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1. Introduction

Vogt’s theorem was published in 1914 ([12], Satz 12). It concerns convex arcs of planar
curves with continuous monotonic curvature of constant sign. The later proofs [4,5,11] did not
extend the class of invoked curves. Guggenheimer ([3], p. 48) applies the term spiral arc to such
curves, and formulates Vogt’s theorem as follows:

“Let A and B be the endpoints of a spiral arc, the curvature nondecreasing from A to B.
The angle β of the tangent to the arc at B with the chord AB is not less than the angle α of the
tangent at A with AB. α=β only if the curvature is constant”.

Below α and β denote algebraic values of the boundary angles with respect to the positive

direction of X-axis, same as the direction of the chord
−→
AB. Signed curvatures at the endpoints A

and B are denoted as k1 and k2. Vogt assumes positive values for angles and curvatures, and
the theorem states that |α|> |β| for |k1|> |k2|, and vice versa. Five cases, depicted in Fig. 1 as
arcs ABi, can be detailed as

AB1 : k1 < k2 < 0, α = |α| > |β| = −β =⇒ α+β > 0;

AB2 : 0 > k1 > k2, α = |α| < |β| = −β =⇒ α+β < 0;

AB0 : k1 = k2, ±α = |α| = |β| = ∓β =⇒ α+β = 0;

AB3 : k1 > k2 > 0, −α = |α| > |β| = β =⇒ α+β < 0;

AB4 : 0 < k1 < k2, −α = |α| < |β| = β =⇒ α+β > 0;

and unified to
sign(α+β) = sign(k2−k1) (1)

for whichever kind of monotonicity and curvature sign. In this notation the theorem remains
valid for non-convex arcs. The proof for this case, lemma 1 in [7], required curve to be one-to-one
projectable onto its chord.

A variety of situations is illustrated by a family of arcs of Cornu spirals with fixed α and
varying β, shown in Fig. 2. The sum α+β for curves 1 and 2 with decreasing curvature is
negative; it vanishes at circular arc 3, and becomes positive for curves 4–10 with increasing
curvature. Vogt’s theorem covers cases 1–4 (arc 5 is not convex), lemma 1 in [7] — cases 3–8,
curves 3–4 are covered by both, and 9–10 — by neither. General proof for cases 1–10, defined
below as short arcs, is the first extension of Vogt’s theorem proposed herein.
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The requirements of convexity or projectability both served to somehow shorten the arc. But
it turned out that Vogt’s theorem can also be formulated for “long” spirals like curve 11 in Fig.2.

2. Preliminary definitions and notation

We describe curves by intrinsic equation k= k(s), k being curvature, and s, arc length:
06 s6S. Functions Z(s)=x(s)+iy(s) and τ(s) represent coordinates and the direction of tan-
gent. The terms “increasing” and “decreasing”, applied to any function f(s), are accompanied
in this article by the adverb “strictly” when necessary; otherwise non-strict monotonicity with
f(s) 6≡const is assumed.

Definition 2.1. Spiral is a planar curve of monotonic, piecewise continuous curvature, not
containing the circumference of a circle. Inflection and infinite curvatures at the endpoints are
admitted.

Definition 2.2. Biarc is a spiral, composed of two arcs of constant curvature (like arcs AT3B3
and AT4B4 in Fig. 1).

Definition 2.3. An arc
_
AB is short, if its tangent never achieves the direction

→
BA, opposite to

the direction of its chord, except, possibly, at the endpoints.

Definition 2.4. An arc
_
AB is short, if it does not intersect the complement of its chord to the

infinite straight line (possibly intersecting the chord itself).

Def. 2.3 will be used until the equivalence of definitions 2.3 and 2.4 is proven (corollary 5.10).
The term “very short” will be sometimes used to denote an arc, one-to-one projectable onto its
chord (curves 3–8 in Fig. 2).

Guggenheimer uses terms line element to denote a pair (P, t) of a point and a direction, and
curvature element (P, t, ρn), n ⊥ t, adding curvature radius ρ at P ([3], p. 50). We modify these
definitions to (x, y, τ ) and (x, y, τ, k) with tangent angle τ and signed curvature k at the point
P =(x, y). Notation

Ki = K(xi, yi, τi, ki)
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serves to denote both the i-th curvature element and directed curve of constant curvature pro-
duced by Ki. Whether it be a straight line or a circular arc, it goes under general name circle
[of curvature].

As in [6], we use an implicit equation of the circle K0=K(x0, y0, τ0, k0) in the form

C(x, y;K0) ≡ k0
[
(x−x0)

2+(y−y0)
2
]
+ 2(x−x0) sin τ0 − 2(y−y0) cos τ0 = 0. (2)

The sign of C(x, y;K0) reflects the position of the point (x, y) with respect to K0: it is from the
left (C < 0) or from the right (C > 0) of the circle’s boundary. Keeping in mind applications to
geometric modelling, define the following:

Definition 2.5. The region of material of the circle K is

Mat(K) = {(x, y) : C(x, y;K) 6 0}.

To consider properties of a spiral arc in relation to its chord
−→
AB, |AB|=2c, we choose the

coordinate system such that the chord becomes the segment [−c, c] of X-axis. With α= τ(0),
k1= k(0), and β= τ(S), k2= k(S), the boundary circles of curvature take form

K1 = K(−c, 0, α, k1), K2 = K(c, 0, β, k2). (3)

It is often convenient to assume homothety with the coefficient c−1, and to operate on the segment
[−1, 1]. The coordinates x, y and curvatures k become normalized dimensionless quantities,
corresponding to x/c, y/c and kc=κ. With such homothety applied, boundary circles (3)
appear as

K1 = K(−1, 0, α, κ1), K2 = K(1, 0, β, κ2). (4)

Definition 2.6. A curve whose start point is moved into position A(−c, 0), and the endpoint,
into B(c, 0), is named normalized arc. The product ck(s) ≡ κ(s), invariant under homotheties,
will be referred to as normalized curvature.

Denote A(ξ) a normalized circular arc, traced from the point A(−c, 0) to B(c, 0) with the di-
rection of tangents ξ at A (k1,2=− sin ξ/c, κ1,2=− sin ξ). The arc A(±π), passing through
infinity, is coincident with the chord’s complement to an infinite straight line; the arc A(0) is
the chord AB itself.

Definition 2.7. A lense L(ξ1, ξ2) is the region between two arcs A(ξ1) and A(ξ2), namely

L(ξ1, ξ2) = { (x, y) : (x, y) ∈ A(ξ) }, min(ξ1, ξ2) < ξ < max(ξ1, ξ2).

The arc A(α) shares tangent with the normalized spiral at the start point; so does A(−β) at the
endpoint. The two arcs bound the lense L(α,−β), shown in gray in Fig.3. The signed half-width
ω of the lense, and the direction γ of its bisector A(γ) are

ω =
α+β

2
, γ =

α−β
2

. (5)

Definition 2.8. By the inflection point of a spiral, whose curvature k(s) changes sign, shall
be meant any inner point Z(s0) with k(s0)= 0. If there is no such point, i.e. curvature jump
k(s0−0) ≶ 0 ≶ k(s0+0) occurs, the jump point will be used as the inflection point with the
assignment k(s0)= 0.
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Fig. 3.
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3. Vogt’s theorem for short spirals

The subsequent proof of the modified Vogt’s theorem (1) for short spirals is similar to the
proof for “very short” ones from [7]. Both clearly show that only monotonicity of k(s), and not
convexity of the arc, is the basis for Vogt’s theorem.

Theorem 3.1. Boundary angles α and β of a normalized short spiral or circular arc obey the
following conditions:

if k1 < k2 : α+β > 0, −π < α 6 π, −π < β 6 π;
if k1 > k2 : α+β < 0, −π 6 α < π, −π 6 β < π;
if k1 = k2 : α+β = 0, −π < α < π, −π < β < π.

(6)

Proof. Consider the case of increasing curvature k(s), and define a new parameter ξ:

ξ(s) =

s∫

0

cos
τ(σ)

2
dσ, 0 6 ξ 6 ξ1 = ξ(S).

By Def. 2.3, |τ(s)|<π within the interval (0, S), and ξ(s) is therefore strictly increasing with s.
Define function z(ξ):

z(ξ) = sin
τ(s(ξ))

2
,

dz

dξ
=
dz

ds
∙
ds

dξ
=

(
1

2
cos

τ(s)

2

dτ

ds

)

∙

(

cos
τ(s)

2

)−1
=
1

2
k(s(ξ)).

Its derivative being increasing, z(ξ) is downwards convex, and its plot lies below straight line
segment l(ξ), connecting the endpoints z(0)= sin(α/2) and z(ξ1)= sin(β/2):

z(ξ) < l(ξ) =
1−ξ
ξ1
sin(α/2) +

ξ

ξ1
sin(β/2) , 0 < ξ < ξ1.

Condition y(0)= y(S) yields

0 =

S∫

0

sin τ(s) ds = 2

S∫

0

sin
τ(s)

2

dξ
︷ ︸︸ ︷(

cos
τ(s)

2
ds

)

= 2

ξ1∫

0

z(ξ) dξ <

< 2

ξ1∫

0

l(ξ) dξ =
ξ1

2
(sin(α/2) + sin(β/2)) = ξ1 sin

α+β

4
cos

α−β
4

.
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So, inequality |α+β|6 2π, resulting from α, β ∈ [−π, π], can be refined to 0<α+β6 2π. Condi-
tion α+β > 0 excludes the value −π for α or β, providing inequalities (6) for the case of increasing
curvature.

If the curvature of the arc Z(s) is decreasing, i.e. k2<k1, consider the arc Z̄(s), symmetric
to Z(s) about X-axis. Its boundary angles are α′=−α, β′=−β, and the curvature increases:
k′1=−k1 < −k2 = k′2. So, α

′+β′> 0, and α+β < 0 for the original curve. The case of constant
curvature is evident. q.e.d.

4. Basic inequality of the theory of spirals

In article [6] we have introduced an inversive invariant of a pair of circles K1=K(x1, y1, τ1, k1)
and K2=K(x2, y2, τ2, k2):

Q(K1,K2) =
1

4
k1k2[(Δx)

2+(Δy)2] + sin2
Δτ

2
+

+
1

2
k2(Δx sin τ1−Δy cos τ1)−

1

2
k1(Δx sin τ2−Δy cos τ2)

(Δx = x2−x1, Δy = y2−y1, Δτ = τ2−τ1).

(7)

Its value is independent of arbitrarily chosen line elements (xi, yi, τi) on each circle, and is
invariant under motions, homothety and inversions; and Q(K1,K2) = Q(K2,K1). In particular
cases,

a) k1,2 6=0, D is the distance between two centres;
b) k1=0, k2 6=0, L is (signed) distance from the centre of K2 to the straight line K1;
c) any k1, k2, and ψ is intersection angle of two circles;

the invariant Q can be represented as follows:

Q(a) =
(k1k2D)

2 − (k2−k1)2

4k1k2
, Q(b) =

k2L− 1
2

, Q(c) = sin2(ψ/2). (8)

If two circles have no real common point, ψ is complex, but Q remains real. In this case
Im(ψ)= cosh−1|1−2Q| is Coxeter’s inversive distance of two circles [1]. Q=0 if and only if two
circles are tangent, or are two equally directed straight lines. Situation Q=1 can be considered
as “antitangency” (τ1= τ2 ± π at the common point). Using this invariant is the alternative to
cumbersome enumeration of variants with different mutual position (and curvature sign) of the
two circles, commonly occurring in describing problems of this sort.

Proposition 4.1. A curve with increasing curvature intersects its every circle of curvature from
right to left (and from left to right if curvature decreases).

Proving here this familiar statement helps us to have the subsequent proof of our basic theo-
rem 4.2 self-contained. The second needed assumption, invariance of Q, is easy to prove by
deducing formulae (8).

Proof. To consider behavior of a spiral at some point P1=Z(s1) choose the coordinate system
with the origin at P1 and the axis of X aligned with τ(s1). The curvature element at P1 becomes
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then K1=K(0, 0, 0, k1). Obtain function C(s) by substituting x=x(s) and y= y(s) into implicit
equation (2) of K1:

C(s) = C(x(s), y(s); K1) = k1[x(s)
2 + y(s)2]− 2y(s). (9)

Differentiating C(s) yields (x, y, τ and k are abbreviated functions of s):

C ′(s) = 2k1(x cos τ + y sin τ)− 2 sin τ,
C ′′(s) = 2k1 + 2k1k(y cos τ − x sin τ)− 2k cos τ,
C ′′′(s) = 2k2[sin τ − k1(x cos τ+y sin τ)]− 2k′(s)[cos τ + k1(x sin τ−y cos τ)];
C(s1) = 0, C ′(s1) = 0, C ′′(s1) = 0, C ′′′(s1) = −2k′(s1) ≶ 0.

Whether k(s) varies continuously or with a jump at s1, function C(s) undergoes variation of the
opposite sign; C(s) going negative (or positive, if curvature decreases), the curve locally deviates
to the left (or to the right) of K1. q.e.d.

Theorem 4.2. Let K1 and K2 be two circles of curvature of a spiral curve. Then

Q(K1,K2) 6 0, (10)

and equality holds if and only if both circles belong to a circular subarc or to a biarc.

Proof. Denote the circle of curvature at the start point as K1, K(s) being any other circle of
curvature:

K(s) = K(x(s), y(s), τ(s), k(s) ), K1 = K(0).

Two examples in Fig.4 illustrate the proof for the case of increasing curvature with negative and
positive start values k1= k(0). The regions Mat(K1) are shown in gray. Points Pi subdivide the
spiral into subarcs 06 s16 s26 s36 s46S, some of them possibly absent: P0P1 is the initial
subarc of constant curvature (if any), coincident with K1. As soon as the curvature increases
at P1, with or without jump, the spiral deviates to the left from the circle K1 (Prop. 4.1). The
arc P0P1 may be supplemented to a biarc by another circular arc P1P2; point P3 represents
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any curvature jump, where there are two circles of curvature K(s3±0), left and right. Point
P4=Z(s4), if exists, is the point, where local property 4.1 is no more valid, i.e. spiral returns to
the boundary of K1. Thus, with expression (9) for C(s) involved,

C(s) = 0 if 0 6 s 6 s1, or s = s4,
C(s) < 0 if s1 < s < s4.

Associate the coordinate system with the line element (x(s1), y(s1), τ(s1) ) such that
K1=K(0)=K(s1−0)=K(0, 0, 0, k1). Define function Q(s) = Q(K1,K(s)) from (7):

Q(s) =
1

4
k(s)C(s)−

k1
2
[x(s) sin τ(s)−y(s) cos τ(s)] + sin2

τ(s)

2
[Q(0) = 0] (11)

Show that Q(s) is monotonic decreasing in [0, s4]. Differentiating of Q(s) yields

Q′(s) =
1

4
k′(s)C(s) =⇒ Q′(s) 6 0 (12)

for increasing k(s). Hence, Q(s) is decreasing in every segment of its continuity. Make sure
that jumps of Q(s) at some point s3, such that k(s3−0) < k(s3+0), conform to its decreasing
behavior. Because functions x(s), y(s), τ(s) and C(s) are continuous, and C(s3) is still negative,
we deduce from (11):

Q(s3+0)−Q(s3−0) =
1

4
[k(s3+0)− k(s3−0)]C(s3) < 0, (13)

and Q(s) is decreasing in the entire segment [0, s4].
In the case of biarc in [0, s1]∪ [s1, s2], k(s) is piecewise constant. Function Q(s) is continuous

and zero up to s1, remains so in s1 (despite of curvature jump, due to C(s1)= 0), and until s2,
due to k′(s)= 0 in (12). If the entire curve is biarc, the initial circle of curvatureK1 is never again
reached by the second subarc until it makes complete 2π-turn, which contradicts to Def. 2.1.

At s> s2, Q(s) either continuously decreases, or undergoes negative jumps like (13). The
theorem holds in [0, s4]. It remains to prove that the point Z(s4) does not exist. Under conditions
C(s4)= 0 and Q4=Q(s4)< 0 at such point, an attempt to determine Z(s4)=x4+iy4 from two
equations (9,11) fails: excluding x yields

k21y
2
4 − 2k1y4(1+2Q4 cos τ4− cos τ4) + (2Q4−1+ cos τ4)

2 = 0,

y4 =
1

k1

[
1− cos τ4(1−2Q4)± sin τ4

√
Q4(1−Q4)

]
,

i.e. unsolvability with Q4< 0 (or immediate contradiction sin2(τ4/2)< 0, if k1=0). So, spiral
never returns to its initial circle of curvature K1. If the curvature decreases, the curve deviates
to the right of K1, and C(s) changes sign. So do derivative k′(s) and curvature jumps, thus
preserving inequalities (13), (12), and (10). q.e.d.

The corollary to this theorem, due to W. Vogt (Satz 1 in [12]), is the absence of double points
on a spiral. Kneser’s theorem (see [3], theorem 3–12), stating that “Any circle of curvature of a
spiral arc contains every smaller circle of curvature of the arc in its interior and in its turn is
contained in the interior of every circle of curvature of greater radius” concerns spirals without
inflection and can be generalized as follows:
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Corollary 4.3. Let K(s) = K(x(s), y(s), τ(s), k(s±0)) be a family of circles of curvature of a
spiral curve. Then the region of material of any circle includes the region of material of any
other circle with greater curvature:

k(s2) > k(s1) =⇒ Mat(K(s2)) ⊂ Mat(K(s1)).

Fig. 5 illustrates the statement. The region Mat(KM ) of the initial circle of curvature is the
whole plane except the interior of KM . As the curvature increases, the regions of material
become smaller, each next being within the previous one. They remain unbounded up to the
inflection point, whose region of material is the right half-plane.

Figs.6a,b,c illustrate theorem 4.2 for normalized spiral. With boundary circles of curvature (4)
and angles ω and γ, defined by (5), inequality (10) takes form

Q(κ1, κ2, α, β) = κ1κ2 + κ2 sinα− κ1 sinβ + sin2 γ =
= (κ1 + sinα) (κ2 − sinβ) + sin2 ω 6 0,

(14)

Having fixed α and β, consider the region of permissible values for normalized boundary cur-
vatures in the plane (κ1, κ2). This region consists of two subregions, each bounded by one of
the two branches of the hyperbola Q(κ1, κ2)= 0, traced at the left side of Fig. 6. Its centre
is located in the point C(κ1, κ2)= (− sinα, sinβ); these two curvatures correspond to those of
lense’s boundaries.

Biarcs marked as hi in the right side have boundary curvatures (κ1, κ2) corresponding to the
points Hi of the hyperbola. By theorem 4.2, every biarc represents the unique spiral, matching
end conditions of this kind. Non-biarc curves are presented by some point K in the plane (κ1, κ2),
and the arc k of Cornu spiral in the plane (x, y).

Corollary 4.4. End conditions of a normalized spiral arc obey the following inequalities:

κ1 < − sinα, κ2 > sinβ, if κ1 < κ2;
κ1 > − sinα, κ2 < sinβ, if κ1 > κ2.

(15)

Proof. Inequalities (15) merely reflect the position of two regions Q6 0 with respect to the
asymptotes of the hyperbola, vertical (κ1=− sinα) and horizontal one (κ2= sin β). It remains
to show that the line κ2=κ1 separates the two branches of hyperbola, thus connecting inequal-
ities (15) to specified conditions, increasing or decreasing curvature. Substituting κ1=κ2=κ
into the equation Q(κ1, κ2, α, β)= 0 yields

κ2 + κ(sinα− sinβ) + sin2 γ = (κ+sin γ cosω)2 + sin2 γ sin2 ω = 0. (16)

Hence, except special cases sin γ=0 or sinω=0, statement (15) is valid: two convex regions,
bounded by the upper left and the lower right branches of hyperbola, are the regions of possible
boundary curvatures for κ1<κ2 and κ1>κ2 respectively.

The first exception, sin γ=0, occurs if α=β and provides the unique common point
κ1=κ2=0 without intersecting the hyperbola (point H0 and degenerate biarc h0 in Fig. 6b).
The statement, assuming κ1 6=κ2, remains valid.

The second exception, sinω=0, i.e. α=−β, is illustrated by Fig.6d. The hyperbola degener-
ates into a pair of straight lines with the centre C on the line κ1=κ2, still separating two regions
in question. However, inequalities (15) should be considered as non-strict, like κ16− sinα, be-
cause the hyperbola is coincident with its asymptotes. By theorem 4.2, a spiral, corresponding
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to equality, may be only biarc. Attempt to construct it gives the only possibility: the first
subarc with κ1=− sinα, going from A to B, and the second subarc being circumference of a
circle of any curvature κ2 from B to B (examples h1 and h2). Similar constructions h3,4 arise
with κ2= sin β and arbitrary κ1. Since Def. 2.1 excludes this construction, the points of such
degenerated hyperbola do not produce a spiral, and should be excluded. Inequalities (15) remain
strict. q.e.d.

Let us apply inequality (10) to another Vogt’s statement, namely, that spiral has no double

tangent (Satz 7 in [12]). Its refined form is illustrated by the double tangent
−→
BA in Fig. 5, and

sounds like

Corollary 4.5. Spiral curve may have double tangent only if this tangent joins points with
opposite curvature sign, or is coincident with the inflection segment of the spiral.

Proof. Two curvature elements with common tangent can be denoted as

K(x1, y1, τ1, k1) and K(x1+t cos τ1, y1+t sin τ1, τ1, k2), t 6= 0.

Inequality (10) takes form 4Q= k1k2t26 0, supplying the proof for the general case, Q< 0,
k1,2 6=0. Consider exceptions. If, say, k1=0, the spiral deviates from its tangent as soon as k(s)
becomes non-zero. By Cor. 4.3, the spiral has no more common points with this tangent. The
biarc case, Q=0, is trivial: two tangent circles may have common tangent only in their unique
common point. q.e.d.

Corollary 4.6. The tangent at the inflection point of a normalized spiral arc cuts the interior
of the chord and is directed downwards (i.e. sin τ(s0)< 0) if curvature increases, or upwards
(sin τ(s0)> 0) if curvature decreases.

Proof. The tangent at the inflection point Z(s0) is at the same time the circle of curvature K0
(Figs. 5 and 11a). By Cor. 4.3, the endpoints A and B of the arc are disposed bilaterally along
K0. That’s why K0 cuts the chord in the interior. For increasing k(s), point A is located from

the right of the line K0, and B from the left of it. For normalized curve, when
−→
AB is brought

horizontal, this is equivalent to downwards directed tangent K0. q.e.d.

Two following propositions are our previous results from [6]. They can be easily derived from
parametric equation of curve, inverse to given one, by calculating and differentiating its curva-
ture.

Proposition 4.7. Inversion, applied to a spiral curve, preserves the monotonicity of the curva-
ture, interchanging its decreasing/increasing character.

Proposition 4.8. If a curvature element K1 is inverted with respect to a circle of inversion K0,
the curvature of the image K2 is given by

k2 = 2k0(1− 2Q01)− k1, Q01 = Q(K0,K1).

The direction, artificially assigned to the circle of inversion, does not affect the inverse curve. If
K0 is reversed, both k0 and (1−2Q01) change sign.
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5. Vogt’s theorem for long spirals

On the spiral Z(s)=x(s)+iy(s), s∈ [0, S], consider subarc s∈ [u, v] and define functions

h(u, v) = |Z(v)− Z(u)|, μ(u, v) = arg[Z(v)− Z(u)] (17)

for the length and direction of the chord. For any subarc and the entire curve the cumulative
boundary angles α̃(u, v) and β̃(u, v) with respect to varying chord AB(u, v) can be expressed as

α̃(u, v) = τ(u)− [μ(u, v) + 2πm],
β̃(u, v) = τ(v)− [μ(u, v) + 2πm],

(18)

satisfying the natural condition for the winding angle ρ of the arc:

β̃(u, v)− α̃(u, v) = τ(v)− τ(u) =

v∫

u

k(s) ds = ρ(u, v).

This still allows to assign any value α+2πn to α̃. To fix it, we note that the angles α̃ and β̃
can be unambiguously determined within the range (−π, π) for rather short subarc [u0, v0]. In
particular, α̃(u, u)= β̃(u, u)= 0. Define cumulative angular functions for any arc [u, v] as

α̃, β̃(u, v) = lim
u0→u
v0→v

α̃, β̃(u0, v0) , u 6 u0 = v0 6 v, (19)

preserving continuity at α̃, β̃ = ±π, ±3π, . . . , while the limits are being reached.

Lemma 5.1. Cumulative boundary angles α̃, β̃, defined by Eq. (19), do not depend on the start
point u0= v0 and the way the limits are reached.

Proof. To calculate α̃(u, v) and β̃(u, v) or, for symmetry, function

ω̃(u, v) =
1

2
[α̃(u, v) + β̃(u, v)] =

1

2
[τ(u)+τ(v)]− [μ(u, v) + 2πm], (20)

let us restore it from derivatives, which are free from 2πm-uncertainty:

∂μ(u, v)

∂u
=

∂

∂u
arctan

y(v)− y(u)
x(v)− x(u)

=

=
− sin τ(u) [

h cosμ
︷ ︸︸ ︷
x(v)−x(u)] + cos τ(u) [

h sinμ
︷ ︸︸ ︷
y(v)−y(u)]

[x(v)−x(u)]2 + [y(v)−y(u)]2
= −
sin[

α(u,v)+2πm
︷ ︸︸ ︷
τ(u)−μ(u, v)]
h(u, v)

.

So,
∂μ(u, v)

∂u
= −
sinα(u, v)

h(u, v)
,

∂μ(u, v)

∂v
=
sinβ(u, v)

h(u, v)
,

and
∂ω̃(u, v)

∂u
=
1

2
k(u) +

sinα(u, v)

h(u, v)
= G(u, v),

∂ω̃(u, v)

∂v
=
1

2
k(v)−

sinβ(u, v)

h(u, v)
= H(u, v).

(21)
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Continuous function ω̃(u, v) can be now calculated as

∫

WiW

G(u, v) du+H(u, v) dv (22)

along any path WiW (shown in Fig. 7) in the closed triangular region 06u6 v6S with Wi
taken on the boundary u= v. From the expansions

τ(u+s) = τ(u) + sk(u) +O(s2),

Z(u+s) = Z(u) + seiτ(u) + i
2s
2k(u)eiτ(u) +O(s3),

h(u, u+s) = |Z(u+s)−Z(u)| = s+O(s2),

μ(u, u+s) = arg[Z(u+s)− Z(u)] = arg[eiτ(u)(s+ i
2s
2k(u) +O(s3))] =

= arg[eiτ(u)(1 + i
2sk(u) +O(s

2))] = τ(u) + 12sk(u) +O(s
2),

α(u, u+s) = τ(u)− μ(u, u+s) = −12sk(u) +O(s
2),

β(u, u+s) = τ(u+s)− μ(u, u+s) = 1
2sk(u) +O(s

2),

it follows that derivatives (21) can be continuously defined on the line u= v as zeros:

G(u, u) = lim
s→0

G(u, u+s) = lim
s→0

[
1

2
k(u)−

sin[sk(u)/2]

s

]

= 0, H(u, u)= . . . =0

This yields
∫
W1W2

=0 along the line u= v; and, together with

∂G(u, v)

∂v
=
∂H(u, v)

∂u

[

= −
sin(α+β)

h

]

,

ensures the independence of the integral (22) on a start point Wi and integration path. In terms
of definition (19), the limits do not depend on the start point and the way they are reached.
Finally, α̃= ω̃−ρ/2, β̃= ω̃+ρ/2. q.e.d.

Definition 5.2. The angle ω̃, defined above, will be referred to as Vogt’s angle of a spiral arc.
For short spiral Vogt’s angle is the signed half-width of the lense L(α,−β).

Definition 5.3. By the reference point of the spiral shall be meant the point Z(s0), correspond-
ing to the minimal absolute value of curvature (points A1, B2 and O in Fig. 8). If the spiral has
inflection, Z(s0) is the inflection point; otherwise it is either start point (s0=0) or the end point
(s0=S).
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If curvature increases (decreases), function τ(s) is downwards (upwards) convex and attains
minimal (maximal) value at the reference point.

Lemma 5.4. Function τ̃(s) for normalized spiral, taking cumulative angles τ̃(0)= α̃ and
τ̃(S)= β̃ as the boundary values, can be distinguished from its other versions, τ̃(s) ± 2πm, by
the value at the reference point:

0 < |τ̃(s0)| < π, or
−π < τ̃(s0) < 0 if k1 < k2,

0 < τ̃(s0) < π if k1 > k2.
(23)

Proof. Based on lemma 5.1, calculate angles α̃(0, S) and β̃(0, S) as follows. Choose the coordi-
nate system with the origin at the reference point Z(s0) with X-axis directed along τ(s0) (Fig.8).
In this system function τ(s) can be defined as

τ(s) =

s∫

s0

k(ξ) dξ, τ(s0) = 0.

Calculate limits (19) starting from u0= v0= s0, u nonincreasing, v nondecreasing. Consider the
case of increasing curvature. If curvature is nonnegative (spiral A1B1), then, by Cor. 4.3, the
curve is located in the upper half-plane, except initial subarc of zero curvature, if any. We keep
u constant (u= s0=0) and increase v. Because

μ(s0, s0) = lim
ε→+0

μ(s0, s0+ε) = τ(s0) = 0,

the angle μ(u, v) never attains the values ±π, becoming strictly positive as soon as the point
Z(v) deviates from the axis of X:

0 < μ(u, v) < π if u∈ [0, s0], v ∈ [s0, S], and k(u) < k(v). (24)

The case of increasing nonpositive curvature (spiral A2B2) is similar: we start with
u0= v0= s0=S (point B2), u decreasing, v=S kept constant. Curve being located in the lower
half-plane, (24) remains valid. So it does in the inflection case (A3B3): points Z(u), u∈ [0, s0],
are located in the lower half-plane or its boundary, points Z(v), v ∈ [s0, S] — in the boundary or
upper half-plane. The angle μ(u, v) becomes strictly positive as soon as the point Z(u) or Z(v)
deviates from the axis of X, and never attains the value π. For the three cases 2πm-uncertainty
in (18) disappears, m=0, and

α̃ = τ(0)− μ(0, S), β̃ = τ(S)− μ(0, S).

To normalize the curve, chords AiBi should be brought to horizontal position, i.e. rotation
through the angle −μ(0, S)∈ (−π, 0) should be applied. This means replacing τ(s) by

τ̃(s) = −μ(0, S) + τ(s),

whose values at s = 0, S and s0 are equal to

τ̃(0) = τ(0)− μ(0, S) = α̃, τ̃(S) = β̃, τ̃(s0) = 0− μ(0, S) ∈ (−π, 0). q.e.d.
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The angle μ̃(u, v) can be defined in the cumulative sense similarly to ω̃(u, v); limits like (19) for μ̃
can be calculated starting from μ̃(s, s)= τ̃(s). In an equivalent manner μ̃(u, v) can be derived
from (20), where it is bracketed as [μ(u, v) + 2πm]:

μ̃(u, v) =
τ̃(u)+τ̃(v)

2
− ω̃(u, v). (25)

For future use we notice, as an immediate corollary of (24), the following inequality:

−π < μ̃(s0, S)− μ̃(0, s0) < π. (26)

Theorem 5.5. With boundary angles, defined in cumulative sense, Vogt’s theorem remains
valid for a spiral of any length:

sign ω̃(u, v) = sign[k(v)−k(u)], or sign(α̃+β̃) = sign(k2−k1).

Except the circular subarc, wherein Vogt’s angle ω̃(u, v) is constant and zero, it is strictly mono-
tonic function of the arc boundaries:

|ω̃(u1, v1)| < |ω̃(u, v)| if [u1, v1] ⊂ [u, v], and k(u) 6= k(v).

Proof. Rewrite derivatives (21) involving normalized curvatures κ1= 12h(u, v)k(u), κ2=
1
2h(u, v)k(v),

and, assuming increasing curvature, the first row of (15):

∂ω̃(u, v)

∂u
=
κ1 + sinα

h
6 0,

∂ω̃(u, v)

∂v
=
κ2 − sinβ

h
> 0. (27)

Equalities are added to account for the possible occurrence of a circular subarc within the spiral.
If it is not the case, or as soon as k(u) 6= k(v), function ω̃(u, v) grows up when u decreases and/or
v increases. Because ω̃(s, s)= 0, ω̃(u, v)> 0 follows. q.e.d.

Recall that Vogt’s angle is in fact the intersection angle of two circles. Taking into account
continuity of ω̃(u, v), and Prop. 4.7, we conclude the following:

Corollary 5.6. Inversion changes sign of Vogt’s angle, preserving its absolute value.

Now consider the point P =Z(s), moving along the normalized spiral from A to B,
and two subarcs of the spiral, AP and PB (Fig. 9). Denote h1(s)=h(0, s)= |AP | and
h2(s)=h(s, S)= |BP |, and apply similar notation to introduce functions

α1(s)= α̃(0, s), β1(s)= β̃(0, s), ω1(s)= ω̃(0, s), μ1(s)= μ̃(0, s),

α2(s)= α̃(s, S), β2(s)= β̃(s, S), ω2(s)= ω̃(s, S), μ2(s)= μ̃(s, S).

From equations

x(s) = h1(s) cosμ1(s)− c = −h2(s) cosμ2(s) + c,
y(s) = h1(s) sinμ1(s) = −h2(s) sinμ2(s)

it follows that

h1(s) =
2c sinμ2(s)

sin δ(s)
, h2(s) =

−2c sinμ1(s)
sin δ(s)

, where δ(s) = μ2(s)− μ1(s). (28)
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Function δ(s) inherits continuity and cumulative treatment from μ1,2(s). It is the turning of the
chord’s direction at P , or signed external angle of the triangle APB at P . If P is in the upper
half-plane, sin δ(s) is negative; it is positive in the lower half-plane; δ(s)= 2πn if P is within the
chord, and δ(s)=π(2n−1) if P belongs to chord’s complement. The locus of points, where δ is
constant, is the arc A(−δ).

Lemma 5.7. Function δ(s), defined on a spiral with increasing (decreasing) curvature, is
strictly increasing (decreasing) from δ(0)=−α̃ to δ(S)= β̃, taking value −π<δ(s0)<π at the
reference point; its derivative is continuous and does not vanish in [0, S].

Proof. Using (25), rewrite δ(s) = μ2(s)−μ1(s) as

δ(s) =

[
τ̃(s)+β̃

2
− ω̃(s, S)

]

−

[
α̃+τ̃(s)

2
− ω̃(0, s)

]

=
1

2
ρ(0, S) + ω1(s)− ω2(s). (29)

Apply (21) to calculate derivative:

δ′(s) = ω̃′1(s)− ω̃
′
2(s) =

∂ω̃(u, v)

∂v

∣
∣
∣
v=s

u=0
−
∂ω̃(u, v)

∂u

∣
∣
∣
v=S

u=s
=

=

[
1

2
k(s)−

sinβ1(s)

h1(s)

]

−

[
1

2
k(s) +

sinα2(s)

h2(s)

]

= −
sinβ1(s)

h1(s)
−
sinα2(s)

h2(s)
. (30)

Because k(s) disappears in (30), δ′(s) is continuous even if the curvature jump occurs (smooth
plot ω1−ω2 in Fig. 9, compared to ω1 and ω2, illustrates it).

As the point P (s) moves along the spiral, the arc AP is lengthening, and the arc PB short-
ening. From theorem 5.5 it follows that ω1(s) is increasing, and ω2(s) decreasing (the case of
increasing curvature is being considered). The difference ω1(s)−ω2(s) in (29) is therefore an
increasing function. So is δ(s): δ′(s)> 0. The only possibility for equality is that ω̃′1,2(s) are
simultaneously zeros, i.e. subarcs AP and PB are of constant curvature. This means that the
spiral APB is biarc, and P is the point of tangency of its two circular arcs, as depicted in
Fig. 9. If it is the case, then the last two fractions in (30) are equal to k1 and −k2 respectively,
and δ′(sP )= 12(k2−k1)> 0. The derivative is thus strictly positive everywhere in (0, S), δ(s) is
strictly increasing.
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To calculate derivatives at the endpoints we have to resolve uncertanties 0/0 in (30). For
δ′(0) approximate the spiral near the startpoint by its circle of curvature:

Z(s) = −c+
i

k1
eiα(1− eik1s) = −c+ eiαs+

i

2
eiαk1s

2 +O(s3),

δ(s) = arg[c− Z(s)]− arg[Z(s) + c] =

=

[

−
sinα

2c
s+O(s2)

]

−

[

α+
1

2
k1s+O(s

2)

]

= −α−
k1c+sinα

2c
s+O(s2).

The coefficient at s is the derivative δ′(0). Similarly δ′(S) at the endpoint B can be found. Both
are positive due to (15):

δ′(0) = −
k1c+sinα

2c
> 0, δ′(S) =

k2c+sin β

2c
> 0.

The value of δ(s0) at the reference point is already estimated in (26). Boundary values can be
calculated from (29):

δ(0) =
β̃−α̃
2
+ 0−

α̃+β̃

2
= −α̃, δ(S) =

β̃−α̃
2
+
α̃+β̃

2
− 0 = β̃. q.e.d.

The plots ω1+ω2 in Figs. 9 and 10 illustrate the following property of Vogt’s angles: however
large be the range [0, ω̃] of the monotonic functions ω1(s) and ω2(s), their sum is enclosed in the
interval of the width π:

Lemma 5.8. Let Ω(s) = |ω1(s)|+ |ω2(s)| − |ω̃|. Then

−π < Ω(s) < 0 for s ∈ (0, S). (31)

Proof. For the case of increasing curvature all ω̃’s are nonnegative, and

Ω(s) = ω1(s) + ω2(s)− ω̃
(20)
=

[
α̃+τ̃(s)

2
− μ1(s)

]

+

[
τ̃(s)+β̃

2
− μ2(s)

]

−
α̃+β̃

2
=

= τ̃(s)− μ1(s)− μ2(s).

Continue calculation of the derivative (30), which is strictly positive:

δ′(s) = −
h2 sinβ1 + h1 sinα2

h1h2

(28)
= 2c

sinμ1 sinβ1 − sinμ2 sinα2
h1h2 sin δ

=

= 2c
sinμ1 sin(τ̃−μ1)− sinμ2 sin(τ̃−μ2)

h1h2 sin δ
=
−2c
h1h2

sinΩ(s) > 0.
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The function Ω(s) takes zero values at the endpoints, and sinΩ(s) is strictly negative in (0, S).
Invoking continuity of Ω(s), we conclude that it never reaches values 0 or −π within (0, S). q.e.d.

Now we recall Def. 2.3 to introduce some quantitative measure to the notion of a long spiral.
The inflection point, if present, subdivides spiral into two branches, left and right. Points s−i ,
i=1, . . . ,M1 on the left branch, and s+i , i=1, . . . ,M2 on the right branch are those, where
Def. 2.3 of short arc is violated, i.e. 0<s±i <S, cos τ(s

±
i )=−1. Because sin τ(s

±
i )= 0, this

cannot happen at the inflection (Cor. 4.6); so, s±i are distinct points, not continuous segments,
as the inflection could be. If there are no such points or one branch is absent, the corresponding
counter M1,2 is zero.

Two other counters, N1,2, are introduced in the context of Def. 2.4. They count internal
points where the spiral meets the left (N1) and the right (N2) complements of the chord.

Theorem 5.9. Counters M1,2 and N1,2 are pairwise equal. Cumulative boundary angles α̃ and
β̃ for a normalized spiral arc of increasing/decreasing curvature are

k1 < k2 : α̃=α+2πN1, β̃=β+2πN2 with α, β ∈ (−π, π],
k1>k2 : α̃=α−2πN1, β̃=β−2πN2 with α, β ∈ [−π, π),

or, rewritten for the case of increasing curvature in more detailed form,

0 6 k1 < k2 : −π < α < 0, −π < β 6 π, α̃=α (N1=0), β̃=β+2πN2; (32)

k1 < 0 < k2 : −π < α 6 π, −π < β 6 π, α̃=α+2πN1, β̃=β+2πN2; (33)

k1 < k2 6 0 : −π < α 6 π, −π < β < 0, α̃=α+2πN1, β̃=β (N2=0). (34)

Proof. Two cases, (33) and (32), are illustrated by Fig. 11. Right plots show functions τ̃(s)
and δ(s). Consider the inflection case (33), Fig. 11a. Function τ̃(s) is decreasing from α̃ to its
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minimal value τ̃(s0)∈ (−π, 0) at the reference (inflection) point, and then increases to β̃. In
doing so, it meets M1+M2 times the levels π(2m−1) (points Ti). The following sequence of its
values can be derived according to definition of counters M1,2:

α̃, π(2M1−1), π(2M1−3), . . . , π︸ ︷︷ ︸
M1

, τ̃(s0), π, 3π, . . . , π(2M2−1)︸ ︷︷ ︸
M2

, β̃.

By lemma 5.7, function δ(s) is monotonic increasing from −α̃ to β̃. Spiral cuts the complement
of the chord at points Ci, when δ(s) meets levels π(2n−1). The sequence of its values, similar
to that of τ̃(s), looks like

−α̃, −π(2M1−1), −π(2M1−3), . . . , −π︸ ︷︷ ︸
N1

, δ(s0), π, 3π, . . . , π(2M2−1)︸ ︷︷ ︸
N2

, β̃.

The number of underbraced points is N1+N2 by definition of counters N1,2. Separating them into
two groups is justified as follows. First, the tangent at the inflection point separates two branches
of the spiral and, by Cor. 4.6, two complements of the chord; hence, all the N1 intersections
with the left complement of the chord belong to the left branch and are followed by the set of
the right-sided ones. Second, by lemma 5.7, the value δ(s)=−π terminates the first group of
points, whose number is N1 by definition and M1 by calculation. Similarly, M2=N2.

From the above sequences it follows as well: if the directions of tangents are α and β, and
|α|, |β| < π, the values α+2πN1 and β+2πN2 are to be assigned to cumulative angles α̃, β̃. If α
or β is equal to ±π, the correspondence is kept by the alternative resolved in favour of +π (and
−π in the case of decreasing curvature).

In the case (32) of increasing nonnegative curvature (Fig. 11b), the curve has no left branch,
and M1=0 by definition. Point A is the reference point, so, by lemma 5.4, −π< α̃< 0, α̃=α;
the tangent at A is directed downwards. The region Mat(K1) is either half-plane to the left
of K1 (if k1=0), or the interior of the circle K1 located in this half-plane. It covers the entire
curve (Cor. 4.3), and cannot include any point of the left complement of the chord. Therefore
N1=0=M1.

The rest of the proof is similar to that of the inflection case. Equality N2=M2 results from
monotonic increasing behavior of functions τ̃(s) (from α̃ to β̃) and δ(s) (from −α̃ to β̃), and
counting points Ti and Ci.

The proofs for the case (34) of increasing nonpositive curvature can be obtained by applying
symmetry about Y-axis. Symmetry about X-axis provides the proof for the three similar cases
of decreasing curvature. q.e.d.

Corollary 5.10. Definitions 2.3 and 2.4 of a short spiral are equivalent.

Polygonal line ACDF in Fig.12 bounds the open region of possible values of α̃, β̃ for spirals with
increasing curvature. Boundary CD results from Vogt’s theorem, AC and DF — from (32)–(34).
Triangle GDC, including half-open segments (CG] and [GD), is the boundary for short spirals.
Biarc curves can be constructed with α̃, β̃ in the interior of trapezium BCDEB (see discussion
in the next section). Similar regions for decreasing curvature are symmetric about the line CD
(α̃+β̃=0). Both regions can be briefly described by inequalities ω̃ 6=0 and

|ρ| < 2|ω̃|+ 2π for any k1, k2;
2|ω̃| < |ρ| < 2|ω̃|+ 2π for k1k2> 0 (no inflection).
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6. Biarc curves

Biarc curves, considered hitherto as a flexible tool for curves interpolation, play an important
role in the theory of spiral curves. However much had been written about biarcs (see [9] and ref-
erences herein, [15] for long biarcs), the presented description seems to have several advantages.
Normalized position can be considered as canonical for these curves, and allows to separate the
parameters of shape from positional ones. The proposed parametrization yields a set of simple
and symmetric reference formulae. No different treatment for “C-shaped” and “S-shaped” biarcs
is needed. The specific cases of α=±π or β=±π, usually omitted, are taken into consideration.

The condition of tangency of two arcs, forming biarc, is the equation

Q(κ1, κ2, α, β) = (κ1 + sinα) (κ2 − sinβ) + sin
2 ω = 0

(recall hyperbolas in Fig. 6). This condition allows two arcs to be a pair of equally directed
straight lines (“biarc” h0 in Fig. 6b). The hyperbola can be parametrized as follows:

{
κ1(b) = − sinα− b−1 sinω,
κ2(b) = sin β + b sinω,

(35)

Note that ω is the half-width of the lense, equal to Vogt’s angle ω̃ only if biarcs is short; otherwise
ω̃ = ω±π. Parametrization (35) supplies the parameter b for the one-parametric family of biarcs
with fixed chord [−1, 1] and fixed tangent directions α and β. As established in the proof of
Cor. 4.4 (Fig. 6d), biarcs with sinω=0 do not exist. Every value of b produces the unique point
on the hyperbola, unique pair of circles K1 and K2, tangent at the point T , unique path ATB,
and unique biarc, denoted below as B(b;α, β) or simply B(b).

Solving the system of two equations C(x, y;K1,2)= 0 (2) yields coordinates of the point
T =(x0, y0) of contact of two arcs:

x0 =
b2 − 1
Δ

, y0 =
2b sin γ

Δ
, Δ = b2 + 2b cos γ + 1 . (36)

The direction τ0 of the common tangent at this point is given by

sin τ0=−(b2 sinα+ 2b sinω + sinβ)/Δ,
cos τ0= (b2 cosα+ 2b cosω + cosβ)/Δ,

tan
τ0

2
= −

b sin(α/2) + sin(β/2)

b cos(α/2) + cos(β/2)
. (37)
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The circular arc from B to A, complementary to the arc A(γ), will be referred to as the com-
plement of the bisector of the lense. Both bisector and its complement form the circle Γ, shown
dashed in Fig. 13:

Γ = K(−1, 0, γ,− sin γ), C(x, y; Γ)
(2)
= − sin γ(x2 + y2 − 1)− 2y cos γ.

Except property (viii), the following properties of biarcs are either known or easy to prove by
means of elementary geometry:

(i) The locus of contact points T (b)= (x0(b), y0(b)) (36) is the circle Γ. Points T (b) with b> 0
are located on the bisector, those with b< 0, on its complement.

(ii) All biarcs meet the the circle Γ at the constant angle ω.
(iii) Definitions B(∞;α, β)=A(α) and B(0;α, β)=A(−β), are illustrated by Fig. 13 and justi-

fied as follows :

b→∞ : κ1 → − sinα, κ2 →∞, T → B, B(b;α, β)→ A(α);
b→ 0 : κ1 →∞, κ2 → sinβ, T → A, B(b;α, β)→ A(−β).

(38)

(iv) The possible values for the pair of counters (N1, N2) are (0, 0), (0, 1) or (1, 0). For given
tangents α, β, the cumulative angles α̃, β̃ can take values (arrows mark the cases of in-
creasing (⇑) or decreasing (⇓) curvature):

if α+β > 0, (α̃, β̃) = (α, β)⇑, (α−2π, β)⇓, (α, β−2π)⇓;
if α+β < 0, (α̃, β̃) = (α, β)⇓, (α+2π, β)⇑, (α, β+2π)⇑.

(39)

The first group, biarcs with (α̃, β̃)= (α, β), corresponds to b> 0; they are short and en-
closed within the lense. Biarcs with b< 0 are located outside the lense. They are long,
unless α=±π or β=±π (see vi).

(v) Discontinuous biarcs (such as shown in Figs. 6a,b by dotted lines) correspond to nonpos-
itive parameter value b?, defined by

b?=






−
sinω

sinα
if |α|> |β| [κ1(b

?)= 0 ],

−
sinβ

sinω
if |α|6 |β| [κ2(b

?)= 0 ],

.

Three biarcs with b∈{∞; b?; 0} subdivide the XY-plane into three regions, one of them
being the lense. Every region encloses one of the three subfamilies (39).

(vi) If α=±π or β=±π (Fig. 6c), one of these three regions, as well as one of three
subfamilies (39), disappear. The degenerate biarc is at the same time lense’s bound-
ary (b?=0 or b?=∞). All such biarcs are short; and B(b;π, β)=B(−b;−π, β),
B(b;α, π)=B(−b;α,−π).

(vii) Taking into account biarcs B(∞), B(b?) and B(0), there is a unique biarc B(b(x, y) ),
passing through every point (x, y) in the plane, excluding poles A and B. Namely,

b(x, y) =






sinω[(x+1)2 + y2]

(1−x2−y2) sinα− 2y cosα
, if C(x, y; Γ) sinω 6 0,

(1−x2−y2) sin β + 2y cosβ
sinω[(x−1)2 + y2]

, if C(x, y; Γ) sinω > 0.

(40)
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(viii) The length L(b) of short biarc

L(b) =
τ0(b)−α
k1(b)

+
β−τ0(b)
k2(b)

[

L(0) =
2cα

sinα
, L(∞) =

2cβ

sinβ

]

,

is strictly monotonic function of b, or constant, if α=β (the uncertanties 0/0, wherever
occur, are simply reducible).

To prove (i) note that (36) is the parametric equation of the circle Γ. Ordinates of the points,
belonging to the bisector, should have the same sign as the angle γ, and this is achieved at b> 0:

γ 6= 0, b > 0 =⇒ sign y0 = sign γ (Fig. 6a).

If γ=0, the bisector is coincident with the chord; this corresponds to b> 0 as well:

γ = 0, b > 0 =⇒ y0 = 0, |x0| =
∣
∣
∣

b2 − 1
b2 + 2b+ 1

∣
∣
∣ =

∣
∣
∣
b−1
b+1

∣
∣
∣ < 1 (Fig. 6b).

In both cases points T (b) for biarcs with b< 0 fill the complement of the bisector.
Provided that the locus T (b) is circle Γ, (ii) is evident.
Property (iv) can be derived from the fact that one of two subarcs of a biarc is located inside

the circle Γ, and the other outside it. Only outside one can meet the chord’s complement; and
this may happen only once.

Points of contact T (b), b> 0, are inside the lense. So are subarcs AT , TB, and the entire
biarc curve. Being inside lense, biarcs with b> 0 are short, their cumulative boundary angles are
(α̃, β̃)= (α, β). Points T (b), b< 0, filling the complement of the bisector, are outside the lense
together with associated biarcs.

The discontinuous biarc B(b?) may arise only if one of the two curvatures is zero. Let
κ1(b

?)= 0 (Fig. 6a), i.e. b?=− sinω/ sinα. The parametric equation of the subarc AT is

x(s) = −1 + s cosα, y(s) = s sinα.

This ray reaches the point of contact T (36) when y(sT )= sT sinα= y0, i.e.

sT =
2b? sin γ

(b?2+2b? cos γ+1) sinα
=

−2 sin γ sinω

sin2 α−2 cos γ sinα sinω+sin2 ω
= −2

sinω

sin γ

(ω+γ was substituted for α). If sT > 0, then tangency occurs before the ray goes off into infinity,
and the biarc is normally continued by the second arc TB with κ2 6=0. Discontinuity occurs
under the condition −∞6 sT < 0, equivalent to cosα6 cosβ, and rewritten in (v) as |α|> |β|.

To derive (40), one should first decide, to which subarc of the sought for biarc B(b;α, β) the
point (x, y) belongs. The circle Γ separates two subarcs, and the decision depends on the sign of
C(x, y; Γ). The arc AT goes to the left of Γ (AT ∈ Mat(Γ), C(x, y; Γ)6 0) if the vector, defined
by α, points to the left of the vector, defined by γ: γ < α=ω+γ, i.e. ω> 0, sinω> 0. And AT
goes to the right of Γ if sinω< 0. So,

(x, y)∈
_
AT ∈K1 ⇐⇒ [C(x, y; Γ)6 0 ∧ sinω> 0] ∨ [C(x, y; Γ)> 0 ∧ sinω< 0]

⇐⇒ C(x, y; Γ)∙ sinω6 0.
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Under this condition define b from the implicit equation (2) of circle K1:

(− sinα−b−1 sinω︸ ︷︷ ︸
κ1

)
[
(x+1)2+y2

]
+ 2(x+1) sinα− 2y cosα = 0.

Below we prove property (viii).

Proof. For the case of symmetric lense, i.e. α=β=ω, γ=0, τ0(b)=−ω= const, and

L(b) =
−2ω

− sinω − b−1 sinω
+

2ω

sinω + b sinω
=
2ω

sinω

(c=1 assumed). For general case, γ 6=0, we replace the parameter b by θ= τ0(b). As b varies
from 0 to ∞, θ varies (monotonously) from β to −α. Solving (37) for b yields

b = −
tan θ2 cos

β
2 + sin

β
2

tan θ2 cos
α
2 + sin

α
2

= −
sin β+θ2
sin α+θ2

,

and

κ1(θ) = sin γ
sin α−θ2
sin β+θ2

, κ2(θ) = sin γ
sin β−θ2
sin α+θ2

, κ2−κ1 = −
sin2 γ sinω

sin α+θ2 sin
β+θ
2

,

κ′1(θ) =
− sin γ sinω

2 sin2 β+θ2
, κ′2(θ) =

− sin γ sinω

2 sin2 α+θ2
.

The length of biarc as a function of θ, and its derivative appear as

L(θ) =
θ−α
κ1(θ)

+
β−θ
κ2(θ)

;

L′(θ) =
κ1 − (θ−α)κ′1

κ21
−
κ2 + (β−θ)κ′2

κ22
=
κ1κ2(κ2−κ1)− κ′1κ

2
2(θ−α)− κ

′
2κ
2
1(β−θ)

κ21κ
2
2

=

=
sinω

[
−2 sin γ sin α−θ2 sin

β−θ
2 + (θ−α) sin

2 β−θ
2 + (β−θ) sin

2 α−θ
2

]

2 sin γ sin2 α−θ2 sin
2 β−θ
2

.

We have to prove that the above bracketed expression is of constant sign. Applying one more
substitution,

θ=ω − x, i.e. α− θ = x+ γ, β − θ = x− γ,

denote this expression as F (x; γ):

F (x; γ) = −2 sin γ sin x+γ2 sin
x−γ
2 − (x+γ) sin

2 x−γ
2 + (x−γ) sin

2 x+γ
2

= cosx(γ cos γ+sin γ) + x sinx sin γ − sin γ cos γ − γ.

Since θ∈ [−α, β]∈ [−π, π] and |ω|<π, it is sufficient to explore the interval x∈ [−2π, 2π]. Be-
cause F (x; γ) is even with respect to x [F (−x; γ)=F (x; γ) ], and odd with respect to the
parameter [F (x;−γ)=−F (x; γ) ], we explore its behavior only for γ > 0 and x> 0. The plot
of F (x; 23π) is shown on the left side of Fig. 14. To find extrema of F (x; γ) solve the equation
F ′x(x; γ)= 0:

x cosx sin γ − γ sinx cos γ = 0.
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Fig. 14.
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Its non-negative roots x0, x1, x2, . . . are: x0=0, and those of the equation x cotx= γ cot γ; in
particular, x1= γ. The roots are shown as dots in the right side of Fig. 14, where the function
x → x cotx is plotted. From piecewise monotonicity of this function it is clear that x1 ∈ (0, π),
x2 ∈ (π, 2π), etc. We can now describe the behavior of F (x; γ) in x∈ [0, 2π] as follows. At x=0
function has negative local minimum

F (0; γ) = 2 sin2
γ

2
(sin γ−γ) < 0, F ′′xx(0; γ) = sin γ−γ cos γ > 0.

It increases to the maximum F (x1; γ)=F (γ; γ)= 0, and then decreases to the subsequent
minimum at x=x2. While increasing from x2 to x3 ∈ (2π, 3π), function passes through the
boundary x=2π of the interval under investigation, still remaining negative at this point:
F (2π; γ)=F (0; γ)< 0. It is therefore negative in [−2π, 2π], except two zeros at x=±γ. The
derivative L′(θ) does not change sign; and L(θ) is strictly monotonic. q.e.d.

7. Positional inequalities for short spirals

The following theorem generalizes the earlier results for “very short” spirals (theorem 3 in [7])
and for convex ones (theorem 5 in [10]).

Theorem 7.1. Short spiral arc is located within its lense. Except endpoints, the arc has no
common points with lense’s boundary.

Proof. As the point P (s) moves along the curve, the circular arcs APB=A(−δ(s)), contain-
ing P , fill continuously the lense (Fig. 15). Because −δ(0)=α, and δ(s) is strictly monotonic
(lemma 5.7), the curve at the very beginning deviates immediately from the boundary arc A(α)
to the interior of the lense. Near the end point the behavior is similar. q.e.d.

Corollary 7.2. A short spiral may cut its chord only once; and this occurs if and only if the
tangent angles α and β are nonzero and of the same sign.

More severe limitation can be derived if boundary curvatures are known, as shown in Fig. 16.
For every inner point of a spiral the unique biarc B(b;α, β) can be constructed. Thus generated
subfamily of biarcs fill bilense , i.e. the region, bounded by two biarcs, AT1B and AT2B. Arcs
AT1 and T2B belong to boundary circles of curvatures of the enclosed spiral.

23



 

 

α = 100°
β = −20°

A B

P

 

 

α = 60°
β = 60°

A B

P

Fig. 15.

 

 
A B

C

T1

T2

 

 
A BT1

T2C

Fig. 16.

Returning to Figs. 6a,b,c, this corresponds to projection of the point K =(κ1, κ2) onto the
hyperbola Q=0, yielding two points, H1=(κ1, g2) and H2=(g1, κ2). They provide in turn
two biarcs, marked as h1 and h2, and bilense. We are going to prove that any short spiral,
whose boundary parameters (α, β, κ1, κ2) belong to the closed region KH1H2K, is covered by
corresponding bilense. If point K is being moved backwards and upwards to infinity (or, in
the case of decreasing curvature, forwards and downwards within the lower right branch of
hyperbola), biarcs h1 and h2 approache the boundaries of the lense (38), covering all shorts
spirals with given tangents α, β and −∞6κ1<κ26∞. It was the subject of theorem 7.1.

Definition 7.3. A bilense B(α, β, b1, b2), 06 b1<b26∞, generated by a short non-biarc spiral
with end conditions

α, β, such that |ω| 6= π, and κ1 = − sinα− b
−1
1 sinω, κ2 = sin β + b2 sinω,

is the region, bounded by two biarcs B(b1;α, β) and B(b2;α, β), namely,

B(α, β, b1, b2) = {(x, y) : (x, y) ∈ B(b;α, β) }.

Choosing the parent spiral to be non-biarc, we force Q to be strictly negative, and avoid bilense
of zero width. Condition b1<b2 in Def. 7.3, for both increasing and decreasing curvature, results
from

Q(κ1, κ2, α, β) =

(

1−
b2

b1

)

sin2 ω < 0.

Theorem 7.4. All normalized short spirals with fixed boundary tangents α, β, such that |ω| 6= π,
and curvature κ(s), such that κ16κ(s)6κ2, or κ1>κ(s)>κ2, are covered by the corresponding
bilense B(α, β, b1, b2),

b1 =
− sinω
κ1 + sinα

, b2 =
κ2 − sinβ
sinω

.
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Proof. Fig. 16 clarifies the proof, based on the monotonicity of the map

point on the curve → biarc through this point,

i.e. monotonicity of the function b(s)= b(x(s), y(s)), defined by (40). Consider the case of
increasing curvature. Denote C =Z(s̄) the point where the spiral meets the bisector of the lense.
From the proof of theorem 7.1 it is clear that such point exists, is unique, and the subarc AC of
the spiral is located in the upper half of the lense. From δ(s̄) = −γ derive equality ω1(s̄)=ω2(s̄):

0 = 2[δ(s̄)+γ] = 2μ2(s̄)−2μ1(s̄) + α−β =

= [α−μ1(s̄)︸ ︷︷ ︸
α1

+ τ(s̄)−μ1(s̄)︸ ︷︷ ︸
β1

]− [τ(s̄)−μ2(s̄)︸ ︷︷ ︸
α2

+β−μ2(s̄)︸ ︷︷ ︸
β2

] = 2[ω1(s̄)− ω2(s̄)].

Denote ω0 = ω1(s̄)=ω2(s̄) and apply inequality (31), taking into account that 0<ω<π:

Ω(s̄) = 2ω0−ω < 0 =⇒ ω0 <
ω

2
<
π

2
.

The map b(s)= b(x(s), y(s) ) for the points of AC is determined by the first expression of (40).
Applying substitutions

h1=
√
(x+1)2 + y2, D=(1−x2−y2) sinα− 2y cosα=

h21 sinω

b
,

x′ = cos τ, y′ = sin τ, x+1 = h1 cosμ1, y = h1 sinμ1

(x, y, h1, μ1, τ , D, b are functions of s), calculate derivative b′(s):

db

ds
=

d

ds

h21 sinω

D
= 2 sinω

[(x+1)x′+yy′]D + h21[(xx
′+yy′) sinα+ y′ cosα]

D2
=

= 2 sinω
[(x+1)2 − y2] sin(α+τ)− 2y(x+1) cos(α+τ)

D2
=

= 2 sinω
h21[cos 2μ1 sin(α+τ)− sin 2μ1 cos(α+τ)]

[h21 b
−1 sinω]2

=
2b2 sin 2ω1]

h21 sinω
> 0.

This expression is non-negative in (0, s̄] because ω1(s) is monotonic increasing with s up to the
value ω1(s̄)=ω0< π2 . It may be zero while ω1(s)= 0, i.e. in the case of initial circular subarc,
partially coincident with the initial curvature element of the spiral (arc AT1). The value b(0)
can be calculated from expansions

x(s) = −1 + s cosα−
κ1

2
s2 sinα+O(s3), y(s) = s sinα+

κ1

2
s2 cosα+O(s3) :

b(0) = lim
s→0

b(s) = lim
s→0

(4 + κ21s
2) sinω

−4(κ1+sinα)− κ21s
2 sinα

=
− sinω
κ1 + sinα

= b1.

Similarly, from the second expression of (40), b(S)= b2, and, due to 2ω2(s)<π in [s̄, S), the
derivative remains non-negative in [s̄, S):

b′(s) =
d

ds

(1−x2−y2) sin β + 2y cosβ
sinω[(x−1)2 + y2]

= . . . =
2 sin 2ω2
h22 sinω

> 0
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Fig. 17.
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For decreasing curvature functions ω1,2(s) as well as the constant ω change sign; b(s) remains
monotonic increasing. q.e.d.

Fig.17 illustrates an application of these results to a spiral in the whole. A spiral is presented
in Fig. 17a by a set of points P1, . . . , Pn, n=11, and tangents τ1, τn at the endpoints. The con-

straint was imposed that the subarcs
_
PiP i+1 were one-to-one projectable onto the corresponding

chord (i.e. |α̃i, β̃i|<π/2). For the practice of curves interpolation it is a quite weak limitation.
In Fig.17b circular arcs A1, . . . , An are constructed as follows: arc A1 passes through points P1

and P2, matching at P1 given tangent τ1; arcs Ai, i=2, . . . , n−1 pass through three consecutive
points Pi−1, Pi, Pi+1; arc An passes through two points Pn−1, Pn, matching given tangent τn at
the endpoint. Thus on each chord PiPi+1 we get a lense, bounded by arcs Ai and Ai+1. The
following was proven in [7], theorem 5:

• The sequence k1, . . . , kn of curvatures of arcs Ai is monotonic.
• The union of such lenses covers all spirals, matching given interpolation data.
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The width of this region is of the order O(h3i ), hi= |PiPi+1|. Fig.17c shows this construction
for 15 points. The influence of discretization is also seen from comparing left and right branches
of the spiral. Thus, the measure of determinancy of a spiral by inscribed polygonal line is
provided, without invoking any empirics of particular interpolational algorithms.

8. Existence theorems

The converse of Vogt’s theorem, namely, the problem of joining two line or curvature elements
by a spiral arc, was considered by A.Ostrowski [11]. His solution concerns only C2-continuous
convex spirals. It states that for two given line elements Vogt’s theorem is the sufficient condition
for the existence of such spiral. If curvatures R−11 and R−12 at the endpoints are involved,
additional condition D< |R2−R1| is required, D being the distance between the centres of two
boundary circles of curvature. Rewritten in terms of this article, this condition is the particular
case of inequality Q(K1,K2)< 0. Theorem 2 in [7] establishes this condition for “very short”
spirals, regardless of convexity, and includes the biarc case as the unique solution if Q(K1,K2)= 0.

Theorem 8.1. The necessary and sufficient conditions for the existence of a short spiral curve,
matching at the endpoints two given curvature elements (4), are: modified Vogt’s theorem (6)
and inequality Q(K1,K2)6 0; if Q=0, biarc is the unique solution.

Proof. Theorems 3.1 and 4.2 prove the necessity of these conditions. To prove sufficiency,
construct a smooth three-arc spiral curve whose boundary curvature elements are K1 and K2,
shown as AC and DB in Fig. 18. Apply inversion about the circle

K? = A(γ?) = K(−1, 0, γ?, κ?), γ? = γ/2, κ? = − sin(γ?),

shown dotted-dashed; its centre is the point O=(0, y?)= (0,− cot γ?). The inversion is chosen
to make the lense symmetric, its former bisector A(γ) is transformed into the chord A(0). For
γ=0 this is just a symmetry about X-axis. If γ 6= 0 (which means |ω|<π), we have to verify
that all the points of the interior of the lense remain in the interior of its image, i.e. O is located
outside the lense. To do it, we enter lense’s boundary ordinates as y1= tan α2 and y2=− tan

β
2 ,

and check the sign of the product

(y? − y1)(y
? − y2) =

(
− cot

γ

2
− tan

α

2

)(

− cot
γ

2
+ tan

β

2

)

=
cos2 ω2

sin2 γ2 cos
α
2 cos

β
2

> 0.

New boundary angles α′, β′ can be calculated from conditions γ?= 12(α+α
′), −γ?= 12(β+β

′);
and new curvatures κ′1, κ

′
2, from Prop. 4.8:

κ′1 = 2κ?(1−2Q01)− κ1, Q01 = Q(K?,K1) = sin2[(α−γ?)/2],

κ′2 = 2κ?(1−2Q02)− κ2, Q02 = Q(K?,K2) = sin2[(γ?+β)/2]

(to calculate Q’s the last equation of (8) was used). This yields

α′ = β′ = ω′ = −ω, κ′1 = [−κ1− sinα] + sinω, κ′2 = −[κ2− sinβ]− sinω.

(e.g., κ′1=−2 sin γ
? cos(α−γ?)−κ1=− sinα− sin(2γ?−α)−κ1 = −κ1− sinα+sinω). For the

initial conditions, corresponding to increasing curvature (i.e. 0<ω6π, κ1<κ2), sinω is non-
negative, and the bracketed terms are positive. The latter is direct consequence of inequality
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Fig. 18.
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Q(K1,K2)6 0 (Cor. 4.4). New end conditions correspond to decreasing curvature with boundary
curvatures opposite in sign for whichever signs of κ1,2: κ′1> 0>κ

′
2. Inversed curvature elements

are shown as AC1 and D1B. Show that point C1=(x1, 0) is located to the left of D1=(x2, 0):

AC1 = −
2 sinα′

κ′1
=

2 sinω

sinω − κ1 − sinα
, x1 = −1 +AC1 =

sinω + κ1 + sinα

sinω − κ1 − sinα
,

D1B =
2 sinβ′

κ′2
=

2 sinω

sinω + κ2 − sinβ
, x2 = 1−D1B =

κ2 − sinβ − sinω
sinω + κ2 − sinβ

.

The denominators in the expressions for x1,2 being positive, it is easy to check that the condition
x16x2 is equivalent to Q6 0. The equalities, if occur, are simultaneous, and two arcs form a
unique biarc solution. Otherwise the existence of straight line L=K(x0, 0, λ, 0), smoothly join-
ing two given arcs, is evident; its parameters x0 and λ (x1<x0<x2, λ> 0) can be calculated
from two equations Q(L,K1,2)= 0. The backward inversion resets the increasing curvature and
yields the sought for solution — intermediate arc L1, image of L. q.e.d.

Theorem 8.2. The necessary and sufficient condition for the existence of a non-biarc spiral
curve, matching at the endpoints two given curvature elements (3), is

Q(K1,K2) = (k1c+ sinα)(k2c− sinβ) + sin
2 α+β

2
< 0.

Proof. The necessity results from theorem 4.2. To prove sufficiency, a sought for spiral can be
constructed as a three-arc curve. This problem was explored in [6], and the existence of solutions,
all of them being spirals iff Q< 0, was established.

A simple proof of sufficiency, alternative to that of [6], can be proposed. Apply inversion,
bringing two given circles into concentric position (Fig. 19). Condition Q< 0 means that the
circles K1 and K2 do not intersect, and are not tangent. Therefore such inversion exists. Denote
the images of K1 and K2 as

K′1 = K(x1, y1, α
′, k′1), x1 = a+ sinα

′/k′1, y1 = b− cosα′/k′1,
K′2 = K(x2, y2, β

′, k′2), x2 = a+ sinβ
′/k′2, y2 = b− cosβ′/k′2.

The expressions for x1,2 and y1,2 assure concentricity with the common centre (a, b). Recalcu-
late (7), which remains invariant under inversion:

Q(K′1,K
′
2) =

−(k′2 − k
′
1)
2

4k′1k
′
2

= Q(K1,K2) < 0.
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Fig. 19.
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Negative value of the invariant means that two curvatures k′1 and k
′
2 are of the same sign, and

two circles K′1 and K
′
2 are parallel. All possible intermediate arcs T1T2 have the same curvature

k0, and the sequence k′1, k0, k
′
2 is monotonic:

1

k0
=
1

k′1
+
1

k′2
, k0 =

2k′1k
′
2

k′1 + k
′
2

=⇒ k′1 ≶ k0 ≶ k
′
2.

An intermediate arc can be constructed for any images A and B of two given endpoints. The
backward inversion restores the initial type of monotonicity of curvature. q.e.d.

Note that the strict form of inequality in theorem 8.2 is strong enough to exclude both the chord
of zero length and the equality k1= k2: with c=0 we get Q= sin2 γ, and with k1c= k2c=κ the
invariant Q takes non-negative form (16). We need not to invoke Vogt’s theorem: if the sum
α+β does not suit condition k1 ≶ k2 (1), cumulative angles α̃=α±2π or β̃=β±2π resolve the
contradiction, resulting to a long spiral as a solution.

9. Conclusions

The author’s looking at the theory of spirals and revisiting Vogt’s theorem was initially
tied to the hypothesis that, under certain constraints, the curve can be fairly well reproduced
from the interpolation data or inscribed polygon. And, contrary to traditional treatment of this
problem, it was interesting to impose more fundamental constraints than, say, artificial limits for
derivatives, etc. Such constraint was suggested by the Four-Vertex theorem, and the definition
of the problem sounded like:

Amongst all curves matching given interpolation data select those having a minimum of ver-
tices; estimate the region covered by them.

The solution for spiral curves, i.e. with the minimum of vertices being zero, was cited here
as Fig. 17. The preliminary extension for non-spiral curves was demonstrated in [7]. Constraints
for non-spirals, similar to (15), were discussed in [8].

The tendency to minimize the number of vertices is very close to the notion of fair curve,
widely discussed in Computer-Aided Design (CAD) applications [14].

In recent years much attention is given to curves with monotonic curvature in CAD related
publications. Refs. [10,13] provide just start points and titles for the bibliographical search. A lot
of research is aimed to extract spiral subarcs from Bézier or NURBS curves, whose polynomial
nature is far short of spirality. We have chosen a somewhat different approach, having focused
on general properties, induced by monotonicity of curvature.

Most of the earlier studies of spiral curves seem to have been aimed at obtaining the results
similar to the Four-Vertex-theorem, and limited to this objective. They required continuity of
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evolute as the basis for the proofs, and therefore were restricted to the curves with continuous
curvature of constant sign. Similarly, a lot of CAD applications propose separate treatment of
“C-shaped” and “S-shaped” spirals, which is usually unnecessary.

As a final note, we give some attention to the term spiral by itself. Literature treatments
are not rigorous and vary considerably. A curve with a monotonic polar equation r(ϕ) is often
meant by a spiral ([2], p. 325). Considering spirality as a property of shape, the relation to
a specific coordinate system is the drawback of this definition. Guggenheimer’s treatment of
spirality as monotonicity of curvature is purely shape related. Three examples illustrate some
ambiguities:

• Fermat spiral, r= a
√
ϕ: curvature is not monotonous;

• Cornu spiral k(s)= s/a2: no polar equation for the curve as the whole;
• Côtes’ spiral r= a/ cos(kϕ): neither definition is applicable.

Curves with monotonic curvature comprise an important subset of planar curves. The list of their
properties, compiled from [12], [3] (pp. 48–54), and this article, is far short of being complete.
This class of curves is worthy of definite naming. To designate them, the term “true spirals” is
being proposed.

Acknowledgement. The author is grateful to prof. Victor Zalgaller, who explored his
collection of references, and called author’s attention to the research of Wolfgang Vogt.
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