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Abstract

Pirogov Yu.F. Gravity as the Affine Goldstone Phenomenon and Beyond: IHEP Preprint 2004–20. –
Protvino, 2004. – p. 18, refs.: 10.

The two-phase structure is imposed on the world continuum, with the graviton emerging as the
tensor Goldstone boson during the spontaneous transition from the affinely connected phase to the metric
one. The physics principle of metarelativity, extending the respective principle of special relativity, is
postulated. The theory of metagravitation as the general nonlinear model GL(4, R)/SO(1, 3) in the
arbitrary background continuum is built. The concept of Metauniverse as the ensemble of the regions
of the metric phase inside the affinely connected phase is introduced, and the possible bearing of the
emerging multiple universes to the fine tuning of our Universe is conjectured.

Аннотация

Пирогов Ю.Ф. Гравитация как аффинное голдстоуновское явление и далее: Препринт
ИФВЭ 2004–20. – Протвино, 2004. – 18 с., библиогр.: 10.

На мировой континуум наложена двухфазная структура, так что гравитон возникает как тен-
зорный голдстоуновский бозон при спонтанном переходе от фазы с аффинной связностью к ме-
трической фазе. Постулируется физический принцип метаотносительности, расширяющий соот-
ветствующий принцип специальной относительности. Построена теория метагравитации как общая
нелинейная модель GL(4, R)/SO(1, 3) в произвольном фоновом континууме. Вводится концепция
Метавселенной как ансамбля областей с метрической фазой внутри фазы с аффинной связностью, и
указывается на возможное отношение возникающей множественности вселенных к проблеме тонкой
настройки нашей Вселенной.
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Introduction

The General Relativity (GR) is the well-stated theory attributing the gravity to the Rieman-
nian geometry of the space-time. Nevertheless, the ultimate nature of gravity awaits, conceiv-
ably, its future explanation. In this respect, it is of great interest the approach to gravity as the
Goldstone phenomenon corresponding to the broken global affine symmetry [1,2]. Originally, it
was realized as the nonlinear model GL(4, R)/SO(1, 3) in the Minkowski background space-time,
as distinct from the geometrical framework of the GR.

In the present paper, we adhere to the viewpoint that the above construction is more than
just the mathematical one, but has a deeper physics foundation underlying it. In this respect,
the new insights motivating and extending the Goldstone approach to gravity are put forward.
Of principle, we go beyond the framework of the Riemannian geometry. Namely, we start with
the world continuum considered as the affinely connected manifold without metric and end up
in the space-time with the effective Riemannian geometry. Our main results are threefold.

(i) The physics principle of the extended relativity, or the metarelativity, is introduced as a
substitution for the special relativity. It states the physics invariance, at an underlying level, rela-
tive to the transformations within the extended set of the local coordinates, including the inertial
ones. The principle justifies the pattern of the affine symmetry breaking GL(4, R) → SO(1, 3)
required for the Goldstone approach to gravity.

(ii) The extended theory of gravity, or the metagravitation, with the GR as the lowest ap-
proximation, is built as the proper nonlinear model in an arbitrary background continuum with
the affine connection. The natural hierarchy of the possible GR extensions, according to their
mode of the affine symmetry realization, is put forward.

(iii) The extended Universe, or the Metauniverse, as the ensemble of the Riemannian metric
universes inside the affinely connected world continuum is considered. It is conjectured that the
multiple universes may clarify the fine tuning problem of our Universe.

The contents of the paper are as follows. In sec. 1, the principle of metarelativity is in-
troduced. The spontaneous breaking of the respective global symmetry, the affine one, with
the residual Poincare symmetry and the emerging tensor Goldstone boson is then considered. In
sec. 2, the nonlinear realization of the broken affine symmetry is studied. In sec. 3, the respective
nonlinear model in the tangent space is developed. Its prolongation, as the metagravitation, to
the arbitrary world coordinates is presented in sec. 4. Finally, the concept of the Metauniverse
is discussed in sec. 5, with some remarks in conclusion.
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1. Metarelativity

1.1. Affine symmetry

Conventionally, the GR starts by postulating that the world continuum, i.e., the set of the
world events (points), is the Riemannian manifold. In other words, a metric is imposed on the
world ab initio. The metric specifies all the fine properties of the continuum converting the latter
into the space-time. Nevertheless, not all of the properties of the space-time depend crucially
on the metric 1. To appreciate the deeper meaning of the gravity and the very space-time, one
needs possibly go beyond the Riemannian geometry.

To this end, consider the space-time not as a priori existing but as emerging in the processes
of the world structure formation. Namely, suppose that at an underlying level the continuum
is endowed only with the topological structure (without metric, yet). More particularly, it is
the affinely connected manifold. The affine connection supports such the detailed continuity
properties, as the parallel transport of the tensor fields, their covariant derivatives, etc. In
particular, the connection defines the curvature tensor as a result of the parallel transport of a
vector around the infinitesimal closed contour. But, there is yet no geometrical structures which
would be inherent in the metric, such as the interval, distances, angles, etc.

Let xμ, μ = 0, . . . , 3 be the world coordinates, generally, in the patches 2. There being, in
absence of the metric, no partition of the continuum onto the space and time, the index 0 has
yet no particular meaning and is just the notational one. Call all the structures related to the
underlying level of the world continuum as the background ones. Let ψ̄λμν(x) be the background
affine connection and let ξ̄α be the background related coordinates where the connection have a
particular, to be defined, form ψ̄γαβ(ξ̄). The connections are related as usually:

ψ̄γαβ(ξ̄) =
∂xμ

∂ξ̄α
∂xν

∂ξ̄β

(
∂ξ̄γ

∂xλ
ψ̄λμν(x)−

∂2ξ̄γ

∂xμ∂xν

)

. (1)

It follows thereof, that the symmetric and antisymmetric parts transform independently, the first
one transforming inhomogeneously, whereas the second one homogeneously. In particular, being
zero in a point in some coordinates, the antisymmetric part (the torsion) τ̄λμν ≡ 1/2 (ψ̄λμν −
ψ̄λνμ) remains to be zero independent of the coordinates. For reason stated later on in this
section, put the background torsion to be absent identically, τ̄λμν = 0. As for the symmetric
part, one is free to choose the special coordinates to make the physics description as simple as
possible, not affecting the physics content.

So, let P be a fixed but otherwise arbitrary point (the reference point) with the world
coordinates Xμ. One can nullify the symmetric part of the connection in the reference point by
adjusting the proper coordinates to the point. To this end, let us put

ξ̄αP = Ξ̄
α + ēαλ(X)

(
(x−X)λ +

1

2
ψ̄λμν(X) (x−X)

μ(x−X)ν
)
+O((x−X)3), (2)

with α = 0, . . . , 3 and Ξ̄α = ξ̄αP (X). In the above, ē
α
λ(X) ≡ ∂ξ̄αP /∂x

λ|x=X is the tetrad, with
ēλα(X) being the inverse one. The tetrad remains still liable to further determination. It is seen

1Cf. the reflections on the space-time structure due to E. Schrödinger [3].
2At this stage, the coordinates are merely of the mathematical nature. The procedure of their physical

prescription is to be clarified after the metric emerges.
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that the affine connection vanishes in the reference point: ψ̄γαβ(Ξ̄) = 0 3, 4. In the vicinity
of P , it looks like:

ψ̄γαβ(ξ̄P ) =
1

2
ρ̄γαδβ(Ξ̄) (ξ̄P − Ξ̄)

δ +O((ξ̄P − Ξ̄)
2), (3)

with ρ̄γαδβ(Ξ̄) being the background curvature tensor in the reference point.
Let us consider the whole set of the coordinates {ξ̄αP } with the property ψ̄

α
βγ(Ξ̄) = 0. The

allowed group of transformations of the respective coordinates is the inhomogeneous general
linear group IGL(4, R) = T4 �GL(4, R) (the affine one):

(A, a) : ξ̄αP → ξ̄′αP = A
α
β ξ̄
β
P + a

α, (4)

with A being an arbitrary nondegenerate matrix 5. Under these, and only under these transfor-
mations, the affine connection is still equal to zero. The group is the global one in the sense that
it transforms the local, i.e., P -related coordinates in the global manner, i.e., for all the contin-
uum at once (at least, in the patch containing P ). The respective coordinates will be called the
local affine ones 6. In these coordinates, the continuum is approximated by the affinely flat one
in a neighbourhood of the reference point. Particularly, the covariant derivative in the affine
coordinates in the point P coincides with the ordinary one.

The affine group IGL(4, R) is 20-parametric and extends the 10-parameter Poincare group by
the dilatation, varying the scales [4], and the nine special affine transformations, preserving the
volumes. They belong, respectively, to the multiplicative group R of the positive real numbers:

R : ξ̄αP → ξ̄′αP = e
−λξ̄αP , (5)

with λ any real, and to the special linear group SL(4, R) 3 A0, with detA0 = 1,
Conventionally, the affine group (except for the Poincare subgroup and, sometimes, the

dilatation) was considered as nothing but a part of the general covariance group, resulting in
no special physics content. We propose to raise the status of the affine group and to consider
the latter as the physics invariance symmetry. To this end, let us introduce the principle of the
extended relativity, or the metarelativity, stating that the physics laws, at the underlying level,
are invariant relative to the choice of the affine coordinates. This extends the physics symmetry
from the Poincare symmetry to the affine one. Stress that this extension concerns the physics
content. It determines the structure of the theory and is in no way liable to elimination by
means of the general covariance.

1.2. Spontaneous symmetry breaking

According to the special relativity, the local physics is invariant just under the Poincare
symmetry. There is known no exact affine symmetry. Thus, the latter should be broken in
transition from the underlying level to the effective one. We postulate that this is achieved due

3It is clearly impossible to fulfill this conditions identically in the whole continuum untill the latter is the
affinely flat one.

4Here and in what follows, the bar sign means the background affiliation. The Greek indices α, β, . . . are those
of the special coordinates nullifying locally the background connection, while the indices λ, μ, . . . are the arbitrary
world ones.

5Note that the nonzero background torsion, being changing under A, would violate explicitly the affine co-
variance of the theory. Just to abandon this, the torsion is put to be zero.

6Being tacitly understood for the affine coordinates, the term “local” will be omited for short.
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to the spontaneous emergence of the background metric in the world continuum. The metric is
assumed to be symmetric with the Minkowskian signature (+ − −−) and correlated with the
affine connection so that it looks in the affine coordinates as

ϕ̄αβ(ξ̄P ) = η̄αβ −
1

2
ρ̄γαδβ(Ξ̄) (ξ̄P − Ξ̄)

γ(ξ̄P − Ξ̄)
δ +O((ξ̄P − Ξ̄)

3). (6)

Here one puts η̄αβ ≡ ϕ̄αβ(Ξ̄) and ρ̄γαδβ(Ξ̄) = η̄γγ′ ρ̄
γ′
αδβ(Ξ̄). The metric (6) is such that the

Christoffel connection φ̄γαβ(ϕ), determined by the metric, matches with the affine connection
ψ̄γαβ in the sense, that the connections coincide locally, up to the first derivative: φ̄γαβ =
ψ̄γαβ + O((ξ̄P − Ξ̄)2). This is quite reminiscent of the well-known fact that the metric in the
Riemannian manifold may be approximated locally, up to the first derivative, by the Euclidean
metric. In the wake of the emerging background metric, there appears the (yet primordial)
partition of the world continuum onto the space and time.

Under the linearly realized affine symmetry, the background metric ceases, in general, to be
invariant. But it still possesses an invariance subgroup. To find it note that, without any loss
of generality, one can choose among the affine coordinates the particular ones with η̄αβ being
in the Minkowskian form η = diag (1,−1,−1,−1). The respective coordinates will be called the
background inertial ones 7. Under the general linear transformations, one has

(A, a) : η → η′ = A−1T ηA−1 6= η, (7)

whereas the Lorentz transformations A = Λ still leave η invariant:

(Λ, a) : η → η′ = Λ−1T ηΛ−1 = η. (8)

It follows that the group of invariance is isomorphous to the Lorentz group SO(1, 3) ∈ GL(4, R)
for any fixed η̄αβ . Physically, the spontaneous symmetry breaking corresponds to fixing, modulo
the Lorentz transformations, the class of the distinguished coordinates among the affine ones.
These coordinates correspond to the particular choice for η̄αβ . Of course, the fact that the
distinguished coordinates are precisely those with the Minkowskian ηαβ is no more than the
matter of convention corresponding to the proper redefinition of the basis of the affine group.

Thus under the appearance of the metric, the affine symmetry is broken spontaneously up
to the residual Poincare group ISO(1, 3):

IGL(4, R)
MA−→ ISO(1, 3). (9)

For the symmetry breaking scale MA, one expects a priori MA ∼ MPl, with MPl being the
Planck mass. More particularly the relation between the scales will be discussed in sec. 4 8.

1.3. Poincare symmetry

Generically, the group GL(4, R) possesses the 16 affine generators σαβ . By means of ηαβ ,
one can redefine the generators in the background inertial coordinates as σαβ ≡ σαγη

γβ and

7This is to distinguish them from the effective inertial coordinates, to be defined in sec. 4.
8Note, in particular, that at the level of GL(4, R), there are only the infinite dimensional spinor representations.

Thus the physics at the underlying level shoud be quite unusual. Only at the level of SO(1, 3), there appear the
finite dimensional spinors to be associated with the ordinary matter.
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substitute the later ones by the symmetric and antisymmetric combinations σαβ± = σαβ ± σβα.
The proper commutation relations read as follows:

1

i
[σαβ± , σ

γδ
± ] = ηαγσ

βδ
− ± η

αδσ
βγ
− ± (α↔ β),

1

i
[σαβ− , σ

γδ
+ ] = ηαγσ

βδ
+ + η

αδσ
βγ
+ − (α↔ β). (10)

The generators σαβ− correspond to the residual Lorentz symmetry, whereas σαβ+ to the broken
affine symmetries. In particular, one has in the adjoint representation (σαβ)γδ = 1/i δαδ δ

γ
β , so

that the generators σ± in this representation are as follows:

(σαβ± )
γ
δ =
1

i
(δαδ η

βγ ± δβδ η
αγ). (11)

The ten broken generators contain, in turn, the dilatation one ∼ iηαβσ
αβ
+ . The latter commutes

with all the generators and is thus proportional to unity in any irreducible representation.
Due to the spontaneous breaking, the affine symmetry should be realized in the nonlinear

manner [5], with the nonlinearity scale MA, the Poincare symmetry being still realized linearly.
The unitary linear representations of the latter correspond to the matter, as usually. The broken
part IGL(4, R)/ISO(1, 3) should be realized in the Nambu-Goldstone mode. Accompanying the
spontaneous emergence of the metric, there should appear the 10-component Goldstone boson
which corresponds to the ten generators of the broken affine transformations. The effective
field theory of the boson is given by the relevant nonlinear model to be studied in the next two
sections. First, we study the three kinds of the substance, i.e., the affine Goldstone boson, matter
and radiation, which are characterized by the three distinct types of the nonlinear realization.
With these building blocks, we then construct the nonlinear model itself.

2. Nonlinear realization

2.1. Affine Goldstone boson

Let ξ̄αP be the background inertial coordinates adjusted to the space-time point P . Attach
to this point the auxiliary linear space TP , the tangent space in the point. TP is isomorphous
to the Minkowski space-time. By definition, the tangent space is the structure space of the
theory, whereupon the realizations/representations of the physics space-time symmetries, the
affine and the Poincare one, are defined. Introduce in TP the coordinates ξαP , the counterpart
of the background inertial coordinates ξ̄αP in the space-time. By construction, the connection in
the tangent space is zero identically. For the connection in the space-time in the the point P to
be zero, too, the coordinates are to be related as ξαP = ξ̄αP + O((ξ̄P − Ξ̄)

3) for ξ̄αP in the patch
containing P . In accord with the affine symmetry breaking, we consider the coordinates ξαP as
the preferred ones, wherein all the constructions in TP are built 9.

According to ref. [5], the nonlinear representation (the realization) of the symmetry G spon-
taneously broken to the symmetry H ⊂ G can be built on the quotient space K = G/H,
the residual subgroup H serving as the classification group. We are interested in the pattern
GL(4, R)/SO(1, 3), with the quotient space consisting of all the broken affine transformations.

9The point P being fixed, the coordinates in TP are designated in what follows simply as ξα, until stated
otherwise.
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Let k ∈ K, be the coset function on the tangent space, i.e., k(ξ) is the group element defined up
to the Lorentz transformation, k ∼ kΛ−1, with Λ ∈ SO(1, 3).

Under the arbitrary affine transformation ξ → ξ′ = Aξ+ a, the coset is to be transformed as

(A, a) : k(ξ)→ k′(ξ′) = Ak(ξ)Λ−1, (12)

where Λ is the appropriate transformation of the residual group, here the Lorentz one. One has
similarly: k−1 → Λk−1A−1. In the same time, by the very construction, the Minkowskian η
stays invariant under the nonlinear realization:

(A, a) : η → η′ = Λ−1T ηΛ−1 = η, (13)

in distinction with the linear realization eq. (7). Accounting for eq. (13), one gets in the other
terms:

(A, a) : k(ξ)η → k′(ξ′)η = Ak(ξ)ηΛT . (14)

To restrict k by the quotient space K, one should impose some auxiliary condition. E.g.,
impose the requirement that k is pseudosymmetric in the sense that kη = (kη)T (and similarly for
k−1). This ensures that k has ten independent components, indeed, in accord with the ten broken
generators. Under the affine transformations, this results in the restriction AkηΛT = ΛηkTAT .
This entails implicitly the dependence of the Lorentz transformation on the Goldstone boson:
Λ = Λ(A, k). Hereof, the term “nonlinear” follows. This construction implements the realization
of the whole broken group IGL(4, R). The residual Poincare subgroup ISO(1, 3) is still realized
linearly, i.e., Λ(A, k)|A=Λ ≡ Λ. And what is more, the dilatation R being Abelian, one gets
Λ(R, k) = 1, so that Λ(A, k) = Λ(±A0, k), with A ≡ ±RA0 and A0 ∈ SL(4, R).

By doing as above, one looses the explicit local Lorentz symmetry. For this reason, we will not
impose any gauge fixing condition. This could be considered as the linearization of the nonlinear
model, with the extra Goldstone degrees of freedom being eliminated by the gauge Lorentz
transformations Λ(ξ), independent of A. Now, for quantities in the tangent space, one should
distinguish two types of indices: the affine ones, acted on by the global affine transformations A,
and the Lorentz ones, acted on by the local Lorentz transformations Λ(ξ). To make this difference
explicit, designate the affine indices in the tangent space as α, β, etc, while the Lorentz ones
as a, b, etc. Choose k in the adjoint representation, so that it looks now like kαb (respectively,
k−1bα). In what follows, it is understood that the Lorentz indices are manipulated by means
of the Minkowskian ηab (respectively, ηab). So, in the component notation, kη looks like kαb

(similarly, ηk−1 is k−1aβ).

2.2. Matter

The affine symmetry contains the Abelian, though broken, subgroup of dilatation. For this
reason, the physical matter fields φs (the subscript s designating the species) may additionally
be classified by their scale dimensions. One puts

(A, a) : φs(ξ)→ φ′s(ξ
′) = elsλρs(Λ)φs(ξ), (15)

with ls being the scale dimension of the species φs and ρs(Λ) taken in the proper Lorentz
representation. Recall that the canonical dimension of the integer-spin particles is ls = 1 and

6



that of the half-integer spin particles is ls = 3/2. With account for the transformation det k →
e−4λdet k under dilatation, one can rescale the matter fields to the effective ones

φ̂s = (det k)
ls/4φs. (16)

The new fields are scale invariant, i.e. correspond to l̂s = 0, and transform simply as the Lorentz
representations. They are to be used in constructing the nonlinear model 10.

2.3. Radiation

From the point of view of the nonlinear realization, the gauge bosons constitutes one more
separate kind of the substance, the radiation. By definition, the gauge boson fields Vα transform
under A linearly as the derivative ∂α ≡ ∂/∂ξα:

(A, a) : V (ξ)→ V ′(ξ′) = A−1TV (ξ), (17)

corresponding thus to the scale dimension lV = 1. For this reason, redefine the gauge fields as
V̂a = k

α
aVα. The new fields transform as the Lorentz vectors

V̂ (ξ)→ Λ−1T V̂ (ξ) (18)

and correspond to l̂V = 0. These redefined gauge fields are to be used in the model building.
Altogether, this exhausts the description of all the three kinds of the substance: the affine
Goldstone boson, matter and radiation.

3. Nonlinear model

3.1. Nonlinear connection

To explicitly account for the residual symmetry, here the Lorentz one, it is convenient to
start with the objects transforming only under the latter symmetry. Clearly, any nontrivial
combinations of k and k−1 alone transform explicitly under A. Thus the derivative terms are
inevitable. To describe the latter ones, let us introduce the Maurer-Cartan one-form chosen as
follows:

Ω = ηk−1dk, (19)

with dk being the ordinary differential of k. Under the affine coordinate transformation ξ →
ξ′ = Aξ + a with the ensuing transformation k → k′ = AkΛ−1, the one-form transforms as the
Lorentz quantity:

Ω(ξ)→ Ω′(ξ′) = Λ−1TΩ(ξ)Λ−1 + Λ−1T ηdΛ−1, (20)

with dΛ being the differential of Λ(ξ). Here use is made of the relation ηΛη = Λ−1T for the
Lorentz transformations.

In the component notation, the so defined one-form looks like Ωab. Decompose it as

Ωab ≡
∑

±

Ω±ab =
∑

±

[ηk−1dk]±ab, (21)

10In the above, the scale dimension of k was chosen to be lk = −1. One could also conceive the more general
transformation law for k under R which would include the additional factor eΔlkλ, with Δlk being the extra scale
dimension of k. For simplicity, we restrict ourselves by the case Δlk = 0.
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where [. . .]± means the symmetric and antisymmetric parts, respectively. One sees that Ω±ab
transform independently as

Ω±(ξ)→ Ω′±(ξ′) = Λ−1TΩ±(ξ)Λ−1 + δ±, (22)

where

δ− = Λ−1T ηdΛ−1,

δ+ = 0. (23)

Transforming homogeneously, the symmetric part Ω+ can naturally be associated with the non-
linear covariant differential of the Goldstone field. At the same time, the antisymmetric part Ω−

transforms inhomogeneously and allows one to define the nonlinear covariant differential of the
matter fields: Dφ̂s = (d + i/2Ω

−
abΣ

ab
s )φ̂s, with Σ

ab
s being the Lorentz generators in the proper

representation ρs. The so defined Dφ̂s transforms homogeneously as the Lorentz representation,
like φ̂s itself.

The generic nonlinear covariant derivative Dα ≡ D/dξα transforms as the affine vector of
the global GL(4, R). The effective covariant derivative, which transforms as the Lorentz vector,
can be constructed as follows:

D̂a ≡ k
α
aDα = k

α
aD/dξ

α. (24)

Thus one gets for the covariant derivative of the one-form:

Ω̂±abc = k
γ
cΩ
±
ab/dξ

γ = [ηk−1∂̂c k]
±
ab, (25)

where
∂̂c ≡ k

γ
c∂γ = k

γ
c∂/∂ξ

γ (26)

is the effective (Goldstone boson dependent) partial derivative. It follows that Ω̂−abc could be used
as the connection for the nonlinear realization. Note, that this expression precisely corresponds
to the case of the nonlinear realization of the spontaneously broken internal symmetry, where
this connection is determined uniquely, being thus universal. But in the present case of the
space-time symmetry, the coordinates transform under the same group as the fields. This results
in the possible ambiguity of the nonlinear connection.

Namely, the transformation properties of the covariant derivative do not change if one adds
to the above minimal connection the properly modified terms Ω̂+abc, the latter ones transforming
homogeneously. For reason justified later on in this section, we choose for the nonminimal
connection the following universal combination:

ω̂abc = Ω̂−abc + Ω̂
+
cab − Ω̂

+
cba

= [ηk−1∂̂c k]
−
ab + [ηk

−1∂̂b k]
+
ca − [ηk

−1∂̂ak]
+
cb. (27)

The nonlinear covariant derivative of the matter fields now becomes

D̂cφ̂s =
(
∂̂c +

i

2
ω̂abcΣ

ab
s

)
φ̂s. (28)

The so defined D̂cφ̂s transforms under GL(4, R) homogeneously as the Lorentz vector times the
Lorentz representation ρs.
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Containing Ω̂+abc, the connection ω̂abc will be used to describe the tensor part of the affine
Goldstone boson through the generally covariant Lagrangian (see later on in this section). On
the other hand, the contraction Ω̂+ab

b will serve to describe the scalar dilaton as the part of
the affine Goldstone boson. As for another independent contraction Ω̂+bba, it can be shown
to correspond to the scalar-vector part of the boson with the wrong norm, violating thus the
microscopic causality. One could conceive also the additional kinetic terms for the tensor part
of the affine Goldstone boson, generically, in the form Ω̂+abcΩ̂

+abc and/or Ω̂+abcΩ̂
+bca. The latter

ones violate the general covariance and thus could endanger the fine properties of the GR. For
safety, all these additional contributions will be omitted 11.

3.2. Gauge interactions

Let V̂a be the generator valued gauge field for an internal gauge symmetry. Interacting
universally, the gauge fields are supposed to be coupled with the universal nonlinear connection
eq. (27). Taking into account the Lorentz generators in the adjoint representation eq. (11) (with
the opposite common sign and the obvious substitution for the indices), one gets the respective
nonlinear derivative as follows

D̂cV̂d =
(
δ
f
d ∂̂c + ω̂

f
dc

)
V̂f . (29)

It follows thereof, in particular, that D̂cηab = 0. Define the gauge strength as

F̂cd =
(
D̂c + iV̂c

)
V̂d − (c↔ d). (30)

Under the special choice eq. (27) for the nonlinear connection, the so defined gauge strength
takes the form F̂cd = k

γ
ck
δ
dFγδ with

Fγδ =
(
∂γ + iVγ

)
Vδ − (γ ↔ δ). (31)

Thus, F̂γδ does possess the correct transformation properties with respect to both the affine
symmetry and the internal gauge symmetry.

Further, consider the local Lorentz symmetry as the gauge one with the connection ω̂c ≡
1/2 ω̂abcΣ

ab, where Σab are some generic Lorentz generators. Define the corresponding gauge
strength for the tensor Goldstone boson as

Ĝcd = (∂̂c + i ω̂c) ω̂d − (c↔ d) ≡
1

2
R̂abcdΣ

ab. (32)

This gives
R̂abcd = ∂̂c ω̂abd − ω̂

f
ac ω̂fbd − (c↔ d). (33)

This quantity transforms homogeneously as the Lorentz tensor (and similarly for its partial
contraction R̂bd ≡ R̂abad). The total contraction

R̂ ≡ R̂abab = 2∂̂aω̂
ab
b − ω̂

fa
aω̂f

b
b + ω̂

fabω̂fba (34)

is the Lorentz scalar and can be used in building the Lagrangian for the Goldstone boson.

11In principle, one could not exclude some small microscopic causality violation not contradicting, of course, the
observations. Remarkably, these and other similar violations could be done as small as necessary by the choice
of the respective parameters. This is insured by the fact that in the limit when the proper parameters vanish,
the symmetry of the theory increases up to the general covariance.
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3.3. Lagrangian

(i) Lorentz invariant form The constructed objects can serve as the building blocks for the
nonlinear model GL(4, R)/SO(1, 3) in the tangent space. Postulate the equivalence principle in
the sense that the tangent space Lagrangian should not depend explicitly on the tangent space
counterpart of the background curvature ρ̄γαδβ given by eq. (6). Thus, the Lagrangian may be
written as the general Lorentz invariant function built of R̂, F̂ab, D̂aφ̂s and φ̂s. As usually, we
restrict ourselves by the terms containing two derivatives at the most 12.

The generic Lorentz (and, thus, affine) invariant Lagrangian in the tangent space is

L = Lg(R̂) + Lr(F̂ab) + Lm(D̂aφ̂s, φ̂s). (35)

In the above, the Goldstone boson Lagrangian Lg is chosen as follows

Lg = cgM
2
AR̂(ω̂abc), (36)

with cg being some dimensionless constant. Generically, the radiation Lagrangian Lr is as follows

Lr = −
1

4
tr(F̂ abF̂ab), (37)

whereas Lm is the proper matter Lagrangian. As for the radiation and matter, the proper
Lagrangians could well be the affine invariant Lagrangian of the Standard Model or of any its
extension. In fact, the given nonlinear model provides the shell for any field theory.

(ii) Affine invariant form The Lagrangian above gives the basic dynamical description
of the affine Goldstone boson, radiation and matter. The Lorentz quantities are necessary to
construct the Lagrangian. The latter being built, one can rewrite it in terms of the affine
quantities. This allows one to make explicit the geometrical structure of the theory and to relate
it with the gravity. This is achieved by the proper regrouping the factors kαa and k−1aα so that
to make, where possible, the affine indices to be explicit. Under the choice (27) for the nonlinear
connection, the Lagrangian becomes 13

L = cgM
2
AR(γαβ) + Lr(Fαβ) + Lm(Dαφs, φs). (38)

Here
γαβ = k

−1a
αηabk

−1b
β (39)

transforms as the affine tensor

γαβ → γ′αβ = A
−1γ

αγγδA
−1δ
β . (40)

It proves that R(γαβ) = R̂(ω̂abc) can be expressed as the contraction R = Rαβαβ of the tensor
Rγαδβ ≡ kγck−1aαk

−1d
δk
−1b
βR̂cadb, the latter in turn being related with γαβ as the Riemann-

Christoffel curvature tensor with the metric. In this, all the contractions of the affine indices are
understood with γαβ (respectively, γαβ).

12For reason stated in the next section, the additional contributions to the Goldstone boson Lagrangian are
disregarded. Similarly, the additional couplings of the boson with the matter are neglected, too.
13If the affine symmetry is exact, only the rescaled matter fields eq. (16) enter. Thus for notational simplicity,

they will be designated in what follows simply as φs, instead of φ̂s, until stated otherwise.
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Similarly, Dα looks like the covariant derivative for the matter fields

Dγφs =
(
∂γ +

i

2
ωabγΣ

ab
s

)
φs, (41)

with the spin-connection

ωabγ ≡ ω̂abc k
−1c
γ = k

β
a∇γk

−1
bβ − (a↔ b). (42)

In the above, ∇γk−1bβ ≡ (δαβ∂γ − Γ
α
βγ)k

−1
bα is the covariant derivative calculated with the

Christoffel connection

Γαβγ = kαak−1bβk
−1c
γ ω̂abc + k

α
a∂γk

−1a
β

=
1

2
γαδ

(
∂βγδγ + ∂γγδβ − ∂δγβγ

)
. (43)

In particular, one gets ∇γγαβ = 0 as the affine counterpart of the Lorentz relation D̂cηab = 0.
For the radiation Lagrangian one has the usual expression

Lr = −
1

4
tr(FαβFαβ), (44)

with Fαβ given by eq. (31). Finally, the matter Lagrangian is obtained straightforwardly from
Lm, eq. (35), with account for eq. (39) and the relation D̂a = kαaDα, eq. (24).

Clearly, Lg looks like the GR Lagrangian in the tangent space considered as the effec-
tive 14 Riemannian manifold with the metric γαβ , the Christoffel connection Γγαβ , the Riemann-
Christoffel curvature Rγαδβ , the Ricci curvature Rαβ , the Ricci scalar R and the tetrad kαa
(the inverse one k−1bβ). This is in no way accidental. Namely, as it is shown in ref. [2], under
the choice of the nonlinear connection eq. (27), the Lagrangian becomes conformally invariant,
too. In this, the dilaton of the conformal symmetry coincides with the affine dilaton, while the
vector Goldstone boson of the conformal symmetry, proving to be the derivative of the dilaton, is
auxiliary. Now, according to the theorem due to Ogievetsky [6], it follows that the theory which
is invariant both under the conformal symmetry and the global affine one is generally covariant,
as well. After the proper choice of the metric, this imposes the effective Riemannian structure
onto the tangent space 15. In the world coordinates, this will result in the GR. Precisely this
property justifies the above choice for the universal nonlinear connection. The affine Goldstone
boson proves to be nothing but the graviton in disguise. The additional terms in the Lagrangian
would violate the general covariance (see the next section).

4. Metagravitation

4.1. General covariance

The preceding construction referred to the tangent space TP in the given reference point P .
In the space-time, this construction makes generally sense only in the infinitesimal vicinity of P .

14In what follows, the term “effective” will be tacitly understood and omitted as a rule, while that “background”
will, in contrast, be retained.
15Remind that all the constructions in the tangent space TP are done really in the coordinates which are the

counterpart of the background inertial ones. The transitions to the general coordinates in TP are just the virtual
ones, and allow one to tame the otherwise arbitrary theory.
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The same holds for any other reference point. Due to the equivalence principle, by restricting to
the tangent space one introduces the separation between the infinitesimal local domain and the
rest of the world. The bundling of the different domains into a single whole, the world, is to be
achieved by independently attaching the tangent spaces to all the space-time points. Thus, let
the point P varies on the whole space-time. By construction, equate the affine quantities in the
point Ξ of the tangent space TP with the respective quantities in the point Ξ̄ of the space-time.
The Lorentz indices a, b, etc, refer now to any of the tangent spaces.

Accept the so defined Lagrangian as that for the space-time, being valid in the background
inertial coordinates in the infinitesimal neighbourhood of the point Ξ̄. After the subsequent
multiplication of the Lagrangian by the affine invariant volume element (−γ)1/2 d4Ξ̄ , γ ≡ detγαβ ,
one gets the contribution into the action of the infinitesimal neighbourhood of the space-time
point P . This is valid in the background inertial coordinates. Now the problem is to convert this
contribution into the arbitrary world coordinates and to sum over all the space-time points P .

The relation between the background inertial and world coordinates is achieved by means of
the background tetrad ēαμ(X) eq. (2) (and the inverse one ē

μ
α(X)) transforming as

A : ēαμ → ē′αμ = A
α
β ē
β
μ. (45)

Introduce the effective metric as follows:

gμν(X) = ē
α
μ(X)γαβ(Ξ̄)ē

β
ν (X). (46)

With account for eq. (40), this metric is invariant under the affine transformations

A : gμν → gμν , (47)

in line with the world coordinates:
A : Xμ → Xμ. (48)

On the contrary, construct the background metric

ḡμν(X) = ē
A
μ (X)ηAB ē

B
ν (X), (49)

where the generic index A means α or a, as appropriate (and similarly for B, etc). With account
for eq. (13), the so defined metric is clearly noninvariant under the arbitrary A:

A : ḡμν → ḡ′μν = ē
T
μA
T ηAēν 6= ḡμν , (50)

though being invariant under A = Λ. Likewise, the background interval ds̄2 = ḡμνdX
μdXν is

not invariant relative to the arbitrary affine transformations, whereas the effective one ds2 =
gμνdX

μdXν is invariant. Clearly, it is ds, not ds̄, to which the geometrical meaning is to be
attributed in the affine invariant theory.

The metric ḡμν is the world counterpart of the primordial background metric ϕ̄μν given in the
affine coordinates by eq. (6). The metric ḡμν approximates ϕ̄μν as closely as possible in the lack
of the knowledge of the primordial background curvature ρ̄γαδβ . The latter, according to the
equivalence principle, does not enter the tangent space Lagrangian. Respectively, the Christoffel
connection Γ̄λμν(ḡ) approximates with the same accuracy the primordial Christoffel connection
φ̄λμν(ϕ̄) and thus the primordial affine connection ψ̄λμν , i.e., Γ̄λμν ' φ̄λμν ' ψ̄λμν .
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Now, introduce the effective tetrad related with the background one as

eaμ(X) = k
−1a

β(Ξ̄) ē
β
μ(X). (51)

The effective tetrad transforms independently of A as the Lorentz vector:

eμ(X)→ e′μ(X) = Λ(X) eμ(X). (52)

Due to the local Lorentz transformations Λ(X), one can eliminate six components out of eaμ, the
latter having thus ten physical components. In this terms, the effective metric is

gμν(X) = e
a
μ(X)ηabe

b
ν(X). (53)

In other words, this tetrad defines the effective inertial coordinates. Physically, eq. (51) describes
the disorientation of the effective inertial and background inertial frames depending on the
distribution of the affine Goldstone boson (and thus the gravity) 16.

With account for the relation d Ξ̄α = ēαμdX
μ between the displacements of the point P in

the background inertial and world coordinates, and thus ∂ Ξ̄α/∂Xμ = ēαμ, one has

Γλμν = ē
λ
αē
β
μē
γ
νΓ
α
βγ + ē

λ
α∂μē

α
ν , (54)

where ∂μ = ∂/∂Xμ. This can be rewritten as usually:

Γλμν =
1

2
gλρ
(
∂μgρν + ∂νgρμ − ∂ρgμν

)
. (55)

By construction, the world indices are manipulated via gμν and gμν . The spin-connection looks
in the world coordinates as follows:

ωabμ = ωabγ ē
γ
μ = e

ν
a∇μeνb − (a↔ b), (56)

with the generally covariant derivative ∇μ defined via the Christoffel connection Γλμν , as usually.
Respectively, the covariant derivative of the matter fields looks like

Dμφs =
(
∂μ +

i

2
ωabμΣ

ab
s

)
φs. (57)

In the similar way, one finds the usual expressions for the Riemann-Christoffel tensor Rλμρν(g),
the Ricci tensor Rμν = Rλμλν , the Ricci scalar R = gμνRμν , as well as for the gauge strength

Fμν = (∂μ + iVμ)Vν − (μ↔ ν). (58)

Plugging the above modified objects into the Lagrangians for the affine Goldstone boson,
radiation and matter and integrating with the invariant volume element one gets the total
action including the Einstein-Hilbert one 17:

S =

∫ (
1

2
M2
PlR(gμν) + Lr(Fμν) + Lm(Dμφs, φs)

)

(−g)1/2 d4X, (59)

16This could be considered as the modified Mach’s principle.
17If desired, one could add to the Lagrangian the constant term, not yet violating the affine symmetry. This

would correspond to the cosmological constant.
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with g ≡ det gμν . In the above, the constant cg in eq. (38) is chosen so that cgM2
A = 1/(16πGN ) ≡

1/2M2
Pl, with GN being the Newton’s constant and MPl being the Planck mass. Note, that due

to the term
√
−g, the affine Goldstone boson enters the action also with the derivativeless

couplings, even in absence of the explicit affine symmetry violation. This differs principally from
the case of the internal symmetries. Varying the action with respect to the metric gμν one arrives
at the well-known equation of motion for gravity:

Rμν −
1

2
Rgμν =M

−2
Pl Tμν . (60)

In the above, Tμν is the conventional energy-momentum tensor of the radiation and matter,
produced by Lr and Lm.

Let us clarify the physics peculiarity of eqs. (59) and (60) from the point of view of the
Goldstone approach to gravity. Namely, to build the theory in the world coordinates, one
should bundle the tangent spaces in the neighbouring space-time points. To this end, one should
identify the points Ξα and Ξα+dΞα in the neighbour tangent spaces TP and TP+dP , respectively,
via equating the displacements dΞα = d Ξ̄α ≡ ēαμdX

μ. To allow this to be done unambiguously
in the generally covariant fashion, the theory in the tangent space proves to be required to be
generally covariant, too. This is the reason for the choice eq. (36) for the Goldstone boson
Lagrangian in the tangent space. Doing so and properly choosing the field variables, one can
express the theory exclusively in the internal dynamical terms. Otherwise, the matching of the
tangent spaces will depend on a number of the background parameter-functions. The next-of-
kin to the general covariance is the unimodular covariance, i.e., covariance with respect to the
transformations preserving the volume element. It proves to result in the minimal violation of the
general covariance in the space-time by means of the background scalar density ḡ ≡ det ḡμν only
(see the next item). Further weakening the requirement of the uniqueness of bundling extends
the set of the admissible theories in the tangent space, but results, instead, in the dependence of
the theory in the world coordinates on the more elaborate properties of the background manifold.
In the reasonable assumptions, it suffices to know only the background metric ḡμν .

4.2. General covariance violation

(i) Affine symmetry preservation In the GR, after the choice of the Lagrangian the theory
becomes unique, independent of the choice of the coordinates. Under extension of the tangent
space Lagrangian beyond the generally covariant one, the theory in the space-time ceases to be
generally covariant and thus unique. It depends not only on the Lagrangian but on the choice of
the coordinates, too. Relative to the general coordinate transformations, the admissible theories
divide into the inequivalent classes, each of which is characterised by the particular set of the
background parameter-functions. A priori, no one of the sets is preferable. Which one is suitable,
should be determined by observations. Each class consists of the equivalent theories related by
the residual covariance group. The latter consists of the coordinate transformations leaving the
background parameter-functions invariant. On the contrary, one class can be obtained from
another by the coordinate transformations changing these parameters.

To be more specific, consider the minimal possible extension of the tangent space Lagrangian
by means of the terms depending on σ̂a ≡ −Ω̂+bba. With account for eqs. (25) and (43), one
gets for σα ≡ k−1bασ̂b:

σα = Γ
β
βα = ∂ασ, (61)
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where σ ≡ 1/2 ln(−γ) and γ ≡ detγαβ . In these terms, one can add to the minimal Lagrangian
the additional kinetic piece for the affine Goldstone boson:

L′g = c
′
gM

2
Plγ
αβ∂ασ∂βσ, (62)

where c′g is a dimensionless constant
18. This Lagrangian violates the conformal symmetry in

the tangent space (more particularly, the local dilatation) though not violating the global affine
symmetry. As a result, it violates the general covariance, too, but preserves the unimodular
covariance, i.e., that leaving γ invariant.

It follows from eq. (46) that g = −γḡ, where ḡ = det ḡμν = −(det ēαμ)
2. In the world

coordinate, the Lagrangian L′g becomes

L′g = c
′
gM

2
Pl g

μν∂μσ∂νσ, (63)

with

σ ≡
1

2
ln(g/ḡ). (64)

Thus, all the background dependence of the nonminimal terms in the Lagrangian is determined
only by the scalar density ḡ. Note that ∂μσ transforms homogeneously and thus can not be
eliminated by the general coordinate transformations, though each one of the terms 1/2 ∂μ ln g =
Γλλμ and 1/2 ∂μ ln ḡ = Γ̄λλμ could be separately nullified.

Clearly, the Lagrangian L′g, though not being generally covariant, is consistent with the
unimodular covariance leaving ḡ invariant. Altogether, the total Lagrangian depends on eaμ as
the ten dynamical variables and the one background scalar density ḡ 19. Due to the unimodular
covariance, this minimal GR extension describes the three physical degrees of freedom: the
massless graviton and the dilaton σ as the respective parts of the affine Goldstone boson. In
this, the dilaton becomes massive at the quantum level due to the dilatation anomaly [7]. In
the case c′g = 0, the general covariance is restored, so that the local dilatation can eliminate one
more degree of freedom, leaving just two of them with helicities λ = ±2, as it should be for the
massless spin-2 particle 20.

(ii) Affine symmetry violation The additional terms in the Lagrangian would activate
the rest of the latent degrees of freedom of the gravity field. Thus, it is conceivable another
way of the general covariance violation by adding to the tangent space Lagrangian the potential
Vg(k), which contains only the derivativeless couplings of the Goldstone boson. Of necessity,
this would explicitly violate the affine symmetry, too 21. To preserve nevertheless the Lorentz
symmetry, the potential Vg should depend only on γαβ (and/or γαβ). More particularly, the
potential should be a scalar function of det γ and tr (γη)n, with any degree n. At n < 0, one
uses (γη)−1 = ηγ−1, with γ−1 given by γαβ . In the above, one puts (γη)AB ≡ γAA′η

A′B, were
as before A = α or a, etc, as appropriate.

18We disregard the possible nonuniversal interactions of the Goldstone field σ with the matter.
19Under ḡ = −1 and a proper choice for c′g, the given GR extension reduces to that of ref. [7], with σ being the

dilaton in disguise as the part of the metric.
20Adding to the Lagrangian eq. (35), without the affine symmetry violation, the quadratic term depending on

the another independent contraction Ω̂+ab
b one would produce the scalar-vector contribution of the gravity field,

which would depend on the background quantity Γ̄λ ≡ ḡ−1μν Γ̄λμν (see the next item).
21Remind, that in the case of the affine symmetry violation, there becomes distinguishable the rescaling factor

for the matter fields φs. Thus one should return in this case to the full notation φ̂s, again.
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It follows that in the world coordinates, the potential should depend on gḡ−1 as

Vg = Vg
(
det (gḡ−1), tr (gḡ−1)n

)
, (65)

were ḡ−1μν ≡ ē
μ
Aη
AB ēνB. Generally, one has ḡ

−1μν 6= ḡμν ≡ gμμ
′
gνν

′
ḡμ′ν′ (and similarly, ḡ−1μν 6=

ḡμν)). At the negative n, one puts (gḡ−1)n = (ḡg−1)−n, with g−1μν ≡ gμν . The potential
corresponds to the mass terms for the gravity field. In these, the terms depending only on
det (gḡ−1) are unimodular covariant. Choosing the different terms one can vary the relation
between the masses of the scalar and tensor gravitons 22.

With addition of the potential, the only modification of the GR equation of motion is the
the appearance of the energy-momentum tensor Tgμν in the r.h.s. of eq. (60). This contribution
corresponds to the graviton mass. Due to the Bianchi identity, stating the covariant divergence-
less of the l.h.s. of eq. (60) and thus the covariant conservation of the total energy-momentum
(the contribution of the graviton mass including), there appear the four collective constraints
on the gravity, matter and radiation fields. They substitute the Lorentz-Hilbert gauge condi-
tion. Thus at the level of the equation of motion, the theory describes six physical degrees of
freedom, supposedly, the massive tensor and scalar gravitons. Not to collide explicitly with the
principle of the microscopic causality, it is to be shown that, under the given ḡ and Vg(gḡ−1),
one can eliminate for the gravity field all the components with the negative norm. In the limit
of the zero mass, the general covariance is restored and one recovers smoothly the GR with the
two-component graviton.

Clearly, the mass term is noninvariant under the general coordinate transformations. Violat-
ing the affine invariance, the potential Vg is expected naturally to be highly suppressed (if any).
Thus, the affine symmetry gives the raison d’etre for the graviton mass to be tiny 23. This is in
distinction with the extra terms depending on the derivatives of the affine Goldstone boson. The
latter terms also result in the general covariance violation. Nevertheless, being affine invariant,
they are not required a priori to be small 24.

Altogether, this exhausts the foundations of the effective field theory of the gravity, radiation
and matter based on the affine symmetry. The above theory, embodying the GR within the
extended framework, may be called the metagravitation.

5. Metauniverse

5.1. World continuum

The ultimate goal of the Goldstone approach to gravity is to go beyond the effective metric
theory and to build the underlying premetric one. In what follows, we present some hints of the
respective scenario. Of necessity, we will be very concise, just to indicate the idea.

The forebear of the space-time is supposed to be the world continuum. At the very least,
the latter is to be endowed with the defining structure, the continuity in the topological sense.
Being covered additionally with the patches of the smooth real coordinates xμ, μ = 0, 1, . . . ,
d − 1 (index 0 having yet no particular meaning), the continuum acquires the structure of the

22For the theory of the massive tensor field in the Minkowski background space-time see, e.g., ref. [8]. For the
phenomenology of the graviton mass and for further references on the item cf., e.g., ref. [9].
23If, for some reason, the true cosmological constant would be forbidden, being only mimicd by the graviton

mass, then this would justify the smallness of the effective cosmological constant.
24Another source of the general covariance violation could be due to the nonuniversal couplings of the affine

Goldstone boson with the matter. One more source could be the small background torsion.

16



differentiable manifold of the dimension d (4, for definiteness). There exist in the continuum the
tensor densities, in particular, the volume element. Thus, the integration over the manifold is
allowed. But this does not suffice to define the covariant derivative and thus to get the covariant
differential equations, etc. Suppose now, that the continuum can exist in two phases with the
following affinity properties.

(i) Affine connection Being endowed with the primordial affine connection ψ̄λμν , the con-
tinuum becomes the affinely connected manifold. Generally, the connection is the 64-parametric
structure. It defines the parallel transport of the world tensors, as well as their covariant deriva-
tives. The parallel transport along the infinitesimal closed contour defines, in turn, the back-
ground curvature tensor ρ̄λμρν and thus its contraction ρ̄μν = ρ̄λμλν (but not yet the scalar ρ̄).
To every point P , there can be attached the coordinates ξ̄αP , where the symmetric part of the
connection locally nullifies, the manifold becoming thus locally affinely flat. This defines the
global affine symmetry. For the symmetry to be exact, the antisymmetric part of the connec-
tion, the torsion, should be trivial, with the connection being just 40-parametric. In this phase,
there is no metric and thus no space and time directions, even no definite space-time signature,
no lengths and angles, no preferred Lorentz group and thus no finite dimensional spinors, no
preferred Poincare group and thus no conventional particles, no invariant intervals, no quadratic
invariants, no causality, etc. Though there can be implemented the principle of the least action
with the simplest invariant Lagrangians, the world structure is still rather dull. Nevertheless, it
should ultimately lead to the spontaneous transition from the given phase to the metric one.

(i) Metric Further, being endowed spontaneously with the primordial metric ϕ̄μν with the
Minkowskian signature, the continuum becomes the metric space, i.e., the space-time. The met-
ric is much more restrictive 10-parametric structure. It defines the background Riemannian
geometry. Under the emergence of the metric and the spontaneous breaking of the affine sym-
metry, there appears the affine Goldstone boson serving as the graviton in disguise. This results
in the effective Riemannian geometry with the effective metric gμν , etc. Now there appear the
preferred time and space directions, the lengths and angles, the definite Lorentz group and thus
the finite dimensional spinors, the definite Poincare group and thus the particles, the invariant
intervals, the quadratic invariants, the causality, etc.

The world structure becomes now very flourishing. In the wake of the gravity, there appear
the radiation and matter. The spontaneous breaking of the affine symmetry to the Poincare
one reflects the appearance of the preferable particle structure, among a lot of a priori possible
ones corresponding to the various choices of the Poincare subgroup. Formally, the effective
Riemannian geometry is to be valid at all the space-time intervals. Nevertheless, its accuracy
worsen when diminishing the intervals, requiring more and more terms in the decomposition
over the ratio of the energy to the symmetry breaking scale MA, as it should be for the effective
theory. Thus, the scale MA (or, rather, the Planck mass MPl) is a kind of the inverse minimal
length in the nature.

5.2. The Universe

Supposedly, the formation of the Universe is the result of the actual transition between the
two phases of the continuum. This transition is thus the “Grand Bang”, the origin of not only the
Universe but of the very space-time. At this stage, there appears the world “arrow of time” as the
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reflection of the spontaneous ordering of the chaotic local times. The residual dependence of the
structure of the Universe on the background parameter-functions could result in the primordial
anisotropy and inhomogeneity.

And what is more, there is conceivable the appearance (as well as disappearance and coales-
cence) of the various regions of the metric phase inside the affinely connected one. These regions
are to be associated with the multiple universes. One of the latter ones happens to be ours. Call
the ensemble of the universes the Metauniverse. Within the concept of the Metauniverse, there
becomes sensible the notion of the wave function of the Universe. Hopefully, this may clarify
the long-standing problem of the fine tuning of our Universe (see, e.g., ref. [10]).

Conclusion

To conclude, the theory proposed realizes consistently the approach to gravity as the Gold-
stone phenomenon. It proceeds, in essence, from the two basic symmetries: the global affine
one and the general covariance. The affine symmetry is the structure symmetry which defines
the theory in the small. The general covariance is the bundling symmetry which terminates the
a priory admissible local theories according to their ability to be prolongated onto the whole
world. The theory embodies the GR as the lowest approximation. Its distinction with the GR
are twofold. At the effective level, the present theory predicts the natural hierarchy of the
conceivable GR extensions according to their mode of the affine symmetry realization. At the
underlying level, it presents the new look at the gravitation, the Universe and the very space-
time. These topics are to be further studied in the future.

The author is grateful to V. V. Kabachenko for the useful discussions.
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