the global orbital momentum does not exceed the quantity

Λ =

[
lnPn(s, ν)√

2εn(s)

]
. (30)
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The contribution of partial waves with l > Λ to the partial wave expansion will be exponentially

small. So, we decompose the partial wave expansion in two terms

ImFn(s; cosω = 1) =
1

πΓn(s)

Λ∑
l=0

(
l

ν
+ 1)Imfl(s)C

ν
l (1) + ImFΛn (s), (31)

where the second term in Eq. (31) contains the contribution of partial waves with l > Λ. Taking
into account the unitarity condition (15) for the partial waves we get for the first term in Eq. (31)

an estimate
1

πΓn(s)

Λ∑
l=0

(
l

ν
+ 1)Imfl(s)C

ν
l (1) ≤

1

πΓn(s)

Λ∑
l=0

(
l

ν
+ 1)Cν

l (1) =

(2Λ + 2ν + 1)Γ(Λ + 2ν + 1)

πΓn(s)Γ(2ν + 2)Γ(Λ + 1)
=

2Λ2ν+1

πΓn(s)Γ(2ν + 2)

(
1 + O(

1

Λ
)

)
, (32)

where we inserted Cν
l (1) = Γ(l+2ν)/[Γ(2ν)Γ(l+1)]. It can easily be seen that the second term

in Eq. (27) is asymptotically small compared to the first one at large values of s, so that we

finally get

ImFn(s; cosω = 1) <
2 [lnPn(s, ν)]

D−1

πΓ(D)Γn(s)[2εn(s)](D−1)/2
. (33)

where we have used expression (30) for Λ and relation 2ν = D − 2. By analogy with Eq. (19)
let us introduce the effective radius Rn(s) of n-body forces

Rn(s)
def
=

Λ

|Q| =
1

Mn

lnPn(s, ν), (34)

where the definition (30) of the quantity Λ and expression (23) for εn(s) have been used. Now
upper bound (33) in terms of such defined quantity Rn(s) takes the form

ImFn(s; cosω = 1) <
2 [Rn(s)]

D−1

πΓ(D)Γn(s)[2εn(s)/M2
n]
(D−1)/2 = Jn(s)SD−1[Rn(s)]

D−1, (35)

where

Jn(s) =
2

πΓ(D)S2D−1An(s)[2εn(s)/M2
n]
(D−1)/2 =

2|Q|D−1
πΓ(D)S2D−1An(s)

. (36)

With account of the generalized optical theorem relating a total cross section of n-body inter-
action with imaginary part of n-body forces forward scattering amplitude [18]

σtotn (s) =
1

Jn(s)
ImFn(s; cosω = 1),

from estimate (35) we obtain an upper bound for the total cross section of n-body interaction

σtotn (s) < SD−1[Rn(s)]
D−1. (37)

Here again, as it should be, upper bound (37) has a quite clear geometrical meaning: the total

cross section of n-body interaction is bounded by the area of a surface of (D − 1)-dimensional
sphere whose radius is defined by the effective radius of n-body forces. Again all information
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about global analyticity of n-body interaction amplitudes is hidden in the physical quantity (34)
which is the effective radius of n-body forces. From Eqs. (29) and (33) it follows that

Pn(s, ν) ∼ cn s(3n+3)/4, s→∞.

For the the effective radius of n-body forces we find from Eq. (34) in that case

Rn(s) ∼
rn
Mn

ln(s/s0), rn =
3n + 3

4
, s→∞. (38)

Upper bounds (35,37) are a direct consequence of global analyticity of n-body forces scattering

amplitudes which, in one’s turn, is a direct geometrical generalization of analytic properties of
two-body scattering amplitude strictly proved in axiomatic Quantum Field Theory. At present

we do not know to what extend global analyticity of n-particle scattering amplitudes (n ≥ 3)
is a consequence of general principles of local Quantum Field Theory. The validity of such an

assumption is obvious to us if we rely on the physical nature of n-body forces: our intuition
tells us that true n-body interactions should manifest themselves only in the case when all the

n particles are in a sufficiently limited volume. On the other hand, from the beginning one may,
by definition, consider the n-body forces scattering amplitude to be a globally analytic part of

the total S-matrix which may always be singled out from it [18].
At last, we have to give the definition of global momentum |Q| for the relativistic n-particle

system. In this respect, first of all, note that momentum q for two-particle system has been

defined in a relativistic covariant way. Under any Lorentz transformation Λ from the restricted
Lorentz group Λ ∈ L↑+ momentum q is transforming by Wigner rotation:

q→ q′ = RWq, RW = L−1(ΛPab)ΛL(Pab),

L(Pab) is Lorentz boost. This means that |q| defined by Eq. (7) is a Lorentz invariant quantity.
Moreover, we would like to emphasize the following asymptotic properties

q2 � 1

4
s, s→∞; q2 � 2µ2(

√
s−M2),

√
s→M2, M2 = ma +mb, µ2 =

mamb

M2

. (39)

The expression of q2 given by Eq. 7 can be rewritten in the form

q2 = 16s (Γ2(s)/S2)
2
= 16sA22(s). (40)

The definition of global momentum for the relativistic n-particle system should be given such

as to save the asymptotic properties shown by Eqs. (39). Such generalization for any number of
particles looks like

Q2 = γns
(n−1)/(3n−5)A2/(3n−5)n , (41)

where γn is dimensionless constant

γn = 22n/(3n−5)
(

µn
Mn

)(2n−4)/(3n−5)
, µn =

(∏n
i=1mi

Mn

)1/(n−1)
, Mn =

n∑
i=1

mi. (42)

From the definition (41) we have the following asymptotic properties:

Q2 � a2ns, s→∞, (43)
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where an is dimensionless constant

a2n =

(
Γ(3n/2− 3/2)

π(n−1)/2(n− 1)!(n− 2)!

)2/(3n−5)(
µn
Mn

)(2n−4)/(3n−5)
, (44)

for example

a22 =
1

4
, a23 =

(
µ3

πM3

)1/2
, a−13 (m1 = m2 = m3) = 2.0100...,

and

Q2 � 2µn(
√

s −Mn),
√

s→Mn. (45)

3. Physical applications and discussion

Let us come back to Eq. (16) and remind an ancient Pythagoras theorem stated that the
sum of first N odd numbers beginning from unity is equal exactly to the square of N i.e.

1 + 3 + 5 + 7 + · · ·︸ ︷︷ ︸
N

= N 2. (46)

This Pythagoras theorem can easily be proved with the help of the formula for an arithmetical
progression. However, Pythagoras theorem can be proved without a knowledge of the formula

for an arithmetical progression but using only some remarkable observations in a game with the
numbers. We will not touch here the simplest proof, we would only like to stress a deep link

between the Froissart bound and this Pythagoras theorem. Of course, to take advantage of this
link we have to learn apart from differential calculus and integral calculus that:

• Symmetry properties of the space-time continuum are described by inhomogeneous Lorentz

group or Poincaré group. We had also to know how to construct the unitary representations
of this group as well, as it was made in the fundamental paper of Wigner [11].

• There is a very deep connexion between general physical principles such as causality,

spectrality, unitarity and analytic properties of physical scattering amplitudes. The very
essence of this connexion is expressed by brilliant Jost-Lehmann-Dyson representation

which provided the fundamental results of Lehmann.
• It takes many other attainments and the knowledge acquisitions as well.

There is a generalization of Pythagoras theorem (46). Really, let us consider any polynomial

Pn(x) degree of n

Pn(x) = c0(P ) + c1(P )x + c2(P )x2 + · · ·+ cn(P )xn,

let S(N ) be a sum of the polynomial values when the argument x takes an integer value

S(N )
def
=

N∑
k=0

Pn(k),

then it can be proved that S(N ) is also a polynomial Qn+1(N ) in N degree of (n + 1)

S(N ) = Qn+1(N ), Qn+1(x) = c0(Q) + c1(Q)x + c2(Q)x2 + · · ·+ cn+1(Q)xn+1, (47)
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and there is correspondence between cn(P ) and cn(Q): cn+1(Q) = cn(P )/(n+1), · · · . For exam-
ple, if P4(x) is polynomial of fourth degree then we have

c5(Q) = c4(P )/5,

c4(Q) = c3(P )/4 + c4(P )/2,

c3(Q) = c2(P )/3 + c3(P )/2 + c4(P )/3,

c2(Q) = c1(P )/2 + c2(P )/2 + c3(P )/4,

c1(Q) = c0(P ) + c1(P )/2 + c2(P )/6− c4(P )/30.

c0(Q) = c0(P ). (48)

We will call that statement as a generalized Pythagoras theorem. It can easily be seen that
usual Pythagoras theorem (46) corresponds to P1(x) = 2x+1. From Eq. (32) it’s clear that the

generalized Froissart theorem is related to the generalized Pythagoras theorem where PD−2(x)
is being used.

In according with the theory held by Pythagoras the unitarity bounds (20) and (37) give
form to the Unlimited and therefore they are Limit; see Introduction.

Recently [19,20,21] a simple theoretical formula describing the global structure of pp and
pp̄ total cross-sections in the whole range of energies available up today has been derived by

an application of single-time formalism in QFT and general theorems a là Froissart. The fit
to the experimental data with the formula was made, and it was shown that there is a very
good correspondence of the theoretical formula to the existing experimental data obtained at

the accelerators. Moreover, it turned out there is a very good correspondence of the theory to
all existing cosmic ray experimental data as well [21]. The predicted values for σtotpp obtained

from theoretical description of all existing accelerators data are completely compatible with the
values obtained from cosmic ray experiments. The global structure of (anti)proton-proton total

cross section is shown in Figs. 1-2 extracted from papers [20,21].
The theoretical formula describing the global structure of (anti)proton-proton total cross

section has the following structure

σtot(p̄)pp(s) = σtotasmpt(s)
[
1 + χ(p̄)pp(s)

]
, (49)

where

σtotasmpt(s) = 2π
[
Bel(s) + (1− β)R23(s)

]
=
[
42.0479 + 1.7548 ln2(

√
s/20.74)

]
(mb), (50)

Bel(s) = R22(s)/2 =
[
11.92 + 0.3036 ln2(

√
s/20.74

]
(GeV −2),

R23(s)|β<<1 =
[
0.40874044σtotasmpt(s)(mb)−Bel(s)

]
(GeV −2) =

=
[
5.267 + 0.4137 ln2

√
s/20.74

]
(GeV −2), (51)

β =
x2inel

4(1 + x2inel)
, x2inel =

R23(s)

R2d
=

2Bsd

R2d
,

Bel(s) is the slope of nucleon-nucleon differential elastic scattering cross section, R2(s) is the

effective radius of two-nucleon forces, R3(s) is the effective radius of three-nucleon forces, Rd

characterizes the internucleon distance in a deuteron, the functions χ(p̄)pp(s) describe low-energy
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Fig. 1. The proton-antiproton total cross sections versus
√

s compared with the theory. Solid line
represents our fit to the data [19,20]. Statistical and systematic errors added in quadrature.

parts of (anti)proton-proton total cross sections and asymptotically tend to zero at s→∞ (see

details in the original paper [20]). The mathematical structure of the formula (49) is very
simple and physically transparent: the total cross section is represented in a factorized form.

One factor describes high energy asymptotics of total cross section and it has the universal
energy dependence predicted by the general Froissart theorem in local Quantum Field Theory.
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Fig. 2. The proton-proton total cross-section versus
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s with the cosmic rays data points from Akeno
Observatory and Fly’s Eye Collaboration. Solid line corresponds to our theory predictions [21].
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The other factor is responsible for the behaviour of total cross section at low energies and it has
a complicated resonance structure. However this factor has also the universal asymptotics at

elastic threshold. It is a remarkable fact that the low energy part of total cross section has been
derived by application of the generalized Froissart theorem for a three-body forces scattering

amplitude.
Eq. (50) shows that geometrical scaling in a naive form σtotasmpt(s) = ConstBel(s) is not valid.

However, from Eq. (50) it follows the generalized geometrical scaling which looks like

σtotasmpt(s) = 2πBel(s)[1 + 2γ(1− β)], (52)

where β is defined above and

γ =
R23(s)

2Bel(s)
=

R23(s)

R22(s)
.

Here, we would like to point out some remarkable features of the global structure in the
(anti)proton-proton total cross sections. First of all, the (anti)proton-proton total cross sections

have a minimum at s = s0, and the question is what this minimum corresponds to. It turns
out that the effective radius of three-nucleon forces at the point s = s0 satisfys the following

harmonic ratio
R3(s0) : r

ch
p = 1 : 2 , (53)

where rchp = 0.88 fm is the proton charge radius. In other words, at the minimum s = s0 it takes
place the “octave consonance” of the three-nucleon forces with the proton charge distribution.

Going further on, we have applied our approach to study a shadow dynamics in scattering
from deuteron in some details. In this way a new simple formula for the shadow corrections to the

total cross-section in scattering from deuteron has been derived and new scaling characteristics
with a clear physical interpretation have been established. We shall briefly sketch the basic

results of our analysis of high-energy particle scattering from deuteron. As has been shown in
[22], the total cross-section in the scattering from deuteron can be expressed by the formula

σtothd (s) = σtothp (ŝ) + σtothn (ŝ)− δσ(s),

where σhd, σhp, σhn are the total cross-sections in scattering from deuteron, proton and neutron,

δσ(s) = δσel(s) + δσinel(s) = 2σel(s)ael(xel) + 2σexsd(s)a
inel(xinel), (54)

σel(s) ≡ σtot2hN (s)

16πBel(s)
, ael(xel) =

x2el
1 + x2el

, x2el ≡
2Bel(s)

R2d
=

R22(s)

R2d
,

ainel(xinel) =
x2inel

(1 + x2inel)
3/2

, x2inel ≡
R23(s)

R2d
=

2Bsd(s)

R2d
,

the total single diffractive dissociation cross-section σexsd (s) is defined by the following equation

[22]

σεsd(s) = π

∫ εs

M2
min

dM2
X

s

∫ t+(M
2
X)

t−(M2
X
)

dt
dσ

dtdM2
X

, (55)

where

ε = εex =
√
2π/2MNRd, (56)
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and we supposed that σtothp = σtothn = σtothN and Bhp
el = Bhn

el = Bel at high energies. The first term

in the R.H.S. of Eq. (54) generalizes the known Glauber correction

δσel(s) = δσG(s) =
σtot 2hN (s)

4πR2d
, x2el << 1,

but the second term in the R.H.S. of Eq. (54) is totally new and comes from the contribution
of the three-body forces to the hadron-deuteron total cross section.

The expressions for the shadow corrections have quite a transparent physical meaning, both
the elastic ael and inelastic ainel scaling functions have a clear physical interpretation [23]. The

function ael measures out a portion of elastic rescattering events among of all the events during
the interaction of an incident particle with a deuteron as a whole, and this function attached

to the total probability of elastic interaction of an incident particle with a separate nucleon
in a deuteron. Correspondingly, the function ainel measures out a portion of inelastic events
of inclusive type among of all the events during the interaction of an incident particle with

a deuteron as a whole, and this function attached to the total probability of single diffraction
dissociation of an incident particle on a separate nucleon in a deuteron. The scaling variables xel
and xinel have quite a clear physical meaning too. The dimensionless quantity xel characterizes
the effective distances measured in the units of “fundamental length”, which the deuteron size

is, in elastic interactions, but the similar quantity xinel characterizes the effective distances
measured in the units of the same “fundamental length” during inelastic interactions.

The functions ael and ainel have a different behaviour: ael is a monotonic function while ainel

has the maximum at the point xmax
inel =

√
2 where ainel(xmax

inel ) = 2/3
√
3. The existence of the

maximum in the function ainel results an interesting physical effect of weakening the inelastic
eclipsing (screening) at superhigh energies. The energy sm at the maximum of ainel can easily
be calculated from the equation R23(sm) = 2R2d and here we faced with the harmonic ratio (in

square)

R23(sm) : R2d = 2 : 1 . (57)

Using the above mentioned global structure for the (anti)proton-proton total cross sections,

we have made a preliminary comparison of the new structure for the shadow corrections in
elastic scattering from deuteron with the existing experimental data on proton-deuteron and

antiproton-deuteron total cross sections. The results of this comparison are shown in Figs. 3-4.
We would like to emphasize that in the fit to the data on antiproton-deuteron total cross

sections R2d was considered as a single free fit parameter. After that a comparison with the

data on proton-deuteron total cross sections has been made without any free parameters: R2d
was fixed by the previous fit to the data on antiproton-deuteron total cross sections, and our fit

yielded R2d = 66.61± 1.16GeV −2. If we take into account the latest experimental value for the
deuteron matter radius rd,m = 1.963(4) fm [24] then we can find that the fitted value for the R2d
satisfies with a good accuracy the equality

R2d =
2

3
r2d,m, (r2d,m = 3.853 fm2 = 98.96GeV−2). (58)

So, we have established a harmonic “consonance” between the internucleon distance in a
deuteron and the deuteron matter distribution

R2d : r2d,m = 2 : 3 . (59)
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Fig. 3. The total antiproton-deuteron cross-section compared with the theory. Statistical and systematic
errors added in quadrature.

Now, let us come back to Eq. (50). Taking into account that 0 ≤ β ≤ 1/4, from the Froissart
bound (20) and Eq. (50) we have the following bound

R23(s) < 2R22(s) . (60)
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Fig. 4. The total proton-deuteron cross-section compared with the theory without any free parameters.
Statistical and systematic errors added in quadrature.
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On the other hand for the effective radii of n-body forces we have obtained an asymptotic
behaviour given by Eq. (38) where it follows from

R3(s)

R2(s)
=

4

3
· M2

M3

, s→∞. (61)

Bound (60) with account of Eq. (61) gives

M3 >
4

3
√
2
M2 =

8mπ

3
√
2
, (M2 = 2mπ). (62)

However, if we conjecture that Mn = nmπ which is fulfilled for n = 2 then

R3(s)

R2(s)
=

8

9
, s→∞. (63)

The ratio given by Eq. (63) corresponds to the harmonic ratio for the major second in the major
scale in according to Pythagoras tune; see Introduction. We would like especially to emphasize

that the ratio (63) is compatible with the global structure of (anti)proton-proton(deuteron) total
cross sections described above.

4. Conclusion

In this minireview we have tried in the spirit of the Pythagorean school to show the mathe-

matical, physical and geometrical beauty of the Froissart theorem. No doubt, we were enchanted
with the aesthetic aspects of the Froissart theorem: there were heard the new notes of the music

of the spheres produced by the Froissart theorem in the fundamental dynamics of particles and
nuclei. Starting from abstract mathematical structures of axiomatic Quantum Field Theory by

applying the general theorems, a physically transparent intuitively clear and visual picture of
particles and nuclei interactions was arisen before our eyes. We found a very simple relations

between physically tangible quantities which looked like Pythagoras harmonic ratios mentioned
above and hence might be considered as a “hadronic symphony” in the fundamental dynamics.
In fact, we came back to the great Pythagorean ideas reformulated in terms of the objects living

in the microcosmos.
It appears that the study of fundamental processes in high energy elementary particle physics

makes it possible to establish a missing link between cosmos and microcosmos, between the great
ancient ideas and recent investigations in particle and nuclear physics and to confirm the unity

of physical picture of the World. Anyway, we believe in it.
At last, in our previous papers we repeatedly criticized the so called supercritical pomeron

phenomenology in hadronic physics. In our opinion this phenomenology might be compared with
a “cacophony” in particle physics. Certainly, someone likes cacophony in the music. However,

we prefer a symphony in the music and a harmony in the fundamental dynamics as well.
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