ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ ФЕДЕРАЦИИ ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

ИФВЭ 2005-30 ОЭФ

В.И. Крышкин, В.В. Талов, Л.К. Турчанович

ПЕРЕНОС КАЛИБРОВОЧНЫХ КОЭФФИЦИЕНТОВ СЦИНТИЛЛЯЦИОННОГО КАЛОРИМЕТРА

Направлено в ПТЭ

Протвино 2005

УДК 539.1.074

Аннотация

Крышкин В.И., Талов В.В., Турчанович Л.К. Перенос калибровочных коэффициентов сцинтилляционного калориметра: Препринт ИФВЭ 2005–30. – Протвино, 2005. – 6 с., 3 рис., библиогр.: 6.

Описывается метод переноса калибровочных коэффициентов, используемый в тех случаях, когда калибровка калориметра производится в одном месте, а используется калориметр в другом месте.

Abstract

Kryshkin V.I., Talov V.V., Tyrchanovich L.K. The Transfer of Calibration Coefficients for a Scintillation Calorimeter: IHEP Preprint 2005 –30. – Protvino, 2005. – p. 4, fig. 3, refs.: 6.

The calibration coefficients transfer method for a scintillation calorimeter is written. It is used in the situation, when the calibration is made on one place, but the calorimeter works on second place.

Введение

Калибровка детекторов для измерения энергии элементарных частиц — сцинтилляционных слоистых калориметров — заключается в измерении соотношения между энергией частицы, падающей на калориметр, и амплитудой сигнала с калориметра. Эта процедура удобна в тех случаях, когда калориметр после калибровки используется в том же месте и в составе той же аппаратуры, с которой он калибровался. Если после калибровки на пучке частиц с заданной энергией калориметр перемещается в другое место (что является правилом для калориметров, используемых на коллайдерах), калибровочные коэффициенты (соотношение между амплитудой сигнала и регистрируемой энергией), как правило, не сохраняются. Это связано с множеством причин: изменение регистрирующей электроники, использование других кабелей, источников питания и т.л.

1. Энергетическая калибровка калориметра

Для контроля калибровочных коэффициентов при переносе калориметров широко используется радиоактивный источник (см., например, [1]). Суть этого метода состоит в измерении соотношения между сигналом от радиоактивного источника и амплитудой сигнала от частицы с заданной энергией. После перемещения калориметр вновь облучается тем же радиоактивным источником, и находится новое положение этого сигнала на шкале измерительной аппаратуры. Даже если изменятся характеристики электронных блоков и длины сигнальных кабелей, соотношение между сигналом от радиоактивного источника и энергией частицы, поглощенной в калориметре, не изменится.

У метода имеются следующие недостатки:

- Требуется точное знание изотопного состава источника, так как интервал времени между калибровкой на частицах и проверкой с радиоактивным источником составляет годы, нужно делать поправку на время жизни источника (период полураспада), уменьшающего интенсивность источника.
- Амплитуда сигнала со сцинтиллятора от радиоактивного источника зависит от величины магнитного поля [2].
- Измерение с радиоактивным источником является трудоёмким процессом, занимающим месяцы (большое число каналов и размеры детектора).
- Для увеличения отношения сигнал/фон используются очень интенсивные радиоактивные источники, усложняющие меры безопасности.
- Сигнал с калориметра (сцинтиллятор/поглотитель) зависит от магнитного поля [3], калибровка без магнитного поля требует внесения поправок.

Предлагается метод переноса калибровочных коэффициентов, заключающийся в использовании ультрафиолетового импульсного лазера, амплитуда импульса которого контролируется PIN диодом.

2. Перенос калибровочных коэффициентов торцевого адронного калориметра установки CMS

Методы переноса калибровочных коэффициентов, описанные выше, реализованы в торцевом калориметре НЕ установки СМS в ЦЕРНе [4]. Калориметр НЕ состоит из 18 слоев сцинтилляторов (тайлов), расположенных между латунными поглотителями и разбитых на 18 секторов. Каждый активный слой содержит от 13 до 20 тайлов, объединенных в так называемый мегатайл (рис. 1). Из—за радиационного повреждения и старения сцинтилляторов и оптических волокон параметры калориметра могут существенно меняться. Постоянный контроль оптических элементов позволяет внести необходимые поправки в работу калориметра. Для этой цели в мегатайле установлены:

- трубки, по которым может перемещаться радиоактивный источник;
- кварцевые волокна с отражателями для засветки сцинтиллятора импульсами лазера;
- контрольное кварцевое волокно, позволяющее отслеживать изменение оптических характеристик кварцевого волокна.

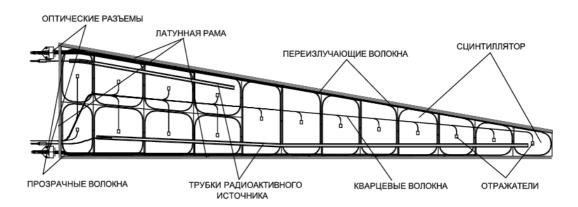


Рис. 1. Конструкция мегатайла.

Калориметр НЕ имеет проекционную (башенную) геометрию с двумя продольными разбиениями. Схематично структура НЕ калориметра с указанием слоев и башен, куда подаются лазерные сигналы, показана на рис. 2.

Метод контроля калибровочных коэффициентов, основанный на использовании ультрафиолетового импульсного лазера, в калориметре НЕ реализуется следующим образом. Система лазерного контроля адронного калориметра НЕ [5, 6] схематично показана на рис. 3. Свет ультрафиолетового лазера проходит нейтральные фильтры, фокусируется на кварцевое волокно, расщепляется и через отражатели попадает в сцинтилляторы. По каналу контрольного кварцевого волокна лазерные импульсы поступают на PIN2 диод, расположенный в модуле электроники на калориметре рядом с мегатайлами. Измеряются амплитудное распределение от лазера (амплитудное распределение импульсов с PIN2 диода и со сцинтиллятора) и распределение от частиц. На этапе калибровки на пучке моноэнергетичных частиц поочередно регистрируются сигналы от лазера и от частиц пучка.

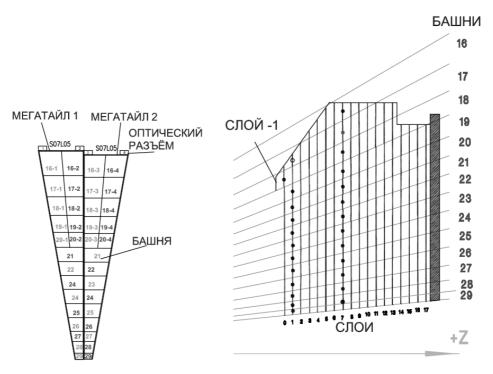


Рис. 2. Структурная схема калориметра.

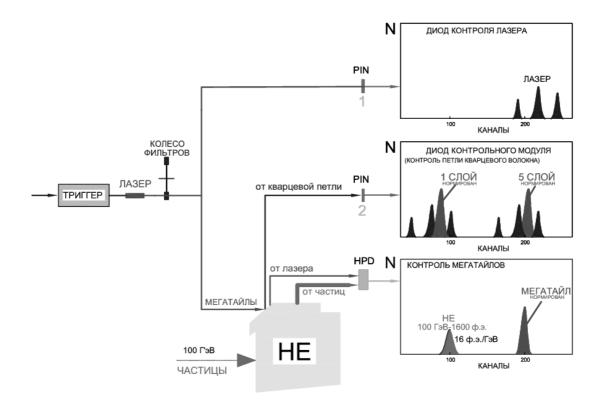


Рис. 3. Система лазерного контроля калориметра.

Положение пика амплитудного распределения импульсов от лазера со сцинтиллятора, которое имеет нормальное распределение, определяется следующими факторами:

- 1) амплитудой светового импульса лазера;
- 2) коэффициентом преобразования ультрафиолетового света сцинтиллятором в видимый свет;
- 3) состоянием оптических кабелей, передающих оптический сигнал;
- 4) квантовой эффективностью и усилением фотодетекторов;
- 5) чувствительностью амплитудно-цифрового преобразователя.

Ширина этого распределения определяется не только статистикой фотонов, но и разбросом света в газовом разряде лазера. Поэтому для определения числа фотоэлектронов распределение должно быть пособытийно нормировано на амплитуды сигналов с PIN1 диода. Тогда число фотоэлектронов со сцинтиллятора $N_{\phi 9} = (A/\sigma)^2$, где A- положение пика, а $\sigma-$ ширина нормированного распределения. Отсюда найдем число фотоэлектронов на канал АЦП: $N_{\phi 9/\kappa анал} = N_{\phi 9}/A$. Из амплитудного распределения сигналов с PIN2 диода, также нормированного на сигнал с лазера, получим число фотоэлектронов $n_{\phi 9} = (A_{PIN}/\sigma_{PIN})^2$. Отношение этих величин $K=n_{\phi 9}/N_{\phi 9}$ используется для контроля работы аппаратуры НЕ. Это отношение, полученное во время калибровки на пучке частиц, сравнивается с отношением, полученным после переноса калориметра, и используется для поправки на изменение чувствительности фотодетекторов, амплитудно-цифровых преобразователей и т.д.

Далее в измерениях на пучке частиц известного сорта и заданной энергии E (Γ эB) определяется положение пика распределения (N-ый канал). Цена канала АЦП в энергетической шкале (Γ эB/канал) будет E_{Γ эB/канал = E/N. Отсюда находится соотношение между числом фотоэлектронов и энерговыделением N_{ϕ э/ Γ э $B} = N_{\phi$ э/канал / E_{Γ 3B/канал . Данное выражение и является окончательным калибровочным коэффициентом. При изменении характеристик АЦП (число фотоэлектронов/канал) определяется новый коэффициент $K' = n'_{\phi}$ / N'_{ϕ} э.

Поправка калибровочных коэффициентов осуществляется следующим образом:

- 1) определяется отношение коэффициентов R = K/K;
- 2) производится коррекция калибровочного коэффициента $N'_{\phi_9/\Gamma_9B} = R*N_{\phi_9/\Gamma_9B}$.

При частоте работы лазера $5-10~\Gamma$ ц вся процедура определения коэффициентов занимает время менее часа.

Заключение

Предложен метод переноса калибровочных коэффициентов калориметра, основанный на использовании ультрафиолетового импульсного лазера, контролируемого PIN диодом. Этот метод имеет ряд достоинств :

- исключение влияния магнитных полей;
- устранение опасности радиационного облучения от радиоактивного источника;
- независимость калибровочных коэффициентов от времени;
- простота реализации и быстрота измерений.

Метод реализован в торцевом адроном калориметре HE установки CMS

Список литературы

- 1. Гончаров П.И., Абрамов В.В. и др. Приборы и техника эксперимента, 2004, № 1, с. 55.
- 2. Турчанович Л.К., Корнеев Ю.П. Зависимость световыхода пластического сцинтиллятора от магнитного поля. Препринт ИФВЭ 95-37, Протвино, 1995.
- 3. Abramov V.V., Akchurin N., Baillon P. et al. IHEP preprint 96-91, Protvino, 1996. Abramov V.V., Acharya B.S., Akchurin N. et al. NIM, A457, 2000, p. 75.
- 4. Bayatian G.L., Grigorian N.K., Khachatrian V.G. et al. CMS Technical Design Report (The Hadron Calorimeter Project). CERN/LHCC 97-31.
- 5. Гончаров П.И., Евдокимов В.И., Корнеев Ю.П. и др. ПТЭ, 2000, № 6, с. 11-19; Instr. And Exp. Tech. Vol. 6, 2000, pp. 735-742
- 6. Kryshkin V.I., Turchanovich L.K., Vasil'chenko V.G. Nucl. Instr. and Meth. A 381 (1996) 573.

Рукопись поступила 12 сентября 2005 г.

В.И. Крышкин, В.В. Талов, Л.К. Турчанович. Перенос калибровочных коеффициентов сцинтилляционного калориметра.

Оригинал-макет подготовлен с помощью системы Word.

Редактор Н.В. Ежела.

Подписано к печати 16.09.2005. Формат 60 × 84/8. Офсетная печать. Печ.л. 0, 75. Уч.— изд.л. 0,6. Тираж 90. Заказ 82. Индекс 3649. ЛР №020498 от 17.04.97.

ГНЦ РФ Институт физики высоких энергий, 142284, Протвино Московской обл.

ПРЕПРИНТ 2005–30,

ИФВЭ,

2005