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It is shown that the slowing down of the rate of time referencing to the inertial time leads in the field theory of
gravitation to arising of repulsive forces which remove the cosmological singularity in the evolution of a homoge-
neous and isotropic universe and stop the collapse of large masses.
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Both in the Newton theory of gravitation, and in the General Theory of Relativity (GRT) the gravi-
tational force is exclusively an attractive one. However field notions of gravitation show that in strong
gravitational fields it is not absolutely so. But this will be discussed below.

In the Relativistic Theory of Gravitation (RTG) [1, 2] the gravitational field is considered as a phys-
ical field ¢* with spins2 and0, developing as well as all other physical fields in the Minkowski space.

It means that the Special Relativity Theory lays in the basis of RTG, and consequently, the relativity
principle has a universal meaning. It is valid for all physical effects, including gravitational ones. This
circumstance ensures validness of energy-momentum and angular momentum conservation laws for all
physical processes, including gravitational ones. The RTG starts with a hypothesis, that gravity is uni-
versal and the conserved energy-momentum tensor of all the substance fields, including the gravitational
one, is the source of it.

Such an approach is in accordance with the Einstein idea. He wrote on it still in 1913.[3he
gravitational field tensog,,, is a source of the field in parallel with the tensor of material systéms
The exclusive position of the energy of the gravitational field in comparison with all other sorts of energy
would resultin intolerable consequencedtist this idea by Einstein was put in the basis of the Relativistic
Theory of Gravitation set-up. Einstein had not succeded to implement this idea in constructing the General
Relativity Theory, as the pseudotensor of the gravitational field had appeared in the GRT instead of the
energy-momentum tensor of the gravitational field. All this had occured because Einstein did not consider
the gravitational field as a physical one in the Minkowski space (in the Faraday - Maxwell meaning). For
this reason the GRT does not contain the Minkowski space metric in its equations.

The approach to gravitation accepted in the RTG leads tgdloenetrization there is an effective
Riemannian spacéut only with trivial topology . This leads to the following picture: the motion of a
test body in the Minkowski space under the action of a gravitational field is equivalent to a motion of this
body in the effective Riemannian space created by this gravitational field. The forces of gravitation are
physical ones, and therefore they can not be reduced to zero by a choice of coordinate system. Just this
allows to separate the inertial forces from the forces of gravitation in this theory. There is an effective
Riemannian space in the field approach to gravitation, but with a trivial topology only. For this reason
the field notions can not lead us to the GRT, where the topology is non-trivial in general case.

The notions described above result in the following complete set of equations [1, 2]:
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HereD, is the covariant derivative in Minkowski spaceg, is the Minkowski space metric tensay, 3
is the effective Riemannian space metric tensor= myc/h, my is the graviton masgi’* = /—g g**
is the Riemannian space metric tengtf density.
The effective metric of Riemannian spagé is bound to the gravitational fielgt*” by the following
relation .
=AY

where
= A, P =y .
The set of equations (1)—(2) is covariant concerning arbitrary transformation of coordinates and is

form-invariant concerning Lorentz transformations. This set can be derived directly from the least action
principle for the Lagrangian density

L= Lg(’mmgm/) + LM(gwja QSA)v

where
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To guarantee that timelike and isotropic line intervals of the effective Riemannian space did not cross
the lightcone of initial Minkowski space, the following causality condition should be satisfied:

'Y;WU#UV =0, g;wU'qu <0, 3

Thus, the motion of test bodies under the action of gravitational field always happenimdidehthe
Riemannian cone, and also inside the cone of Minkowski space.

The graviton rest-mass appears in this theory with necessity, as only with its introduction it is possible
to consider the gravitational field as a physical field in Minkowski space, taking as its source the total
conserved energy-momentum tensor of all substance. But the presence of graviton rest-mass completely
changes both the process of collapse and evolution of the Universe.

When A. Einstein in 1912 has connected the gravitational field with the Riemannian space metric
tensor, it has appeared, that such a field gives rise to slowing down of the rate of time for a physical
process. It is possible to illustrate this slowing down, in particular, by the example of Schwarzschild
solution, comparing a rate of time in the presence of a gravitational field with the rate of time for the
removed observer. However only the Riemannian space metric tensor is present in the GRT in general,
and so, there are no any traces of the Minkowski space inertial time in the Hilbert-Einstein equations. For
this reason the universal property of gravitational field to slow down the rate of time in comparison with
the inertial time could not be developed further in the GRT.

The origin of effective Riemannian space in the field theory of gravitation at preserving the Minkowski
space as a basic space adds the special meaning to the property of a gravitational field to slow down
the rate of time. Just only in this case it is possible to speak in full about slowing down of the rate
of time, realizing comparison of the rate of time in a gravitational field with the rate of Timethe
inertial system of coordinates of Minkowski space at lack of gravitation. All this is just implemented in
RTG, as the complete set of its equations is entered by the Minkowski space metricjignddut this
general property of the gravitational field — to slow down the rate of time — leads in the field theory



to an important deduction [4the slowing down of the rate of time of a physical process in a strong
gravitational field in comparison with the rate of inertial time T creates, due to the graviton rest-
mass, effective field forces of the gravitational nature. These effective forces in the case of gravity
appear as repulsive ones

To show, that the madification of a rate of time results in arising of a force, let us look at the Newton

equations:
d’x
— =F.
e

If we pass formally in this equation from inertial tinfiéto time by a rule
dr = U(T)dT, 4)

then it is easy to get ,
d°x 1 dr d

mﬁ:m{F_ﬁﬁan}' (5)
From here it is evident that a modification of the rate of time, determined by furiGtiogsults in appear-
ance of an effective force. But here all this has only a formal character, as in this case there is no physical
effect that would change the rate of time. But this formal example demonstrates, that if there is a real
process of slowing down of the rate of time, it inevitably creates effective field forces, and therefore they
should be taken into account in the theory as something completely new and surprising. The physical
gravitational field changes both rate of time, and parameters of spatial components, in comparison with
the same components in an inertial system of a Minkowski space at lack of gravitation.

In the present paper we will explicitly consider both the collapse and the evolution of the homogeneous
and isotropic Universe as examples where the effective field repulsive forces originating due to slowing
down of the rate of time under the effect of a gravitational field are exhibited. Let us consider a static
spherically symmetric field

ds®> = U(r)dT? — V(r)dr® — W?(r)(d6? + sin® 0 d¢?), (6)

do? = dT? — dr? — r*(d6? + sin? 0 dp?). 7

Here functionU determines slowing down of the rate of time in comparison with the inertial TimEhe
strong slowing down of the rate of time occurs when this function is small enough in comparison to unity.
When the graviton has no mass the set of equations (1), (2) for the problem (6) has the Schwarzschild

solution
r—GM _r+ GM

 r+GM’ - r—GM’
From here it is evident that the strong slowing down of the rate of time in comparison with the inertial
time T takes place in the region whe¥g is close t2GM . At presence of the graviton rest-mass the set
of equations (1) and (2) reduces [see AppentliX A.61), (A.62)] in the region where

W = (r+GM). (8)

1 mgc Wy 2
Wy < g W () ®)
to the following formulas:
W, 1w dr
“w 2W—W, dw (10)



here

2GM (% : %)2. (11)

W, = —5— is the Schwarzschild radiugy =
c h 2

Comparing (8) with (10), we see, that the graviton magsdoes not allow functio/ to be zero.For
any body the graviton rest-mass puts its own limit onto slowing down of the rate of timeThis limit
is determined by a linear function of the Schwarzschild radius i.e. of the body mass

HEw

There is no such a limit in the GRT. Such property of the gravitational field leads in RTG to cardinal
modifications both in a test body motion in the gravitational field, given by expressions (10), and in the
evolution of the homogeneous and isotropic Universe.

The motion of a test body occurs along a geodesic line of the Riemannian space

WA, (12
herev* = dz* /ds is the four-vector of velocity* obeying the requirement
guvtv” = 1. (13)
Let us consider the radial motion
v =0? =0, o!=dr/ds. (14)

Taking into consideration that the Christoffel symi@} is equal to the following

1 dU
0 e —
from Eq. (12) we get
dv®  1dU 4,
E—i_ﬁ%v v- = 0. (16)
Solving Eq. (16), we obtain
dii In(x°U) = 0. (17)
From here we have 0
dx Uy
=—=— 1
Vo ds Ua ( 8)

whereUj is an integration constant. If we take the velocity of a falling test body equal to zero at infinity,
we shall receivé/y = 1. From relation (13) it is discovered

dr 1-U
s~ Vv (19)

Substituting (10) into this expression, we obtain

%:_(mig()wig\/Q%(l—%). (20)




From here it is evident that there is a turning point. Differentiating (203,lwe get

d2W_4( h )2 1

bl A S 21
ds? ng (1)
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We see that the acceleration is positive at the turning point, i.e. a repulsion takes place and it is significant.
Integrating (20) we obtain

N =i (22)

mgyc w3
From expression (22) it is clear that the test body can not cross the Schwarzschild sphere.

As the singularity in Eg. (10), which has arisen outside of matter, is impossible to remove by a choice
of the frame, this means, that it should not exist, as otherwise it is impossible to sew together a solution
inside matter with an exterior solution. Therefore a body can not have radius less than the Schwarzschild
radius. So there is a restriction on the field magnitude.

This conclusion on the absence of the Schwarzschild singularity is in accordance with the inference
by Einstein [5]:“The Schwarzschild singularity is absent, as the substance cannot be concentrated arbi-
trarily; otherwise particles providing accumulations, will reach the light velocityhough in our case
the reason for the lack of singularity is another, but a general conclusion is the same. So, a mechanism of
self-restriction is included into the field theory which eliminates the possibility of “black holes” forma-
tion.

Another example demonstrating occurrence of the new effective field forces due to a slowing down of
the rate of time is the development of a homogeneous and isotropic Universe. In this case we get the flat
Universe solution only due to Eq. (2) [see Appendix (B.13), (B.16)], where the three-dimensional
geometry is Euclidean, i.e.

w=w, +2(

ds® = dr* — *a®(7)(dr® 4+ 1°d6* + r* sin® 6 d¢*) ,
1

do? = —6d72 —dr? —r2dp* — r?sin? 0 d¢?
a

(23)

dr = adT. (24)

As the set of equations (1) and (2) is complete, this solution is unique. Giving (23) Egs. (1) can be reduced
to the following set of equations for the scale faci¢r) [see AppendixB: (B.19), (B.20)]:

1 d%a 4rG 3p 1 2 1
- b I 1— —
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1da\> 8rnG 1 ) 3 1
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The scale factou(7) in (24) determines the slowing down of the rate of time in comparison with the
inertial timeT" at lack of gravitation. But just the same factor in r.h.s. of Eq. (26) at a strong slowing
down of the rate of time stops the process of collapse of the Universe. Wheoomes small enough,
the terminr.h.s. of Eq. (26)

(mc)?/12a®

becomes large enough, despite of littteand r.h.s. of Eq. (26) becomes zero, and the collapse is stopped.



The minimum value o is equal to

2

@min = [(m;}; )23%&%%}1/6’ (27)

thus in RTG the cosmological singularity, which takes place in GRT, is abEketefore, that there was

no “Big Bang”, instead there was a state with a large density, and a high temperature at every point

of the Universe. On the other hand, by virtue of Eq. (25), repulsive forces originating due to the slowing
down of a rate of time ensure the accelerated expansion of the Universe from the point of stopping. The
acceleration within the radiation phase at a point of stopping of the contraction is given as follows

1 d%a 8rG

Em 0 - 3 Pmax-

(28)

Just this acceleration was the “impulse” to begin the expansion of Universe. The maximum value of the
scale factor is equal to the following

Amax = 5

The magnitude? is determined by an integral of motion.

The graviton rest-mass by a unique fashion has entered into Egs. (1) metrietensbthe Minkowski
space. Due to the graviton rest-mass it is possible to determine the magnitude of slowing down of the
rate of time for a physical process in the gravitational field in comparison to the inertial time. Just this
magnitude has determined the repulsive force. Due to the graviton mass the slowing down of the rate of
time has exhibited itself as repulsive forces.

Thus, the field notions on the gravitational field evolving in the Minkowski space, have alkowed
unclose a fundamental property of the gravitational field: to create an effective repulsive force, due
to slowing down of the rate of time of a physical process in comparison with the inertial time

In GRT such forces are absent. There is an interesting pattern: the gravitational field in RTG, exhibit-
ing itself through attractive forces, agglomerating matter, then enters a phase, when under effect of this
field there is a strong slowing down of the rate of time in comparison to inertialTiiikat, due to the
graviton rest-mass, leads inevitably to effective field repulsive forces, which stop the process of collapse
created by the action of attractive forces. We see, that in the field theory the mechanism of self-restriction
is included in the gravitational field itself. Just this mechanism realizes a stopping of the collapse of
massive bodies at the final stage of development and eliminates the cosmological singularity, ensuring a
cyclical development of the Universe.

The graviton mass which isincluded in Eq. (1) can be evaluated from observational data on measuring
valueQiot, which is defined as the ratio of a total modern density of maigrto the critical density,.

ptot 3H°
Qtot = — e = ——, 29
tot="" Pe=goa (29)
hereH is the Hubble constant. From Egs. (25)—(26) it follows
1 m902 2
ot =1+ 5 (F7) - (30)

The mass of gravitom,, enters intdtot With a large factor, determined by valu&/hH.
Thus, according to RTG, as follows from Eq. (30), the modern density of matter should exceed the
critical density. So, still in 1984 in paper [6] it was scoréhis theory gives an exclusively strong



prediction — it results in a strongly definite evolution of the Universe. According to it the Universe is not
closed, it is “flat” by virtue of the Egs. (4.29his means Eg. (2) of the present article.Authorg. And

further, the theorywith necessity requires existence “of the hidden mass” in the Universe, as some form
of matter. So, there should be “a hidden mass” in the Universe, in order to the total density of matter
to be equal to the critical valugy.” The observational data have confirmed this deduction recent years.
With introduction of the graviton rest-mass this corollary of the theory has strengthened and has led to
formula (30). Comparing (30) with modern observational data on measQfggit is possible to find

with probability 95% the following upper bound for the graviton mass

mg < 3,6 -107% [g]. (31)

The authors express their gratitude to V.I. Denisov, V.A. Petrov, N.E. Tyurin and Yu.V. Chugreev for
valuable discussions.
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Appendix A
Static spherically symmetric gravitational field in RTG

The interval in Minkowski space given in spatial polar coordinates looks like
do? = (dz°)? — (dr)? — r?(d6? + sin® 6 dp?) (A1)

herez® = ¢T'. The interval in effective Riemannian space for a static spherically symmetric field is
written in the following form

ds® = U(r)(dz®)? — V(r)dr? — W?2(r)(d6? + sin® 0 dp?). (A.2)

The RTG equations (1)—(2) can be taken as follows
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1 1
Rl — S 0uR+ (3 + 0" — 09 as) = T, (4.3)

D,g" = 0. (A4)
In the detailed form Eq(.A.4) looks like

03" + V3" = 0. (A.5)

Here Ry is the Ricci tensorR is the scalar curvaturd;' is the energy-momentum tensor of a source;
7%, are Christoffel symbols of the Minkowski spade,, is the covariant derivative in Minkowski space;
G is the gravitational constanty = mgyc/h, m, is the mass of gravitony = 87G/c?, g = \/—g g*
is the density of tensgy*”.

For a spherically symmetric static source the components of téifsare as follows

p\r
1= o), T =13 =1 =2, (4.6)

herep is the mass density; is the isotropic pressure.
To determine metric coefficientd, V- andW one can exploit Eqg.A4.3) for values of indicieg:, =
0,v=0p=1Lv=1

1 1 <dW>2 2 W 1dWi<l>

w2 Vw2\dr/) VW dr? W dr dr\V
1 1,1 1 72 D
tymt i+ 5 (5= 7)) =
1 1 /dW\2 1 dWdU
W_W<W> S UVW dr dr (A8)
1, 1,1 1 r? p '
+rl-2 (5 7)) =z



Eq.(A.5) becomes
d% <\/U/V W2> = 2rVUV. (A.9)
Taking into account the identity

2
avivis v (o) | = e () o+ a an (7)

and passing from derivatives oveto derivatives oveiV, Eqgs.(A.7), (A.8) and(A.9) become

11— — | — —(l=—=)| = Al
Wy (dr/dW)M W (- )| = (4.10)
W d 1 w2,1 1 P

l——— |1 —mE W22 - (= — =) | = —W2E A1
V (dr/dW)? dW[n(UW)] tam [W T (U V” AW AL
dr
2] _
dW VUIVW?] =2rVUV < (A.12)
Subtracting Eq(A.11) from Eq.(A.10) and introducing a new variable
Uw? dr W — Wy
Z=—r, 7T=—, t=—— Al
viz) T ar Wo (4.13)
we obtain S 5
dZ 27 dU zZ mW U w P
= = 2 T (1) = —— Z\U. A.14
aw U dw W 2w (1-7) %W02<p+c2) (4.14)
After addition of Eqs(A.10) and(A.11), we discover
1W2E1dZ m? 1 P
s raw by W) = (o ) (4.15)
Let us consider Eqg.A.14) and(A.15) outside of matter in region, defined by inequalities
U 1
<1, —m*W? - <1, (A.16)
V 2
In this region Eq(A.15) looks like
1 Wg dZ 1 WodZ
_ 1 W5 az Al
2 W dW 2 W dt’ (4.17)
Taking into consideratioqA.17), we reduce Eq(A.14) to the following form
*Z 1 ¢dZN2 1 2W3 dz
2 (== A.18
awz 2 (dW) W2 aw ( )
After introduction, according tA.13), variablet, Eq. (A.18) takes the form
.1 .
ZZ - E(Z)2+a(1+t)3Z:(), (A.19)



herea = m>W2 /4, Z = dZ/dt. For values of, restricted by inequality
0<t<1/3.

Eq. (A.19) is simplified:
25— 2P +az =0

2
It has the following solution:
MWZN\ N
Z =2aln(14+ —— —
Wz O‘n( " 2a >+ 2t
here) is an arbitrary constant.
Given(A.13) and(A.17) we have
1 W, 2 1 Z
U= 5 WZ, Vi = 2WOWZ'
Using Eq.(A.22), we discover ‘
Z=2a+VZ.
Substituting(A.24) into (A.23), we obtain
Wy A 2 a+MWZ)/2
U_W(a+2\/2), Vit = wow S
At o = 0 from Eq.(A.22) we have
A
VZ = St

Substituting this expression in EG4.25), we discover

AN W —W,
U= (5) W
But this expression fol/ should precisely coincide with the Schwarzschild solution

W — W, 2GM
= —W y Wg == —C2 .

U
Comparing(A.27) and(A.28), we obtain
A=2, Wo=W,.

Thus we discover:

1% Z
U=te+V), Vit= Wy W= +Z\/_ ‘

Now it is necessary to determine hevdepends oV’ by means of Eq(A4.12).
Substituting(A.30) into Eq.(A.12) and passing to a variable

L=r/W,,
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we obtain

d dz dt
)= | = A.32
AR (4.32)
Taking into accountA.24) and differentiating oves/Z in Eq. (A.32), we discover
(1+t)(a+VZ) il (1+t+\/§)if2€—0 (A.33)
(dVZ)? N4 ' '

As we are interested by a range of values, afetermined by inequalityA.20), Eq.(A.33) in this region
becomes simpler and looks like

+(1+ ﬁ)ﬂ —20=0. (A.34)

(0 +VZ)——— 7

(d\/_ )?
The general solution of E§A.34) will be as follows
¢ = Al; + Bly, (A.35)
where
6 =F[-2,1—a, —(a+V2)], b= (0 +VZ)*F|-2+a, 1 + o, —(a + VZ)].

Here A andB are arbitrary constant#; is the degenerated hypergeometric function.
Taking into account the following equalities

(a+ﬁ)]:1+2(a+\/?)+ (e +V7Z)?

Fl=2,1-a, - o " l-oe-a’

Fl-2+a, 14+ a, —(a+VZ)] :e_(a+ﬁ)F(3, 1+a,a+VZ),

we have

2a+V7Z) N (a+VZ)?

t=Af+ =S (—a)2—a)

] — BB(Z)e°F(3,1+a, a+ VZ). (A.36)

Let us consider the following expression

. 202+V7Z)
Wz ti-ae-a”

(A.37)
VZFB,1+a,a+vVZ) dF3,1+a, a+V7Z) o
B [ a+VZ - dla+V7Z) }ﬁ(Z)e ,
here
B(2Z) = (a+VZ)*e V2
But since

dF(3,1+a, a+vVZ) 3

= F4,2—|—a,o¢+\/§,
dla+V2) 1+a ( )

11



we have

e 22+V2) N
&z ~(1-a)2-a) (A.38)
VZFGB, 1+, a+VZ) 3F4,2+a, a+vVZ)] _,
] e E R
as dr B dé B Oé‘i‘\/zﬂ (A39)

AW dt  JZ avZ’

so it is necessary for us to pickand B in such a way that the singularity of functigr.39) at a point
v/Z = 0 will be cancelled, therefore let us assume

(%)ﬁ_o =0. (4.40)

This requirement reduces to a relation between stationary values

B 4 1+ a)e”
B = A A - e F@, 2 1, a) (4.41)

Substituting this expression infel.36) and(A.37), we discover

20a+vVZ)  (a+VZ)?

t=afi+ =53 TSR
(A.42)
4 (14+a)FGB, 1+a,a+V2) ﬁ(Z)]
3(1—a)2—a)a®F(4,2+ a, a) ’
e 2
d\/Z_A(l—a)@—a)PJrﬁJr s

2WZ(1+a)F(3, 14+ a, a+VZ) ) - 2F(4, 2+ o, a+VZ)
3a%(a+VZ)F(4, 2+ a, a) a®F(4,2+ o, o)
It is possible to show that the derivatiyel.43) is positive. From expression(si.42) and (A.43) by
expansion of functions'(3, 14+, a++vZ), F(4, 24+a, a++/Z) in Taylor series in the neighbourhood
of v/Z = 0, and also taking into account

8(2)|.

a1,
we obtain
1= AL+ S (VZ+0)d +VZ ~a) - %5(2)(1 FVZ+32) 102, (Aaa)
2 B(2) 227

%:A[z(l—ﬂw))+ﬁ(1—4ﬁ+§a+ﬁ+a+ﬁﬂ<z>)+0<Z>]. (A.45)

We shall consider the following limiting cases.
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VZ > a. (A.46)

In this case from expressidm.22) with account for A.29) we have

VZ =t (A.47)
Substituting this expression {21.25) and taking into accour{t4.29), we obtain
W —W, 9 WWw?
_ 9 A4
U 7 Vr “wow, (A.48)

In approximation(A.46) expression$A.44) and(A.45) become

.y [% 4 %\/Z - %aln N %a\/Z InvZ + %Z Loz (A.49)
de 2 VZ
According to(A.13), (A.31) and(A.47) we have
a¢
=T, ——— . A51
r g d\/? ( )

But, as in(A.48) expression fol” should be very close to the Schwarzschild solution, we discover
A=3/2. (A.52)
So, we have the Schwarzschild solution for this case

W —W, W
LA AL VR L (A.53)

V=" W — W,

Let us pass now to another limiting case, where influence of the graviton mass is significant.

VZ < a. (A.54)
In this approximation from expressidr.22) with account for( A.29) we find

Z = 2at. (A.55)
Substituting this expression {21.25) and taking into accour(t4.29), we obtain

W, 1 WWw?
U=a-2, Vit=_——"9_ (A.56)
W 2 W —W,
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According to(A.54) and(A.55) expression$A.56) are usable in the region

e} 1 mgc Wy 2
For a given limiting case fromiA.44) and(A.45) we have
(=~ A[E +3 (7) +0(2°2)] (A.58)
a 2 VZ
— —A— 1+0(VZ A.59
77> (1+0(2)). (4.59)
Substituting(A.59) in (A.39) and taking into accour{t4.52), we discover
=Wy or dr/dW = 1. (A.60)

So, for a surveyed limiting cagel.54), taking into consideratioi4.60), expression$A.56) become as
follows [7]:

W, 1w dr
U=qa-2 V=——"" - -1 A.61
“wo oW W, dw (4.61)
they are usable in domai.57):
mgc Wy
W—W, < W( : 2). (A.62)

Expressiong A.61) essentially differ from the Schwarzschild solution first of all because function
U, which determines slowing down of the rate of time, due to the graviton rest-mass will not convert
into zero, whereas in GRT [see formulas (28)] it will be zero on the Schwarzschild sphere. If in GRT the
Schwarzschild singularity is eliminated by a choice of a reference frame, in RTG fun¢dsig lead to
a singularity, which can not be eliminated by a coordinate transformation. For this reason this singularity
outside of matter is intolerable, as otherwise it is impossible to sew together an interior solution with an
exterior solution. Just this results in self-restriction of a magnitude of the gravitational field.

In conclusion of this Appendix we note that in our search for solutichs3) and(A.61) we have
required realization of inequalitigd.16) and (A.20). It is easy to get convinced, that the obtained
solutions(A.53) and (A.61) obey to inequalitieg A.16), when variablet is restricted accordingly to
inequalities

1/3>t>a; t<a.

Appendix B

Equations for the scale factor evolution

In the homogeneous and isotropic Universe the effective Riemannian space interval can be given in
the form of Fridman-Robertson-Walker metric:
dr?
1 — kr?

ds® = U(T)dT? — V(T)[ +r2(d6? + sin® 0 dg?) | (B.1)
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The Minkowski space interval is as follows
do? = dT? — dr? — r?(d6? + sin® 0 dp?). (B.2)

The RTG Egs. (1)—(2) we write in the following form

%2%1/ = 81G (T,w - %gw/T> — Ry + m729,uu , (B.3)
0™ + 75,5 =0. (B.4)
Taking into account that
fyga =0, 7212 = -, 7§3 = —rsin0,
% = V3/2U_1/2(1 - kr2)_1/2r2 sin 6,
gt = —V12Ul2(1 — kr?)Y %2 sin g, (B.5)

§22 _ _V1/2U1/2(1 _ kr2)_1/2 sin 6,
G = —VI2UV2(1 = kr?) " 2(sin ) 1.

Equationg B.4) for v = 0 andv = 1 become

d [V
ﬁ<_U1/3> ~0, (B.6)

d 2N1/2.2 2\—1/2
—%[(14;7«) r}+2(1—k‘r) r=0. (B.7)

For componenty = 2 andv = 3 Eqgs.(B.4) are fulfilled identically. From Eqs(B.6) and (B.7) it
follows
V/UY? = const=3* £0, k=0. (B.8)

Thus, the RTQuniquely leads us to the flat spatial (Euclidean) geometrgf the Universe.
Supposing

a? = U3, (B.9)
we obtain )
ds® = 3° [ang2 - (%) (dr? + r2d6* 4 r? sin? 9dqb2)} . (B.10)
Here the following quantity
a\3
dr, = (5> dT (B.11)

determines the rate of slowing down of a rate of time at the presence of a gravitational field in comparison
to inertial time7". The common constant numerical fact#f in an intervalds? equally increases both
time, and space variables. It does not reflect dynamics of development of the Universe, but determines
the time in the Universe and its spatial scale. The time in the Universe is determined bylvasea
time-like part of intervatls®

dr = B*dr, = a*dT, (B.12)

ds? = dr* — B*a*(7)(dr? 4 r?df* + r? sin® 0 dp?). (B.13)
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The energy-momentum tensor of matter in the effective Riemannian space is as follows

T,Lw = (P +p)UuUl/ — 9ub, (B'14)

wherep andp are correspondingly the density and the pressure of matter at the rest system otit, and
is its velocity. As for interval B.13) go; and Ry, are equal to zero it follows from E¢B.3) that

To; =0 and U; = 0. (B.15)

It means that at the inertial system, defined by inte(#aR), the matter stays at rest during the evolution

of Universe. The immovability of matter in the homogeneous and isotropic Universe (distracting from
pecular velocities of galaxies) in some way corresponds to the early (before Fridman) ideas by A. Einstein
on the Universe.

So-called “expansion of the Universe”, observed through the redshift, is caused not by a motion of
matter, but by changing in due rate of the gravitational field. This note should be meant, when the accepted
terminology “expansion of the Universe” is used.

Describing interva( B.13) in proper timer the interval of initial Minkowski spacéB.2) will accept
the following form

1
do® = —dr* — dr? — r*(d6? + sin’® 6 d¢?). (B.16)

a6
a
On the base of Eq$B.13) and(B.16), after taking into account that

Ry = —3%, Ry = ﬁ4(ad + 2&2) , (B.17)

1 1 1 1,5
Too = 5 gooT = E(p +3p), T — Sl = 55 a“(p—p), (B.18)

from Egs.(B.3) it is discovered
1 d%a 47G 3p 1 5 1

v =g et E) - gmat(i- ). (B.19)

1 da\2 8nG 1 2 3 1
(war) =75 o)~ 1pme? (2~ G + 5. (520

Differentiating(B.20) overr and using B.19), we obtain

1 da 1 dp

Tadr  of L P\dr
a dr 3<p+c_2> T

(B.21)

The above equation can also be immediately derived from the covariant conservation law:
VulV=gT") = 8,(V—=gT") + Iis(v/=g T*%) = 0, (B.22)

wherngﬁ are Christoffel symbols of the effective Riemannian space.
Let us write Eq.(B.21) in the following form

—— =a— + 3p. (B.23)

16



Taking into accoun{B.23) we can preser(tB.19) as follows

1 d*a 447G/ dp 1 5 1
— == (a2E +2p) - ~(me) (1-5)- (B.24)
This equation can be written in the following form
d*a av
F — _%7 (B.25)
where (me)?
_ AnG o, mc 2 1
Multiplying both parts of Eq(B.25) ontoda/dr, we get
drl /day?
~ == = B.2
oz (G) ~vl=o (B.27)
or L das 2
a
5 (E) +V = E = const (B.28)
Comparing(B.20) and(B.28), we obtain
B* = (mc)?/8E. (B.29)

Thus, the constant* is determined by integral of motioR. The expressioriB.28) reminds us the
energy of a unit mass. If the quantityhad the dimensionality of length, the first term(if.28) would
correspond to the kinetic energy, and second — to the potential one. From the causality requirement (3)
it follows thata.,.x = 3, integral of motionk is different from zero, but it is very small [8].
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