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Abstract

Kettell S.H., Landsberg L.G., Nguyen H. Estimate of B(K→πνν )|SM from Standard Model Fits to λt .
[hep-ph/0212321]: IHEP Preprint 2003–12. – Protvino, 2003. – p. 13, figs. 6, tables 1, refs.: 56.

We estimate B(K→πνν ) in the context of the Standard Model by fitting for λt ≡ VtdV ∗ts of the ‘kaon
unitarity triangle’ relation. We fit data from |εK | , the CP-violating parameter describing K-mixing, and
aψK , the CP-violating asymmetry in B◦d→J/ψK◦ decays. Our estimate is independent of the CKM
matrix element Vcb and of the ratio of B-mixing frequencies ∆MBs/∆MBd . The measured value of
B(K+→π+νν ) can be compared both to this estimate and to predictions made from ∆MBs/∆MBd .

Аннотация

Кейтель С., Ландсберг Л.Г., Нгуен Х. Оценка B(K→πνν )|SM , основанная на анализе λt в Стан-
дартной Модели. [hep-ph/0212321]: Препринт ИФВЭ 2003–12. – Протвино, 2003. – 13 с., 6 рис.,
1 табл., библиогр.: 56.

В рамках Стандартной Модели проведены оценки бренчингов B(K→πνν ) методом фитиро-
вания λt ≡ VtdV

∗
ts с помощью соотношения для “каонного унитарного треугольника”. Для нахо-

ждения вершины этого треугольника использовалась информация о параметре |εK | , характери-
зующем нарушение CP-инвариантности в процессах К-смешивания, и о CP-нечетной асимметрии
aψK в распадах B◦d→J/ψK◦ . Наши оценки бренчингов распада не зависят от величины элемента
CKM-матрицы Vcb и от отношения частотных параметров В-смешивания ∆MBs/∆MBd . Экспери-
ментальные данные о B(K+→π+νν ) могут быть сравнены как с результатами этих оценок, так и
с предсказаниями, основанными на величине ∆MBs/∆MBd .

c© State Research Center of Russia
Institute for High Energy Physics, 2003



The ultra-rare FCNC kaon decays K+→π+νν and K◦L→π◦νν are of particular interest as
these ‘gold-plated decays’ can be predicted in the Standard Model framework with very high
theoretical accuracy.

The K→πνν decays are treated in detail in a number of papers [1–29]. We list some of the
key aspects of these decays.

a) The main contribution to these FCNC processes arises at small distances r ∼ 1/mt, 1/mZ ;
therefore, a very accurate description for the strong interactions at the quark level is
possible in the framework of perturbative QCD. This analysis has been carried out in the
leading logarithmic order (LLO) with corrections to next to leading order (NLO) [1–4].

b) The calculation of the matrix element 〈π|Hw|K〉πνν̄ from quark-level processes involves long-
distance physics. However, these long-distance effects can be avoided by the renormal-
ization procedure developed by Inami and Lim [5], relating the matrix element to that
of the well known decay K+→π◦e+νe through isotopic-spin symmetry. Other possible
long-distance contributions to B(K+→π+νν ) have been shown to be negligible [6].

c) Since the effective vertex Zds̄ in the diagrams of Fig. 1 is short-distance, these processes are
also sensitive to the contributions from new heavy objects (e.g., supersymmetric particles).

A very important step in the study of K+→π+νν was achieved by the E787 experiment [7]
at BNL in which two clean events were found in favorable background conditions, indicating a
branching ratio of B(K+→π+νν ) = (15.7+17.5

−8.2 )× 10−11. This observation has opened the door
for future more precise study of the K+→π+νν decay [8,9].

In the Standard Model, the K+→π+νν decay is described by penguin and box diagrams
presented in Fig. 1. The partial widths have the form:

Γ(K+→π+νν ) = κ+ · |λcF (xc) + λtX(xt)|
2

= κ+ · [(ReλcF (xc) +ReλtX(xt))
2

+ (ImλcF (xc) + ImλtX(xt))
2]

' κ+ · [(ReλcF (xc) +ReλtX(xt))
2

+ (ImλtX(xt))
2] , (1)

where

κ+ =

(
GF√

2

)2

· |〈π+νν̄|Hw|K
+〉|2 · 3

(
α

2π sin2 ϑw

)2

.
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Figure 1. The dominant contributions
to K→πνν .

The factor of 3 in the expression for κ+ results from
the three flavors of neutrinos (νe, νµ, νr) participating in
the K+→π+νν decays. The factors F (xc) and X(xt)
are functions corresponding to the quark loops. These
functions include the Inami-Lim functions [5] and the
QCD corrections that have been calculated to NLO [1,
2–4, 10]. They depend on the variables xi = (mi/mW )2

with the masses of the +2
3 quarks, mi : i = c, t. The

λi ≡ VidV ∗is are vectors in the complex plane that satisfy
the unitarity relation:

λt + λc + λu = 0 (λi = VidV
∗
is ; i = u, c, t). (2)

This equation describes the ‘kaon unitarity trian-
gle’, which can be completely determined from mea-
surement of the three kaon decays: K+→π◦e+νe ,
K+→π+νν and K◦L→π◦νν . This triangle is highly
elongated with a base to height ratio of ∼1000.

Using the values of mc and mt in Table 1, the cal-
culations from Reference 1 yield F (xc) = (9.8 ± 1.8) × 10−4 and X(xt) = (1.52 ± 0.05). The

accuracy improves with increasing quark mass, and there are systematic dependences on Λ
(4)

MS
.

The c-quark contribution in (1) is smaller than the t-quark contribution, but is non-negligible.
Although F (xc)/X(xt) ∼ 10−3, Reλc is much larger than Reλt and Imλt. (Reλc ∼ λ while
Reλt, Imλt and Imλc are less than λ5).

For the CP -violating [11,12] K◦L→π◦νν decay

Γ(K◦L→π◦νν ) '
1

2
|A(K0 → π0νν̄)−A(K̄0 → π0νν̄)|2

= κ0 ·
1

2
|λcF (xc) + λtX(xt)− h.c.|

2

= κ0 · 2 [ImλcF (xc) + ImλtX(xt)]
2

' κ0 · 2 [ImλtX(xt)]
2 , (3)

where

κ0 =

(
GF√

2

)2

· |〈π0νν̄|Hw|K
0〉|2 · 3

(
α

2π sin2 ϑw

)2

.

The c-quark contribution is negligible since ImλcF (xc)� ImλtX(xt).
The partial width for the well-known decay mode K+→π◦e+νe is given by:

Γ(K+→π◦e+νe ) =

(
GF√

2

)2

|Vus|
2|〈π0e+νe|Hw|K

+〉|2.

As mentioned above, one can relate this to 〈π+νν̄|Hw|K+〉 and 〈π0νν̄|Hw|K0〉 with the help of
isotopic-spin symmetry:

∣
∣
∣
∣
〈π+νν̄|Hw|K+〉
〈π0e+νe|Hw|K+〉

∣
∣
∣
∣

2

=

∣
∣
∣
∣
〈π+|Hw|K+〉
〈π0|Hw|K+〉

∣
∣
∣
∣

2

= 2r+ (4)
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∣
∣
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〈π0e+νe|Hw|K+〉
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∣
∣
∣

2

=

∣
∣
∣
∣
〈π0|Hw|K0〉
〈π0|Hw|K+〉

∣
∣
∣
∣

2

= r0. (5)

The factor 2 in (4) accounts for the pion quark structure |π0〉 = 1√
2
|uū − dd̄〉 and |π+〉 = |ud̄〉.

The factors r+ = 0.901 and r0 = 0.944 arise from the phase space corrections and the breaking
of isotopic symmetry [13].

Hence from (1), (4) and (5) the branching ratio for the K+→π+νν decay is

B(K+→π+νν )|SM = R+ ·
X(xt)2

λ2

·
{

[Reλcf
F (xc)
X(xt)

+Reλt]
2 + [Imλt]

2
}
, (6)

where

R+ = B(K+→π◦e+νe ) · 3α2

2π2 sin4 ϑw
· r+

= 7.50× 10−6

f
F (xc)
X(xt)

= (6.66± 1.23)× 10−4

f = 1.03± 0.02






. (7)

Here, f is an additional correction factor to the c-quark term to take into account non-
perturbative effects of dimension-8 operators [14]. The branching ratio for the K◦L→π◦νν decay
is

B(K◦L→π◦νν )|SM = R0 ·
X(xt)

2

λ2
[Imλt]

2 (8)

with

R0 = R+ ·
r0

r+
·
τ(K0

L)

τ(K+)
= 3.28× 10−5,

r0/r+ = 1.048 τ(K0
L)/τ(K+) = 4.17.

The intrinsic theoretical uncertainty of the SM prediction for B(K+→π+νν )|SM is
∼ 7% and is limited by the c-quark contribution, whereas for B(K◦L→π◦νν )|SM the uncer-
tainty is 1–2%. However, in practice the uncertainties of the numerical evaluations of the
K→πνν branching ratios are dominated by the current uncertainties in the CKM matrix pa-
rameters.

The parameters Imλt, Reλt, Reλc can be estimated within the standard unitarity triangle
(UT) framework using the improved Wolfenstein parameterization [15] η̄, ρ̄, A, and λ (with
Aλ2 = |Vcb|, ρ̄ ≡ ρ(1− λ2

2 ) and η̄ ≡ η(1− λ2

2 ) ). To O(λ4) the CKM matrix is

VCKM =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 (9)

=






1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1






+ O(λ4)
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and to higher order we have

Reλc = −λ
(

1− λ2

2

)
+O(λ5)

Reλt = −A2λ5
(

1− λ2

2

)
(1− ρ̄) +O(λ7)

Imλt = ηA2λ5 +O(λ9)





. (10)

The current values of these and other parameters used in this paper can be found in Table 1.
Using (10) and Reference [35] (see Table 1), equations (6) and (8) can be naively solved to give
the branching ratios for K+→π+νν and K◦L→π◦νν :

B(K+→π+νν )|SM = R+ ·A
4λ8X(xt)

2 ·

{
1

σ
[(ρ0 − ρ̄)2 + (ση̄)2]

}

= R+ · |Vcb|
4X(xt)

2 ·

{
1

σ
[(ρ0 − ρ̄)2 + (ση̄)2]

}

= 7.50× 10−6 · [2.88× 10−6 ± (19.4%)][2.30± (6.9%)]{1.44± (20%)}

= [7.15± (28.9%)]× 10−11 = [7.2± 2.1]× 10−11; (11)

B(K◦L→π◦νν )|SM = R0 ·A
2λ8X(xt)

2 ·
{
ση̄2
}

= R0 · |Vcb|
4X(xt)

2 ·
{
ση̄2
}

;

= 3.28× 10−5 · [2.88× 10−6 ± (19.4%)][2.30± (6.9%)] · {0.129± (28.6%)}

= [2.8± (35%)]× 10−11 = [2.8± 1.0]× 10−11 (12)

with ρ0 = 1 + ∆ = 1 + fF (xc)/(|Vcb|2X(xt)) = 1.40± 0.08 and σ = 1/(1− 1
2λ

2)2 = 1.051.
The uncertainties of B(K→πνν ) in (11) and (12) are dominated by the current uncertainties

in the CKM parameters and are significantly larger than the intrinsic theoretical uncertainties.
The uncertainty of |Vcb| is quite significant in the evaluation of B(K→πνν ) due to the |Vcb|

4

dependence. CLEO has recently measured [36] a somewhat higher |Vcb| value of (46.9 ± 3.0) ×
10−3, which would cause a significant increase to B(K→πνν ) in equations (11) and (12).

The numerical solutions of equations (11) and (12) do not include correlations between ρ̄, η̄, X
and Vcb . Rather, these calculation are used to demonstrate the influence of different factors in the
calculation of B(K→πνν ). An evaluation [16] employing a scanning method and conservative
errors for VCKM obtained the following values: B(K+→π+νν )|SM = (7.5 ± 2.9) × 10−11 and
B(K◦L→π◦νν )|SM = (2.6±1.2)×10−11. A more recent evaluation with similar CKM inputs, but
employing a Gaussian fit obtained B(K+→π+νν )|SM = (7.2± 2.1)× 10−11 [17]. These values
are not very different from the results in equations (11) and (12). In some recent analyses [18–21]
with correlations included higher precision on B(K→πνν ) has been obtained.

For the values of the parameters |Vcb| , ρ̄ and η̄ in equations (11) and (12) we adopt the more
conservative approach of Reference [35]. A more aggressive approach [22] for the evaluation of
these errors can significantly increase the precision for B(K→πνν ). Solving equations (11) and
(12) with these values gives B(K+→π+νν )|SM = (7.4±1.2)×10−11 and B(K◦L→π◦νν )|SM =
(2.8 ± 0.5) × 10−11. The precision of the outputs of the standard UT fits is dependent on the
value of ξ, the SU(3) breaking correction to ∆MBs/∆MBd . The generally accepted value of ξ is
ξ = 1.15± 0.06; however, recent work would suggest a higher value of ξ = 1.18± 0.04+0.12

−0.0 [37]
(or even as high as ξ = 1.32± 0.10 [38]).
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Given the strong dependence of equations (11) and (12) on |Vcb| , we consider an estimate
of B(K+→π+νν ) that is essentially independent of |Vcb| . This estimate is also independent of
∆MBs/∆MBd . It is based solely on |εK | and aψK , is remarkably competitive to other estimates,
and has the advantage of simplicity.

In this work we directly evaluate λt to calculate B(K→πνν ) from (6) and (8). This avoids
the use of ρ̄ and η̄, as has been used in previous calculations of B(K→πνν ). This approach has
been discussed in the literature [24,23], but as far as we know, no calculations of B(K→πνν )
exist by this method. In order to minimize uncertainty from |Vcb| , it is natural to consider
|εK | and aψK in terms of the kaon UT1. We recall that λu = VudV

∗
us ' λ(1 − 1

2λ
2) is real, and

λc = VcdV
∗
cs has a very small complex phase ϕ(λc) ' Imλt/λ ' 6 × 10−4. The phase of Vts is

ϕ(Vts ) ' −π + Imλt ∗ λ/|Vcb|
2 = −π + 0.0172 = −π + 1.0◦. The phase of Vtd is ϕ(Vtd) = −β

and the angle (βK) between λt and λu is

βK = π − ϕ(VtdV
∗
ts) = π − ϕ(Vtd) + ϕ(Vts) = β + 1.0◦

= (24.6± 2.3)◦. (13)

This angle is very close to β, which in the SM is extracted cleanly from the precise measurement
of aψK , the CP asymmetry in B◦d→J/ψK◦ decays: sin 2β = 0.734 ± 0.054 [39]. We use an
iterative procedure, starting with βK = β, from our fit to derive Imλt and recalculate βK =
β + Imλt ∗ λ/|Vcb|

2. This procedure converges after one iteration since the correction to β

is small. There is also a small dependence on |Vcb| ; however, a 10% change in |Vcb| results
in only a 0.6% shift in B(K+→π+νν ), which is significantly less than the uncertainty in our
result. For all practical purposes our result is independent of |Vcb| . The preferred solution for
β, based on other SM input, such as Vub /Vcb is β = (23.6 ± 2.3)◦, so we shall only consider
this particular solution. The extraction of sin 2β from aψK is also clean in models with Minimal
Flavor Violation (MFV) [25,26,22]. In these models there are no new phases and all of the
influences of new physics are in modifications to the Inami-Lim functions.

In the Standard Model, the apex of the kaon UT (λat ) is constrained by various measurements
as shown in Fig. 2 (without errors). The constraint from |εK | is expressed as [10, 40–42]

|εK | = L · B̂K Imλt · {Reλc[ηccS0(xc)− ηctS0(xc;xt)]

−Reλt · ηtt · S0(xt)} (14)

with parameters as shown in Table 1. We can find the apex of the kaon UT as the intercept of
the |εK | curve with the line representing the constraint from aψK :

Imλt = −tanβK ·Reλt = (−0.458± 0.049) ·Reλt. (15)

To calculate a probability density function (PDF) for λat , we follow the Bayesian approach
of References [43, 44] and [22]. Let f(x) be the PDF for x, where x is a point in the space of
(βK , |εK | , B̂K , mt, mc, λ, αs, ηcc, ηct, ηtt). Equations (14) and (15) define the mapping from
x to λat . Through these equations and f(x), we derive f(λat ), the PDF for λat . f(x) depends
on the PDF’s for the components of x. We assume that the component PDF’s are independent
from one another except for the small dependence of ηcc on mc and αs (discussed below). The
component PDF’s are taken from Table 1.

1We expect that a precise determination of the apex of the kaon UT (λat ) will be available, entirely from kaon
decay data, in the near future. In the meantime, it is necessary to use some data from the B-system, so we chose
to augment |εK | with the theoretically clean measurement of the CP asymmetry aψK from the B-system.
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+  →
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+ νν
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βK

Re λt x 104
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t x
 1
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t
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Figure 2. The apex of the kaon unitarity triangle is
λat (no errors are shown). The circle la-
beled Vub is described by (24) with a radius
R∼Vcb Vub . The thick black lines (|εK | and
aψK ) illustrate the main constraints used
in this paper. The dashed lines illustrate the
constraints from K→πνν . The constraint
from ∆MBd is shown as the circle centered
at the origin. The inset shows the triangle
(not drawn to scale).

Fig. 3 shows the PDF for λat . We find the following central values:

Reλat = (−2.85± 0.29)× 10−4

Imλat = (1.30± 0.12)× 10−4

}

. (16)

Re λt x 104

Im
 λ

t x
 1

04

0

1

2

3

4

-4 -3 -2 -1 0

Figure 3. 1 σ and 2 σ C.L. intervals on λat ,
obtained from the measurements
of |εK | and aψK .

Mean = 7.07 x 10-11

RMS  = 1.03 x 10-11

B(K+ → π+νν) x 1010

0

0.25

0.5

0.75

1

0 0.5 1 1.5 2

Figure 4. The PDF for B(K+→π+νν )|SM ,
obtained from the measurements
of |εK | and aψK . The 95% C.L.
upper limit is 8.9× 10−11 and 95%
C.L. lower limit is 5.6× 10−11.

For B(K+→π+νν )|SM we obtain from Equations (6) and (16):

B(K+→π+νν )|SM =
{

[ReλcfF (xc) +X(xt)Reλ
a
t ]

2

+[X(xt)Imλ
a
t ]

2
}
·
R+

λ2

= (7.07± 1.03)× 10−11. (17)

The three largest contributions to the uncertainty are due to B̂K (0.69×10−11),mc (0.44×10−11)
and aψK (0.49 × 10−11). The probability distribution for B(K+→π+νν )|SM is presented in
Fig. 4.
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Table 1. Some SM parameters used for evaluation of the standard unitarity triangle, the kaon unitarity
triangle, and B(K→πνν )|SM . The subscript G(U) denote the Gaussian (Uniform) proba-
bility density distribution for the errors. Errors shown without subscripts are assumed to be
Gaussian.

λ = |Vus| = 0.222± 0.002
ρ̄ = 0.22± 0.10
η̄ = 0.35± 0.05
|Vcb| = (41.2± 2.0) · 10−3

|Vub| = (3.6± 0.7)× 10−3





PDG—2002 [35]

ρ̄ = 0.173± 0.046
η̄ = 0.357± 0.027
|Vcb| = (40.6± 0.8) · 10−3





[22]

βK = β + 1◦ = (24.6± 2.3)◦

|εK | = (2.282± 0.017) · 10−3 [35]
B̂K = 0.86± 0.06G ± 0.14U [37,53]
mc = m̄c = 1.3± 0.1GeV/c2

mt = m̄t = 166± 5GeV/c2

X(xt) = 1.52± 0.05
F (xc) = 2

3X
e
NL(xc) + 1

3X
τ
NL(xc)

= (9.82± 1.78) · 10−4

Λ
(4)

MS
= 0.325± 0.08GeV






[1]

f = 1.03± 0.02 [14]
f · F (xc)/X(xt) = (6.66± 1.23) · 10−4

S0(xc) = (2.42± 0.39) · 10−4

S0(xc, xt) = (2.15± 0.31) · 10−3

S0(xt) = 2.38± 0.11
ηcc = 1.45± 0.38 [40]
ηct = 0.47± 0.04 [41]
ηtt = 0.57± 0.01 [42]
L = 3.837× 104 [30]






Inami− Lim
functions and
QCD corrections
forK0 � K̄0 and
|εK | evaluation

|Vcb| (incl.) = (40.4± 0.7G ± 0.8U) · 10−3 [54]
|Vcb| (excl.) = (42.1± 1.1G ± 1.9U) · 10−3 [54]
|Vub| (incl.) = (40.9± 4.6G ± 3.6U) · 10−4 [22]
|Vub| (excl.) = (32.5± 2.9G ± 5.5U) · 10−4 [22]
∆mBd = 0.489± 0.008 ps−1 [35]

fBd

√
B̂Bd = 230± 30G ± 15U MeV






∆MBd

and |Vub|
parameters
used in
evaluating the
constraint on
λa

t in Fig. 5

ξ = fs
fd

√
B̂s
B̂d

= 1.15± 0.06
}

old value

ξ = 1.32± 0.10 [38]
ξ = 1.18± 0.04+0.12

−0.0 [37]
ξ = 1.22± 0.07 [55]





new data with
chiral log extrapolation

In obtaining the results of equation (17) we have accounted for the correlations between
|εK | (one of the inputs for determining λat ), F (xc) and X(xt) through the variables xc, xt, and

Λ
(4)

MS
. The functions X(xt) and F (xc,Λ

(4)

MS
) are given in Reference [1], from which we have

parameterized Table 1 to get:

F (xc,Λ
(4)

MS
)× 104 = 9.82 + 16.58(mc − 1.3)

+7.8(0.325− Λ
(4)

MS
), (18)

7



where
Λ

(4)

MS
[GeV ] = 0.341 + 16.7(−0.119 + αs(MZ)). (19)

Equation (19) is accurate to 0.7% for αs in the range 0.116 to 0.122 [45]. The expression for
|εK | (and the determination of the apex, λat ) has a dependence on xc and xt through the Inami-
Lim functions S0(xc), S0(xt) and S0(xc, xt). In addition, the NLO correction ηcc has the following
dependence [45]:

ηcc = (1.46± σ1)(1− 1.2(
mc

1.25
− 1))

×(1 + 52(αs(MZ)− 0.118)) (20)

with
σ1 = 0.31(1− 1.8(

mc

1.25
− 1))(1 + 80(αs(MZ)− 0.118)). (21)

The largest correlation throughmc causes both endpoints of the vector describing B(K+→π+νν ),
λat and ReλcfF (xc)

X(xt)
to move in similar directions, so that the uncertainty on the length of the vec-

tor is smaller than the uncertainties in either endpoint. Inclusion of the correlations due to xc,
xt and Λ

(4)

MS
reduces the uncertainty in B(K+→π+νν )|SM by ∼20%.

For K◦L→π◦νν we obtain from (8) and (16):

B(K◦L→π◦νν )|SM = R0
X(xt)

2

λ2
[Imλat ]

2

= (2.60± 0.52)× 10−11. (22)

The four largest contributions to the uncertainty are due to B̂K (0.37 × 10−11), aψK (0.23 ×
10−11), mc (0.16× 10−11) and mt (0.08× 10−11).

The results of these new calculations (17) and (22) of K→πνν branching ratios from fits to
λt are in a good agreement with the calculations based on the standard unitarity triangle vari-
ables (11) and (12) but are free of uncertainties in |Vcb| and are independent of ∆MBs/∆MBd .
The main source of uncertainty in (17) and (22) is the lattice calculation of B̂K = 0.86± 0.15.
(We note that some lattice calculations using domain-wall fermions [46,47,18] find values of
B̂K that are 10–15% lower than the recent world average [37,48] that we use in Table 1.) If
future lattice QCD calculations [49] can significantly reduce the uncertainty in B̂K , an improve-
ment in B(K→πνν )|SM will be possible.

Given the difficulty of assigning PDF’s to theoretical uncertainties, we explore the influ-
ence of a more conservative scanning technique on the uncertainty in B(K+→π+νν )|SM .
We determine λat again from only |εK | and aψK , using gaussian errors for all quantities ex-
cept B̂K and mc, which are scanned throughout their ranges: 0.72< B̂K <1.0 and 1.2<
mc <1.4. For B̂K =0.72 and mc=1.4, which maximizes B(K+→π+νν ), the 95% CL up-
per limit is B(K+→π+νν )|SM < 9.9 × 10−11. For B̂K =1.00 and mc=1.2, which minimizes
B(K+→π+νν ), the 95% CL lower limit is B(K+→π+νν )|SM > 5.0× 10−11. These limits are
not much worse than those derived from Fig. 4.

We’ve emphasized that our estimate uses only aψK and |εK | . Nevertheless, it is interesting
to consider how the measurements of ∆MBd and |Vub| would constrain λat . Here we will use the
more aggressive treatment of |Vcb| errors (see Table 1) in order to obtain the smallest errors on
B(K+→π+νν ). From the following relations:

∆mBd =
GF
6π2

M2
WmBdf

2
Bd
B̂BdηBdS0(xt)|VtdV

∗
tb|

2,

0 = VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb

8



and using the approximations of (9): V ∗tb ≈ 1, Vus = λ, Vud ≈ (1 − λ2/2), and Vcb ≈ −Vts, we
convert the equations above into:

∆mBd =
GF
6π2

M2
WmBdf

2
Bd
B̂BdηBdS0(xt)

|λt|2

|Vcb|2
, (23)

|λt| = |V
∗
ubV

∗
cb(1− λ

2/2)− λ(V ∗cb)
2|. (24)

These two equations describe two circles whose intersections contain the apex of the kaon UT
(see Fig. 2), and are correlated somewhat through Vcb . Similar to the case of |εK | , with large
uncertainties from B̂K , there are large uncertainties in the extraction of λat from the ∆MBd and
|Vub| constraints, with large uncertainties from f2

Bd
B̂Bd , |Vub| and |Vcb| . The uncertainty on

the constraint from B-mixing may be significantly improved by the addition of ∆MBs , once
the situation with ξ is resolved (this will be further improved once ∆MBs is actually observed).
Using the Bayesian procedure described earlier and the parameters in Table 1, the PDF for λat
derived solely from the constraints of ∆MBd and |Vub| is shown in Fig. 5. We see that this PDF
does not constrain the kaon UT apex as well as aψK and |εK | . Combining all four constraints,
we get the PDF for B(K+→π+νν ) shown in Fig. 6, which is only slightly more precise than
Fig. 4. From this combined analysis we obtain

B(K+→π+νν )|SM = (7.22± 0.91)× 10−11,

B(K◦L→π◦νν )|SM = (2.49± 0.42)× 10−11. (25)

Re λt x 104

Im
 λ

t x
 1

04

0

1

2

3

4

-4 -3 -2 -1 0

Figure 5. 1 σ and 2 σ C.L. intervals on λat ,
obtained from the constraints of
∆MBd and |Vub| .

Mean = 7.22 x 10-11

RMS  = 0.91 x 10-11

B(K+ → π+νν) x 1010

0

0.25

0.5

0.75

1

0 0.5 1 1.5 2

Figure 6. The PDF for B(K+→π+νν )|SM
obtained from the constraints from
|εK | , aψK , ∆MBd , and |Vub| .

The CKM matrix appears to be the dominant source of CP violation. However, some mo-
dels [50] allow for a significant contribution of new physics to B(K→πνν ) while preserving the
equality between sin 2β as measured from aψK and global CKM fits. A crucial test of the CKM
description will be to compare β derived from B(K→πνν ) to that from aψK [12, 27–29]. The
most important new information on the CKMmatrix will be measurements of B(K+→π+νν ) [9]
and B(K◦L→π◦νν ) [51] to 10% precision. The combination of these, in context of the SM,

9



will determine sin 2β to 0.05 [30], competitive with the current uncertainty on sin 2β . The
comparison of this angle obtained from B(K→πνν ) with that from aψK will provide a very
strong test of the SM description of CP-violation.

Another critical test of the SM will be the direct comparison of B(K+→π+νν ) to ei-
ther ∆MBs/∆MBd , which in the SM both directly measure |Vtd| , or to evaluations of
B(K+→π+νν )|SM such as this work. Currently, the E787 measurement of B(K+→π+νν ) =
(15.7+17.5

−8.2 ) × 10−11 is consistent with the SM expectation, but the central experimental value
exceeds it by a factor of two. To date there is only a limit on ∆MBs > 14.4ps−1 (95%
C.L.) [52], but it is likely to be observed soon. Until ∆MBs is observed, this limit can be
used to set an upper limit on B(K+→π+νν ) [1]. A recent calculation of this limit [17] gives
B(K+→π+νν )|SM < 13.2 × 10−11, which is below the central experimental value [7]. This
work used a value of ξ = 1.15 ± 0.06, whereas a higher value of ξ would raise this upper limit.
Our work is an estimation of B(K+→π+νν )|SM based solely on |εK | and aψK and is not de-
pendent on |Vcb| or ∆MBs/∆MBd . Our 95% C.L. upper limit is 8.9 × 10−11 with the largest
systematic error of this approach coming from B̂K . The uncertainty from our prediction is
comparable to the expected experimental uncertainties that might be achieved in the future
measurements of K+→π+νν [8,9]. An experimental measurement significantly larger that de-
termined from ∆MBs/∆MBd or our 99% C.L. limit of B(K+→π+νν )|SM < 10× 10−11 will be
a strong indication of new physics.
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Note

During the final preparation of this work for publication we found that Reference 56 consid-
ered fitting for the apex of the UT from the CP-violating data only (|εK | and aψK ), as we do.
However, Reference 56 used (ρ̄, η̄), which is dependent on |Vcb| and is not as suitable for analysis
of K→πνν .
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