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Abstract

Batarin V.A., Butler J., Davidenko A.M. et al. Design and Performance of LED Calibration System
Prototype for the Lead Tungstate Crystal Calorimeter: IHEP Preprint 2005–33. – Protvino, 2005. – p. 10,
figs. 6, tables 1, refs.: 16.

A highly stable monitoring system based on blue and red light emitting diodes coupled to a distribu-
tion network comprised of optical fibers has been developed for an electromagnetic calorimeter that uses
lead tungstate crystals readout with photomultiplier tubes. We report of the system prototype design
and on the results of laboratory tests. Stability better than 0.1% (r.m.s.) has been achieved during one
week of prototype operation.
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tion

Аннотация

Батарин В.А., Батлер Д., Давиденко А.М. и др. Конструкция и характеристики прототипа кали-
бровочной системы на светодиодах для калориметра на кристаллах вольфрамата свинца: Препринт
ИФВЭ 2005–33. – Протвино, 2005. – 10 с., 6 рис., 1 табл., библиогр.: 16.

Разработана высокостабильная мониторная система с использованием синего и красного све-
тодиодов и оптических волокон-световодов для электромагнитного калориметра на кристаллах
вольфрамата свинца с фотоэлектронными умножителями для съёма информации. Представлены
устройство прототипа и результаты его лабораторных испытаний. Стабильность системы лучше
0.1% (r.m.s.) была достигнута за неделю непрерывной работы.

c© State Research Center of Russia
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1. Introduction

Lead tungstate (PbWO4, PWO) scintillating crystals are known as an appropriate material
for use in a total absorption shower detectors. Electromagnetic calorimeters (EMCAL) made of
these crystals have superb energy and spatial resolutions due to the unique combination of the
PbWO4 physical properties [1]. Several high energy physics experiments, such as ALICE and
CMS at the CERN LHC or PANDA at GSI, have decided to build their calorimeters with the
use of PWO [2, 3, 4]. The BTeV project at the FNAL Tevatron Collider, recently terminated
by the U. S. Dept. of Energy, intended to use these crystals [5].

Unfortunately, lead tungstate crystals although relatively radiation tolerant, do lower their
light output when exposed to radiation and recover when the radiation source is removed.
Extensive studies performed at the Institute for High Energy Physics (IHEP) in Protvino,
Russia, confirmed that the PWO light output changes with the irradiation dose rate. Dedicated
measurements showed that degradation of light output in PWO crystals under pion irradiation
with dose rates up to 20 rad/h occurs due to light transmission loss only, rather than changes
in the scintillation mechanism [6]. Further complications arise because at the same irradiation
intensity, changes in light output may vary from one crystal to another [7, 8, 9]. In order to
maintain the intrinsic energy resolution, therefore, the system must be continuously calibrated.
In this paper, we discuss the preferred solution for BTeV. This technique can be applied for any
detector with similar operational conditions.

The BTeV calorimeter was designed to cover the space with a radius 1.6 m near the beam
axis, about 220 mr of angle from the interaction point. There were approximately 10,000 PWO
crystals coupled with photomultiplier tubes (PMT). About 90% of crystals would suffer from
radiation with dose rates less than 20 rad/h. The expected energy resolution of the EMCAL was
1.7%/

√
E ⊕ 0.55%, and the accuracy of the energy calibration should be better than 0.2%.

Monte-Carlo studies show that electrons and positrons produced in physics events, mainly
from semileptonic B-decays or from photon conversions near the interaction region, can be
successfully used to calibrate the detector in-situ [10]. The amount of time required to collect
sufficient samples would be significantly vary in different areas of the EMCAL but even in the
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worst case scenario would not exceed one day period. However, the calorimeter would need to
be continuously monitored within these time intervals or during Tevatron shutdown periods.

In addition to the crystals light output change, PMT gain instabilities could deteriorate the
performance. A usual way to track the PMT gain variations is the use of a monitoring system
with a light pulser. If a light pulse could be sent to the PMTs directly, it would be relatively
easy to measure PMT gain changes. However, in our case the crystals more than cover the
entire detection surface of the mating PMTs; thus the only solution would be to send light to
the PMT photocathodes through the crystals. Therefore the same monitoring system that is
used to measure the radiation effects needs to be used to monitor the PMTs.

To monitor crystal light output changes, we use a blue light pulser with a wavelength close to
the 430 nm emission peak of the PbWO4 crystal. Since these light pulses are detected by PMTs,
what we measure is the change in the product of the PMT gain and the crystal transparency.
To monitor the PMT gain changes we use a red light pulser, since the red light transmission in
the crystals changes much less due to radiation than the blue light transmission [11]. In our test
beam studies, the separation of these two sources of signal variations was crucial and allowed us
to study the changes in the crystal properties alone. Our experience with a blue-red light pulser
system at the test beam facility is discussed in [7].

Taking into account the conditions described above we can summarize the main requirements
for the monitoring system light pulser:
- high luminous flux for red and blue (close to 430 nm) light pulses to be able illuminate at least
2600 fibers of the light distribution network providing PMT signals equal to those from 20 GeV
electrons;
- non-uniformity of the light spot illuminating the bunch of fibers should be not more than 10%;
- stability at the level of 2∙10−3 over a day.

We decided to design a monitoring system with the use of light emitting diodes since LED
pulsers provide a very reliable operation and required stability as it was shown in [12]. The
whole system should consist of four identical LED pulser modules, each monitoring a quarter of
calorimeter. Only one module would be powered in a given time interval. This solution allowed
to stay within the bandwidth of the data acquisition system (DAQ) while collecting monitoring
data. The prototype of such module was designed and tested at the Institute for High Energy
Physics in Protvino.

2. Prototype Design

The light pulser prototype is shown schematically in Fig. 1. The system includes:

• blue and red LEDs;

• two LED drivers;

• light reflector;

• mixing light guide;

• two reference silicon photodiodes;

• bunch of optical fibers;

• temperature control system;

• thermoinsulating case.
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Temperature control system

Blue LED driver

Red LED driver

Light Reflector (Tyvec)
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Silicon photodiodes

Mixing light guide (lead glass 38 x 38 x 200 mm   )3

Bunch of optical fibersThermoinsulating case

Figure 1. Block diagram of the LED pulser.

Powerful blue and red LEDs from Lumileds Lighting, USA, illuminate optical fibers and
reference photodiodes through a bar of lead glass with the dimensions of 38 × 38 × 200 mm2

which was used as a light mixer. To improve light collection in the mixer, LEDs were placed
inside a square pyramid with a reflecting internal surface near the apex. The cross-section of the
light mixer allows to illuminate simultaneously about 3000 optical fibers of 0.4 mm diameter.
We decided to use silica fibers FIL300330370 by Polymicro Technologies, USA [13]. They have
a core of 300 micron diameter and an aluminium buffer providing excellent mechanical strength.
According to the results of the radiation hardness measurements with a γ-source obtained by
the CMS ECAL group, these fibers keep their light transmittance at the constant level up to
12 Mrad of absorbed dose [14]. This is very important because some part of fibers would be
irradiated with high dose rates during the setup operation.

Technical parameters of the LEDs are given in Table 1 [15]. Besides the exceptional luminous
fluxes, we found that two additional features of the Luxeon technology are very important for
our purposes: very long operating life (up to 100,000 hours in DC mode) and small temperature
dependence of the light output (less than 0.5%/◦C).

The electronic circuit for the LED driver is shown in Fig. 2. The drivers of red and blue LEDs
are identical. They are triggered by pulses of standard NIM-logic levels. Each driver includes a
shaping amplifier determining the duration of the light flashes and an output powerful transistor
(MOS FET). The transistor switches LED to a voltage source adjustable in a range up to +50 V
which allowed us to tune the necessary brightness of the light pulses.

An essential element of the light monitoring system is a stable reference photodetector with
a good sensitivity at short wavelengths which measures light pulses amplitude variation in
time. Silicon PN-photodiodes S1226-5BQ by Hamamatsu, Japan, are well suited to this task
because they have high ultraviolet and suppressed infrared sensitivity, low dark current and small
temperature coefficient (less then 0.1%/◦C) in the range of wavelengths from 200 to 700 nm [16].
The rather large (about 6 mm2) sensitive area of this photodiode allows us to work without
preamplifiers, thus, improve a stability of the reference system itself. In the prototype, we used
two photodiodes attached to the output window of the light mixer in the corners.
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Table 1. The properties of LEDs used in the light pulser [15].

LED Property LXHL-PR02 LXHL-PD01
(Royal Blue Radiometric) (Red)

Brand Luxeon V Emitter Luxeon Emitter
Typical Luminous Flux 44 lm (@350 mA)
Typical Radiometric Power 700 mW (@700 mA)
Radiation Pattern Lambertian Lambertian
Viewing Angle 150 degrees 140 degrees
Size of Light Emission Surface 5× 5 mm2 1.5× 1.5 mm2

Peak Wavelength 455 nm 627 nm
Spectral Half-width 20 nm 20 nm
Maximum DC Forward Current 700 mA 350 mA

Our previous studies showed that temperature variations deteriorate the performance sta-
bility of the LED monitoring system [12]. Therefore we designed a heat insulated case with a
possibility to control temperature inside it. A simple electronic circuit with a thermistor in the
feedback has been placed in the same case. The operating temperature inside the case should be
higher than expected maximum of the room temperature since the system contains only heaters.
We expected that temperature variation in the BTeV experimental hall would be relatively small
(few degrees) over the data taking period, so the suggested solution is adequate.
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3. Test setup

Our test setup consisted of the LED pulser prototype and a lead tungstate crystal coupled
with a PMT Hamamatsu R5800, all placed in a light-tight box. Instead of a fiber bunch, we
used one silica optical fiber to transport light from the output window of the light mixer to the
crystal edge. The crystal and the PMT were taken from the 5× 5 calorimeter prototype tested
with a beam earlier. Thus, we knew approximate correspondence between an energy of electrons
hitting the crystal and amplitude of the anode signal for the fixed PMT gain. The DC voltage
source was common for two LED pulsers. Its output level was set to the value which gave the
PMT anode signal from the blue LED equivalent to that from a 20 GeV electron.

Our data acquisition system was described in detail in [1]. We used LeCroy 2285 15-
bit integrating ADC to measure signal charges from the PMT and photodiodes over 150 ns
gate. Besides, temperature was measured continuously during data taking with the use of five
thermosensors placed in different locations. One of them provided an information about room
temperature, another one was installed near the photocathode window of the PMT. Three other
sensors performed temperature measurements inside the prototype case, namely: near the LEDs,
near the photodiodes and at the surface of the heater.

4. Experimental results

4.1. Light spot uniformity

Uniformity of the light distribution over the output window of the light mixer was measured
by means of manual surface scan accomplished with a single optical fiber with the step size of
2 mm. The scan area was 34 × 34 mm2. Light signal was detected by the PMT and the pulse
heights were measured with a scope. The shape of the blue LED signal at the anode of the PMT
is shown in Fig. 3. The distribution of measured pulse heights is shown in Fig. 4. The r.m.s. of
this distribution is 2%, and the full width is 9%.

4.2. Temperature dependence

In order to estimate the temperature dependence of the light pulser prototype components, we
performed measurements with two different temperatures inside the case, 27◦C and 45◦C. During
these measurements the temperature of the PMT remained stable, and we compared the signals
measured by this PMT. The mean ADC count of the blue LED signal distribution became smaller
by 11.5% when the temperature increased from 27◦C to 45◦C. Assuming that the temperature
dependence is linear, the coefficient is estimated as -0.64% at 27◦C. The same analysis was
done for the same LED signals measured by the photodiodes. We averaged between the results
of measurements performed by each photodiode and obtained the temperature coefficient of
the system blue LED pulser - photodiode is equal to -0.60%/◦C. This means that photodiodes
have their own temperature coefficient about 0.04%/◦C in the region of 455 nm wavelength. The
measured temperature coefficient of the red LED pulser is -1.0%/◦C, and that of the photodiodes
in the red region is 0.2%/◦C at 27◦C. The obtained results show that to keep a stability of the
whole system at the level better than 0.2% we should reduce the temperature variation near the
LEDs and the photodiodes down to 0.2◦C.
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Figure 3. Blue LED signal at the anode of the PMT.
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Figure 4. Uniformity of the light distribution over the output window of the light mixer.
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4.3. Long-term stability

To evaluate stability of the light pulser prototype we collected data continuously over one
week. In these measurements, the DAQ recorded the following information every 9 seconds:
10 pulse heights from each LED detected by the photodiodes and by the PMT as well as
the temperature data. For the analysis, we calculated mean values of signals accumulated
over consequent 20 minute time intervals and formed their distributions. The r.m.s. of such
distribution characterizes the stability of the given signal over the period of measurements.

Fig. 5 shows a variation of room temperature and temperature in the region of LED’s over
one week . We can see that temperature of LED’s was stable within 0.1◦C while the change of
temperature outside the case achieved 2◦C.

The dependence in time of blue and red LED signals detected by one of the reference pho-
todiodes over one week of measurements is shown in Fig. 6(a) and (b) respectively. Normalized
distributions that allow to evaluate stability of the whole system, i.e. the LED pulsers and
the photodiode, are given in Fig. 6(c) for blue and 6(d) for red LEDs. The r.m.s. of these
distributions, expressed in percent, are 0.05% and 0.04%. As expected, outside temperature
variation didn’t affect the performance of the prototype.
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5. Summary

We have developed the LED-based monitoring system for the electromagnetic calorimeter
that uses PWO crystals coupled with PMTs. The expected conditions and demands of the BTeV
project were taken into account. The prototype of the light pulser based on the blue and red
LEDs and reference silicon photodiodes has been designed, assembled and succesfully tested in
the laboratory.

The prototype module is capable to provide continuous monitoring of the PMTs gain vari-
ation and crystals light output change due to the beam irradiation for about 3000 cells of the
EMCAL. The maximum difference of the light pulses intensity in different channels is 9%. The
prototype stability was estimated over the time period of one week. We found that the blue
LED pulser is stable to 0.05% and the red LED pulser is stable to 0.04%, within one week of
continuous operation. This exceeded the requirements of the project.

This highly stable monitoring system combined with in-situ calibration of the EMCAL would
ensure the superb intrinsic resolution of the lead tungstate crystal calorimeter over the whole
period of its operation.
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