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Abstract

Ezhela V.V., Kuyanov Yu.V., Larin V.N., Siver A.S. The Inconstancy of the Fundamental Physical
Constants: Computational Status: IHEP Preprint 2004–36. – Protvino, 2004. – p. 14, figs. 2, tables 3,
refs.: 11.

It is argued that the CODATA recommended values of the fundamental physical constants could
not be used as the reference data in searching the hypothetical space-time variations of the fundamental
physical constants.
It is shown that the CODATA data permanently suffers a loss of self-consistency of the released data

due to unjustified over-rounding of their estimates.
The simple estimates of the critical numbers of decimal digits that should be saved in the indepen-

dently rounded correlation coefficients, the average values and uncertainties to save the self-consistency
is obtained.
The set of high level quality requirements to the computerized presentation of the numerical data on

the jointly measured or estimated physical values are formulated.
It is argued (once again) that the common standard for presentation of the numerical values of

correlated quantities in publications and sites is urgently needed.

Аннотация

Ежела В.В., Куянов Ю.В., Ларин В.Н., Сивер А.С. Непостоянство фундаментальных физических
постоянных: вычислительный статус: Препринт ИФВЭ 2004–36. – Протвино, 2004. – 14 с., 2 рис.,
3 табл., библиогр.: 11.

Приведены свидетельства того, что рекомендуемые CODATA значения фундаментальных фи-
зических постоянных непригодны для проверки гипотезы о возможном различии значений фунда-
ментальных постоянных в разных областях во времени и пространстве.

Показано, что публикуемые CODATA таблицы значений как на бумажных носителях, так и в
электронном виде, испорчены некорректным округлением численных представлений средних зна-
чений, стандартных отклонений и коэффициентов корреляций.

Представлены простые оценки точностей корректного представления округленных средних зна-
чений, стандартных отклонений и коэффициентов корреляций. Эти оценки можно использовать
для контроля корректности и согласованности значений фундаментальных физических постоян-
ных.

Сформулированы предложения по общим требованиям к качеству представления числовых дан-
ных о совместно измеренных или оцененных физических величинах: их средних значений, стандарт-
ных отклонений и коэффициентов корреляций в публикациях, справочниках и на сайтах.
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1. Motivation

The possible space and time variations of the fundamental physical constants (FPC) contin-
uously attract much attention of different investigators since the time when Dirac has invented
the idea. Following a recent review of J.P. Uzan [1], a general strategy for searches of the
variability can be outlined as follows:

• The hypothesis of constancy of the FPC can and must be checked experimentally.

• It only make sense to consider the variations of dimensionless combinations (ratios) of the
fundamental constants.

• If the FPC vary, they most probably vary jointly and slowly. This means that to notice
FPC variations we should:

– select several well separated space-time regions;

– measure/estimate as precise as possible physics observables expressed in terms of the
FPC, that refer to the same space-time region;

– compare values of constants in the different space-time regions, but extracted from
the “space-time region dependent" observables with the same current FPC evaluation
and adjustment methods.

Let VX,i denotes the set of FPC related random variables to be estimated and adjusted
by the method of least squares (for example) on the experimental data at space-time region
X. This means that after the successful adjustment we will have in the parametric V -space
the vector of average values 〈VX,i〉 and the corresponding covariance matrix Cov(UX,i, UX,j),
characterizing the interior of the “scatter ellipsoid” centered at the end of the vector of averages

∑

ij

(VX,i − 〈VX,i〉) ∙ [Cov(UX,i, UX,j)]
−1 ∙ (VX,j − 〈VX,j〉) < 1. (1)

The same ellipsoid can be represented with the help of correlation matrix Cij(X) = Cor(UX,i,
UX,j) and standard deviations UX,i =

√
Cov(UX,i, UX,i) of VX,i.

∑

ij

VX,i − 〈VX,i〉

UX,i
∙ [Cij(X))]

−1 ∙
VX,j − 〈VX,j〉

UX,j
< 1. (2)
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To see the space-time variability we should see the well separation of the scatter ellipsoids in the
V -space. Let us say that vector V deviates from the scatter ellipsoid obtained for X space-time
region by RX(V, 〈VX〉) standard deviation if

∑

ij

(Vi − 〈VX,i〉) ∙ [Cov(VX,i, VX,j)]
−1 ∙ (Vj − 〈VX,j〉) = R

2
X(V, 〈VX〉). (3)

Then it is easy to see that the scatter ellipsoids obtained for the X and Y regions will be well
separated if in the whole V space we will have

R2X(V, 〈VX〉) +R
2
Y (V, 〈VY 〉) > 2, (4)

that means that the scatter ellipsoids do not intersect. Hence, to be able to notice the variability
we should have both: accurately estimated average values and corresponding scatter ellipsoid
for every space-time region where we estimate the FPC. It is the delicate problem as we will
show further.

The only and the best known well elaborated procedures to evaluate and adjust fundamental
physical constants are implemented at the NIST Physics Laboratory [2]. The set of FPC peri-
odically adjusted at NIST is recommended by CODATA as the reference source of the FPC for
scientific applications and technology. In any attempt to notice the space-time variability of the
FPC one cannot avoid the CODATA recommended values, deemed in the physics community
as the one of the best known set of FPC adjusted in the space-time region where we are. But
unfortunately it is impossible. Simply because we never had the set of the recommended FPC
correct enough for the testing their space-time variability. To show this let us select subsample
of the dimensionless FPC from the CODATA-2002 recommended set [5], say the set:

Standard FPC name Symbol Value (2002) Uncertainty

fine-structure constant α 7.297 352 568e-3 0.000 000 024e-3
electron-muon mass ratio me/mμ 4.836 331 67e-3 0.000 000 13e-3
electron-proton mass ratio me/mp 5.446 170 2173e-4 0.000 000 0025e-4
electron-deuterium mass ratio me/md 2.724 437 1095e-4 0.000 000 0013e-4
electron-proton magn. moment ratio μe/μp -658.210 6862 0.000 0066
muon-proton magn. moment ratio μμ/μp -3.183 345 118 0.000 000 089
proton g factor gp = 2μp/μn 5.585 694 701 0.000 000 056

The corresponding CODATA-2002 correlation matrix is as follows:

Cor(2002) α me/mμ me/mp me/md μe/μp μμ/μp gp = 2μp/μn

α 1.000 -0.247 0.000 0.000 -0.003 0.230 -0.002
me/mμ -0.247 1.000 0.004 0.004 0.008 -0.934 0.008
me/mp 0.000 0.004 1.000 0.894 0.000 -0.004 -0.046
me/md 0.000 0.004 0.894 1.000 0.000 0.012 -0.041
μe/μp -0.003 0.008 0.000 0.000 1.000 -0.008 0.999
μμ/μp 0.230 -0.934 -0.004 0.012 -0.008 1.000 0.350
gp = 2μp/μn -0.002 0.008 -0.046 0.041 0.999 0.350 1.000

This matrix is non-positive definite matrix (it has one negative eigenvalue = −0.000293338).
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This means that we have no scatter ellipsoid, the corresponding “scatter region” is unbounded
and the comparison with any other evaluations is senseless. This confusion might be due to mis-
prints in the resource database as of 2002, but this is not the case. The same situation with
non-positive definite correlation matrices is present in all releases of the FPC produced by NIST
and approved/recommended by CODATA. Further examples of the wrong subsamples of the
CODATA recommended FPC see in the Table 1, where we compare data from the last three
releases (V.3.0, V.3.2, V.4.0). The other examples presented also in our previous papers [6, 7]
on this subject.

Table 1. Comparison of the selected CODATA:1986, CODATA:1998, and CODATA:2002 recom-
mended values for the triads of quantities: averages, uncertainties, correlations.

CODATA:1986 Symbol [units] Value (uncertainty)×scale Correlations

Elementary charge e [C] 1.602 177 33(49)× 10−19 e h me
Planck constant h [J s] 6.626 075 5(40)× 10−34 0.997
Electron mass me [kg] 9.109 389 7(54)× 10−31 0.975 0.989
1/α(0) α(0)−1 137.035 989 5(61) −0.226 −0.154 −0.005

CODATA:1998 Symbol [units] Value (uncertainty)×scale Correlations

Elementary charge e [C] 1.602 176 462(63) × 10−19 e h me
Planck constant h [J s] 6.626 068 76(52)× 10−34 0.999
Electron mass me [kg] 9.109 381 88(72)× 10−31 0.990 0.996
1/α(0) α(0)−1 137.035 999 76(50) −0.049 −0.002 0.092

CODATA:2002 Symbol [units] Value (uncertainty)×scale Correlations

Elementary charge e [C] 1.602 176 53(14)× 10−19 e h me

Planck constant h [J s] 6.626 0693(11)× 10−34 1.000
Electron mass me [kg] 9.109 3826(16)× 10−31 0.998 0.999
1/α(0) α(0)−1 137.035 999 11(46) −0.029 −0.010 0.029

The eigenvalues of these correlation sub-matrices are as follows:

CODATA : 1986 {2.99891, 1.00084, 0.000420779, −0.000172106};
CODATA : 1998 {2.99029, 1.01003, −0.000441572, 0.00012358};
CODATA : 2002 {2.99802, 1.00173, 0.000434393, −0.000183906}.

Definitely something is wrong with the NIST evaluation/adjustment/presentation procedures.
We suspect that the origin of these permanent confusions is the unjustified independent round-
ing of the output interrelated quantities: vector of constant estimates, their standard devia-
tions(uncertainties) and their correlations.

Superficial independent rounding may lead to catastrophic changes in the connection of
averages, standard uncertainties and the scatter ellipsoid: the rounded average values may get
out of the “etalon” scatter ellipsoid obtained after rounding the correlation matrix. The “scatter
region” may turn to become hyperboloid. From the other hand any numerical calculation is
performed with rounding or truncating decimal numbers.
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To preserve the general properties of the FPC data structure, a special quality assurance
procedures should be developed and applied. In the next section we collect the high level require-
ments to the set of FPC needed to guarantee the safe and correct usage of this key informational
resource.

2. High level requirements to the set of adjusted FPC

Let us introduce a few special notations and definitions for different sets of FPC to simplify
formulation and discussions of the requirements.

V B or “basic FPC” is the set of constants that participated in the fits to the experimental
data via observational equations.

V D or “derived FPC” is the set of constants and units conversion factors that are known
to be function dependent on basic constants. Symbolically V D = F (V B) and they are evalu-
ated on the basis of the V B with the proper propagation of the uncertainties with the sufficient
accuracy to guarantee positive semidefinitness of the derived covariance martix1.

V A or “adjusted FPC” is the V B ∪ V D with cross covariances (correlations) added with
sufficient accuracy to obtain combined covariance matrix as positive semidefinite matrix.

V R or “recommended FPC” is the V A but rounded by NIST to be compactly presented
in their publications and as recommended data for science and technology by CODATA.

All data sets V I defined above have the same pair of structures:

V I = {Average(V I), Covariance(V I)}

or
V I = {Average(V I), Uncertainty(UI), Correlator(CI)}.

Let us call the internal calculational accuracy of numerical presentation of all components of
the V B obtained from the adjustment procedures as etalon accuracy.

2.1. Correctness and Self-consistency

If the adjustment of the constants belonging to V B is successful then we have positive
definite covariance (correlation) matrix presented with an etalon accuracy, as well as the vector
of average values.

We say that the V D, V A are correct if their covariance (correlation) matrices are positive
semi-definite. In other words, we have sufficient internal calculation accuracy to obtain correct
results.

1 By definition the covariance (correlation) matrix for the jointly measured or estimated quantities is the
positive semidefinite matrix, moreover if adjustment is performed by the least squares method the covariance
(correlation) matrix if presented with the etalon accuracy should be positive definite for the successful adjustment.
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We say that the V R is correct and self-consistent if one of two possibilities is true:
1) V R ≡ V A or
2) For any subset v(V R) ⊂ Average(V R) for which corresponding covariance submatrix

Cov(v(V R)) is positive definite we have

[v(V R)− v(V A)]i ∙ [Cov(v(V
A))]−1ij ∙ [v(V

R)− v(V A)]j ≤ 1

or
[v(V R)− v(V A)]i ∙ [Cov(v(V

R))]−1ij ∙ [v(V
R)− v(V A)]j ≤ 1.

These conditions guarantee the self-consistency of the V R, e.g. that the rounded and un-
rounded scatter ellipsoids are well intersected and unrounded and rounded subvectors belong to
that intersection.

2.2. Reliability

We will say that the next release V RY Y is reliable if it is correct, selfconsistent, and if any
subvector v(V RY Y ) with positive definite covariance is ended in the point inside the scatter
ellipsoid for the corresponding subvector of the previous release. For example, for the 1998 and
2002 releases these conditions will read

[v(V R02)− v(V
A
98)]i ∙ [Cov(v(V

A
98))]

−1
ij ∙ [v(V

R
02)− v(V

A
98)]j ≤ 1.

The reliability indicator is constructed with an assumption that the relative time variation of the
fundamental constants during two successive sessions of the adjustments are negligible compared
with the average relative standard deviation of the constants.

2.3. Availability

Next important quality indicator we propose is the availability of all data on FPC (average
values, uncertainties, correlations) in computer readable forms with as maximal as possible
completeness and accuracy of numerical data. The importance of the availability is hard to
overestimate in the era of the Web communications and Web and GRID computations2.

It turns out that NIST and CODATA, in spite of the nicely organized affiliation web cites
offer the current and archived data on the FPC in the hopeless obsolete manner, as it will be
shown in the sections to follow.

2.4. Traceability

The traceability in the context of usage the recommended FPC is the access to all input
experimental and theoretical material used in the adjustment as well as detailed descriptions of
the used procedures needed to reproduce the adjustment independently in case of any suspicions
on the misprints in the database, ideological or software bugs.

2 To taste the importance of the availability requirement we will recommend reader to try to check our calcu-
lations presented in the motivation section, including the correctness of data extraction from NIST publications
and site.
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3. Safety rounding off the correlated quantities

Here we derive a simple sufficient estimates on the accuracy of a safely independent rounding
off the average values Vi, uncertainties Ui, correlations Cij obtained in jointly measurement or
estimation procedures with sufficient etalon accuracy.

Let (Vi, Ui, Cij), i, j = 1, . . . , n be the aggregate of n jointly measured or estimated
physical quantities, where numerical parts of Vi, Ui are the real numerical vectors, Ui > 0, Cij
is the real, symmetric, and positive definite matrix with matrix elements bounded as follows:

Cii = 1 for all i = 1, . . . , n and |Ci 6=j| < 1.0.

Suppose that for some reason we need to store and exchange numerical data on this aggregate
rounded to some accuracy A that is lower than the etalon one.
Let Rij be the “rounder” matrix, such that if it is added to the matrix Cij , the obtained matrix
CRij = Cij + Rij will be real, symmetric, positive definite and all |C

R
i 6=j| < 1 are decimal

numbers with A digits to the right of the decimal point.
It is easy to see that matrix Rij should have the following properties:

Rii = 0 for all i = 1, . . . , n and |Ri 6=j| ≤ 5.0× 10
−A−1.

Let further c1 ≤ ∙ ∙ ∙ ≤ cn, ρ1 ≤ ∙ ∙ ∙ ≤ ρn, and cR1 ≤ ∙ ∙ ∙ ≤ c
R
n be the ordered sets of

eigenvalues of the matrices Cij , Rij , and CRij correspondingly. Then from the Weil’s theorem
for any l = 1, . . . , n we have the following inequalities [8],[9]:

cl + ρ1 ≤ c
R
l ≤ cl + ρn.

>From the Gershgorin’s theorem on the distributions of the eigenvalues of the Hermitian
matrices [8] it follows that

ρ1 ≥ −(n− 1) ∙ 5 ∙ 10
−(A+1) = −

(n− 1)

2
∙ 10−A

and hence to have the matrix CRij as positive semi definite matrix it is sufficient to demand

0 ≤ c1 −
(n− 1)

2
∙ 10−A ≤ cR1 .

>From the left inequality we have the final estimate for the threshold accuracy index for
safely uniform independent rounding of the positive definite correlation matrix Cij with minimal
eigenvalue c1 = λCmin

A ≥ AthC =

⌈

log10

(
n− 1

2 ∙ λCmin

)⌉

. (5)

NOTE. According to the Weil’s theorem any uniform rounding the off-diagonal matrix elements
of the positive semi-definite correlation (covariance) matrix is forbidden.

Indeed, as rounder matrix is traceless Hermitian matrix, it obliged to have the negative
minimal eigenvalue. Furthermore from the left inequality of the Weil’s theorem statement it
follows that any rounding could lead to the matrix with negative minimal eigenvalue.
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Now let us clarify to what accuracy we may round off the Vi and Ui in the decimal presenta-
tions. Let RVi be the such “rounding vector” that the obtained rounded vector V

R
i = Vi−R

V
i

is still in the etalon scatter ellipsoid. Then from the condition (2) for the components of the
rounding vector we will have

∑

ij

RVi
Ui
∙ [C−1]ij ∙

RVj

Uj
< 1. (6)

In the eigenbasis of the etalon correlator Cij the expression (6) can be transformed to

∑

ij

∑

mn

RVi
Ui
∙ [L−1]im ∙

δmn

λm
∙ [L]nj ∙

RVj

Uj
< 1, (7)

where L is a rotation matrix. As we try to find the sufficient condition for rounding vector
components it is enough to demand the validity of (7) for all correlator eigenvalues replaced
with minimal one. Then the inequality (7) will become

∑

i

(
RVi
Ui

)2

< λCmin. (8)

Inequality (8) means that we can round components independently only inside the maximal
hypercube imbeded into scatter ellipsoid:

|RVi |

Ui
<

√
λCmin
n
. (9)

To obtain the accuracy AVi for the i-th component that will be sufficient to guarantee that the
end of the vector V Ri belongs to the interior of the etalon scatter ellipsoid it is sufficient to have

|RVi |[uniti] ≤ 5 ∙ 10
−(AVi +1)[uniti].

>From this bound it follows that to have the rounded vector of average values pointing to the
interior of the etalon scatter ellipsoid one should save

Ai ≥ A
V
i =

⌈
1

2
log10

(
n

4 ∙ λCmin ∙ (Ui/[uniti])
2

)⌉

(10)

digits to the right of the decimal point.

Now let us turn to the rounding of the uncertainties Ui. It is the common practice to present
the average values and uncertainties with the same accuracy AVi = A

U
i . With this rule let us

rewrite inequality (9) in the form

log10(Ui) ≥ log10

(
1

2

√
n

λcmin

)

−AUi .
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Taking into account the equality3

blog10(Ui)c+ 1 = P
U
i −A

U
i ,

where PUi is the precision of the Ui we will obtain

PUi ≥

⌈
1

2
log10

(
n

4 ∙ λCmin

)⌉

. (11)

One can see that right part of the inequality does not depend on index i, so we can introduce
PU which is the same for every i:

PU = PUi .

The equation (11) give the minimal precision that should not be reduced if we adopt the rule
that accuracy of the uncertainties should be equal to the accuracy of the average values.

In summary: we have obtained n + 1 reference numbers AthC and AVi defining the levels with
safety independent rounding off the decimal numerical presentation of the interrelated random
quantities: average values, their uncertainties, and correlations.

Having these numbers the strategy for the safety independent rounding can be as follows:

In self-consistent numerical presentation of interrelated random quantities (Vi, Ui, Cij)
in decimal real numbers the average values Vi and the uncertainties Ui should have at
least AVi digits to the right of the decimal point and the correlation coefficients Ci 6=j
should have at least AthC digits to the right of the decimal point.

4. Do the CODATA 2002 recommended FPC meet the high level quality
requirements?

In this section we present some further evidences of violations of the above high level require-
ments in the recent releases of the CODATA recommended values of the FPC.

4.1. Correctness & Selfconsistency

In motivation section we already presented the evidences that the CODATA data on corre-
lations are incorrect. Here we present an evidence that the average values of the recommended
FPC are also questionable, because of over-rounding can easily move them out of the etalon scat-
ter ellipsoid. To check this the whole adjustment process should be repeated with the “etalon
accuracy”.

It turned out that we managed to collect enough amount of data from the NIST publications
to reproduce all steps of the evaluation and adjustment of the basic set of constants [10] only
for the 1998 release. We had obtained the “correct set of the basic constants” using methods

3This equality is valid for real numbers only. For the integer number that treated as the numbers with infinite
precision it is not valid.
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described by NIST experts [4]4 and then calculated the threshold accuracies for the elements of
the correlation matrix, the averages and the uncertainties. The results are as follows:

λC,min ≈ 7.58 ∙ 10
−7,

AthC = 8 (versus A
CODATA
C = 3),

PU = 4 (versus PU,CODATA = 2).

One can see that the CODATA data suffers the loss of self-consistency of the released data due
to unjustified over-rounding of their results.

Having the data on the FPC in the “etalon accuracy” we are able to show that the obtained
estimates for the threshold rounding indices are indeed close to the real situation and should be
used as regulators for the correctness of the rounding. To show that the rounding procedure can
move the end of the vector-of-constants out of the etalon scatter ellipsoid we will use the sample
of constants that was mentioned in [1] as the candidates to trace the large-scale space-time
variability of their dimensionless combinations:

Table 2. Selected basic and derived constants from the IHEP adjustment based on the NIST 1998 input
data.
Symbol[units] Average value Uncertainty

h [J s] 6.62606875610000 × 10−34 5.2200000× 10−41

me [kg] 9.10938187491360 × 10−31 7.2057063× 10−38

mp [kg] 1.67262158291420 × 10−27 1.3235274× 10−34

mn [kg] 1.67492715608612 × 10−27 1.3253602× 10−34

e [C] 1.60217646198672 × 10−19 6.3181739× 10−27

The corresponding correlation matrix of their uncertainties in the “etalon accuracy” 5

Cor h me mp mn e

h 1.000000000 0.9957673366 0.9954294463 0.9954234131 0.9989373297
me 0.9957673366 1.000000000 0.9996433868 0.9996224521 0.9904731204
mp 0.9954294463 0.9996433868 1.000000000 0.9999732991 0.9901455374
mn 0.9954234131 0.9996224521 0.9999732991 1.000000000 0.9901469965
e 0.9989373297 0.9904731204 0.9901455374 0.9901469965 1.000000000

is the positive definite matrix with eigenvalues as follows:

{4.98223, 0.0172451, 0.000495716, 0.0000263673, 6.47023× 10−10}.

Corresponding AthC = 10 and it is close enough to our minimal accuracy, the rounding of the
above correlator to 8 digits will make the matrix non-positive definite.

4As the correlation matrix of the uncertainties in the input experimental data is not a positive definite matrix
there (supposedly by overrounding for publication), we were forced to “un-round” several matrix elements to have
positive definite weight matrix in the least squares method of adjustment.

5The Planck constant is the basic one, the other selected are derived constants. In calculating the corresponding
correlation matrix we use the minimal possible accuracy that give us the positive definite correlation matrix.
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Now we will round average values of the constants to have accuracy below the allowed
thresholds AVi . In the Table 3 we present the values of the differences 〈Vi〉 − V

r
i between

calculated average values of the selected constants with the etalon accuracy and the rounded
step-by-step values to show that after the predicted moment the end point of the rounded vector
will be moved out of the etalon scatter ellipsoid for many standards R(V r, 〈V 〉).

Table 3. Evolution of the “distance” of the end point of rounded vector from the etalon scatter ellipsoid
expressed in number of standard deviations squared with rounding off the vector components
RVi in steps.

Step h [J s] me [kg] mp [kg] mn [kg] e [C] R2(V r, 〈V 〉)
9 4.39E-42 2.51E-39 1.71E-35 4.39E-35 −1.99E-28 3.9E+06
8 3.90E-43 −4.91E-40 −2.25E-36 3.91E-36 1.40E-30 4.1E+04
7 −9.52E-45 8.92E-42 8.49E-38 −8.70E-38 1.40E-30 61.
6 4.79 E-46 -1.08E-42 -1.51E-38 1.30E-38 4.02E-31 0.36
5 4.79E-46 -7.59E-44 4.90E-39 3.03E-39 2.29E-33 0.038
4 -2.12E-47 2.41E-44 -1.01E-40 3.16E-41 2.29E-33 0.00026
3 -1.23E-48 4.14E-45 -1.38E-42 3.16E-41 2.89E-34 2.5E-06
2 -2.32E-49 1.37E-46 -1.38E-42 1.62E-42 -1.09E-35 4.5E-09
1 -3.16E-50 3.74E-47 -3.84E-43 -3.64E-43 -9.03E-37 2.7E-09
0 -1.58E-51 -2.57E-48 1.65E-44 3.61E-44 9.69E-38 6.1E-14

AVi 45 42 39 39 31

We see that our indices proposed as the sufficient number of digits for the safety rounding
are indeed close to the reality. They can and should be used to the quality control of the random
vectors obtained by statistical estimation procedures.

Another lesson from the comparisons presented above is that the problem of the correct
rounding off the FPC triad (Vi, Ui, Cij) is the very important problem in the task of tracing
the space-time variability of the FPC as the improper rounding will mimic the evolution of
constants.

The third lesson is that the CODATA recommended values of the FPC are highly ques-
tionable as we have convinced that the correlation matrices were corrupted by the unjustified
rounding.

4.2. Reliability

As it was mentioned in the descriptions of the high level quality requirements, it is natural
to suppose that the next iteration of the adjustment will give constants more accurate and more
selfconsistent than the previous adjustments.

Let us look for the time evolution of the estimates of one of the most important physical
constant — the Planck’s constant h from the time of discovery up to the 2002 estimate. The
historical perspective of the Planck constant estimates one can find in [11].
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Figure 1. Planck Constant: 1969–2002. Error band show that the adjustment procedures pro-
duce estimates that still are far from been stable, though the amplitude of variation
is reduced in the last two releases.

This “small-scale time variability” of the Planck constant estimates we attribute to the pos-
sible presence of the hidden (not estimated) systematic error introduced or missed by the ad-
justment procedures. It should be noted that systematist have to use contradictory input data
which impossible to refine at the time of adjustment sessions 6.

The “evidence” of the possible stabilization (see Fig. 2 is very preliminary and should be
tested for the other constants simultaneously by tracing the variation of the hodograph of the
“vector of basic constants” as it is outlined in the reliability requirement. Unfortunately it is
not possible now because of the corrupted data on correlations in the releases. The conclusion
based on the reliability indicator is that the CODATA recommended values cannot be used in
searches of the possible large scale space-time variations of the FPC.

6See discussion of this issue in the subsection: “A. Comparison of 1998 and 1986 CODATA recommended
values” of the summary of the 1998 review ([4], pages 459-461).
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Figure 2. Planck Constant: 1986–2002. Evidence for the possible stabilization.

4.3. Availability

The web access to the data on FPC offered by NIST & CODATA in the last release (V.4.0) is
greatly improved. Now we have easy access to all data on average values and their uncertainties
just copy the file in the ASCII format. But unfortunately in the released list the values of 7
basic constants out of 29 participating in the adjustment process did not quoted. The values of
the other 28 important parameters (possible corrections to the theoretical expressions) for the
whole adjustment procedure are omitted. They even did not discussed in the publications on
the 1998 release.
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As it was discussed in the previous sections, the ignorance of the correlations is inadmissable
in the high precision physics applications. But the access to the recommended correlation coeffi-
cients remains to be the “misanthropic” one. It is hard to get data for an operative calculations
with several constants simultaneously. There is no easy and safety way to get the complete data
on the subsample of the triad (Vi, Ui, Ci,j) in a truly computer readable form.

To extract data on say 10 constants with the correlation matrix one have to produce about
300 flip-flops between web-pages “by hands”.

4.4. Traceability

Traceability means that any release of the recommended FPC set should be accompanied
with full toolkit of the input data and methods to give interested user possibility to perform all
steps of the adjustment process and to compare the results with the recommended values.

Unfortunately materials attached to the recommended FPC are not complete as it was
stressed in the discussions of the availability indicator. Additional example is the incorrect
presentation of the correlations of uncertainties in the input experimental data of the 1998 re-
lease.

The data on input correlations are presented only in the review on the paper [4] and the
correlation matrix is non positive definite there [7].

It should be noted also that in the published documents related to the releases of FPC there
are no discussions of the procedures used for rounding off the correlated quantities.

5. Summary

Summarizing the above discussions and evidences we are forced to stress that all high level
quality requirements to the scientific information numerical data resource: correctness, selfcon-
sistency, availability, reliability, and traceability are badly violated in at least the last three
releases of the CODATA recommended values of the fundamental physical constants.

They could not be used as reference data to monitor the large scale space-time variability of
the fundamental physical constants and moreover their usage in physics applications where the
high precision calculations are needed is highly questionable.

The positive outcome from our critical treatment of the quality aspects of the central numer-
ical scientific information resource are:

• the preliminary proposal for the safety rounding strategy in presentation the results of high
precision computations of the physical observables;

• the proposal for the set of quality indicators to certify scientific information resources for
the safety usage in physics applications;

• the proposal of the data structure and procedures for the complete and user friendly Web-
FPC.
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