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Abstract

Pirogov Yu.F. General Covariance Violation and the Gravitational Dark Matter. II. Vector Graviton:
IHEP Preprint 2005–34. – Protvino, 2005. – p. 10, refs.: 4.

The (four componenet) vector graviton contained in metric, the scalar component incorporated, is
attributed to the violation of the general covariance to the residual isoharmonic one. In addition to the
previously studied (singlet) scalar graviton, the vector graviton may constitute one more fraction of the
gravitational dark matter. The gravity interactions of the vector graviton, as well as its impact on the
continuous medium are studied.

Аннотация

Пирогов Ю.Ф. Нарушение общей ковариантности и гравитационная темная материя. II. Векторный
гравитон: Препринт ИФВЭ 2005–34. – Протвино, 2005. – 10 с., библиогр.: 4.

Содержащийся в метрике (четырехкомпонентный) векторный гравитон, включающий скаляр-
ную компоненту, приписывается нарушению общей ковариантности до остаточной изогармониче-
ской ковариантности. В дополнение к ранее изученному (синглетному) скалярному гравитону,
векторный гравитон может составлять еще одну часть гравитационной темной материи. Изуче-
ны гравитационные взаимодействия векторного гравитона, а также его влияние на непрерывную
среду.
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1. Introduction

In the preceding paper [1], the author put forward the concept that the violation of the
general covariance (GC) may serve as a reason d’etre for the existence of the dark matter (DM)
of the gravitational origin (or v.v.). The case study for the (singlet) scalar graviton, as a simplest
representative of such a matter, was worked out. The consistency of the theory of such a graviton
considered as a part of the metric (in addition to the massless tensor graviton) was assured there
by the existence the residual unimodular covariance (UC). We refer the reader to ref. [1] for the
general discussion of the GC violation in the context of the gravitational DM and for the details
of the UC case. The GC violation gets its natural description in the framework of the affine
Goldstone approach to gravity developed in ref. [2], to which we refer the reader as well 1.

In the present paper, we continue studying the GC violation for the next in complexity case
of the (four component) vector graviton, the respective scalar component incorporated. The
consistency of the theory is assured in this case by the residual isoharmonic covariance (see later
on). Section 2 of the paper is devoted to the gravity interactions of the vector graviton. First,
the theory is constructed in the distinguished background coordinates. Then, it is developed
in the arbitrary observer’s coordinates. In Section 3, the impact of the vector graviton on the
continuous medium is studied.

2. Gravity

2.1. Background coordinates

Lagrangian Remind shortly the framework of the affine Goldstone approach to gravity [2] to
be used in what follows in describing the GC violation. It is postulated in the approach that there
exists the physical, not just auxiliary, gravitational background (continuum). Let xμ, μ, ν, ∙ ∙ ∙ =
0, . . . , 3 be the observer’s coordinates of a point in the space-time and let ξ̄α = ξ̄α(xμ), α, β, ∙ ∙ ∙ =
0, . . . , 3 be the background-attached coordinates of the point. The indices α, etc., undergo the
(global) affine transformations. Relative to the observer’s coordinate transformations, these

1For a short exposition of the approach, see refs. [3], [4].
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indices are blind and can be considered as those just numerating the scalars. The theory starts in
the background coordinates, wherein all the generic physical properties are already predestined.
The observer’s coordinates only replicate these properties in the coordinate dependent fashion.
The background coordinates may be considered as an analogue of the comoving coordinates for
the continuous medium. The dynamical variable for gravity in the background coordinates is the
metric γαβ(ξ̄). The latter is, roughly speaking, the square of the affine Goldstone boson which
proves to be the original field variable for the gravity 2.

Let us study the classical theory of the metric and the matter with the action

I =

∫
(Lg +ΔLg + Lm)

√
−γ d4ξ̄, (1)

where Lg and ΔLg are the gravity Lagrangians, Lm is the matter one and γ = det γαβ . By
the very construction, the action is to be invariant under the (global) affine symmetry (AS).
Nevertheless, some parts of the Lagrangian may formally admit more wide sets of the coordinates.
As for the gravity, Lg is chosen so as to allow the arbitrary coordinates, possessing thus the GC.
ΔLg is supposed to be restricted to a subset of the general coordinates, being GC violating with
some residual covariance. As for the matter, Lm may in general violate the GC, too.

Conventionally, take as Lg the modified Einstein-Hilbert Lagrangian of the General Relativity
(GR):

Lg = −M
2
P

(1
2
R(γαβ)− Λ

)
, (2)

with MP being the Plank mass, R being the Ricci scalar and Λ being the cosmological constant.
In principle, there is conceivable any generally covariant modification of the Lagrangian (2). As
for the extra gravity Lagrangian ΔLg, decompose it generically in two terms:

ΔLg = ΔKg −ΔVg, (3)

with ΔKg being the derivative kinetic term and ΔVg being the derivativeless potential. Consider
these terms in turn.

Kinetic term Take ΔKg in the lowest approximation as follows:

ΔKg(ω
α) =

1

2
κ2 ω ∙ ω, (4)

with κ being a constant with the dimension of mass, |κ| < MP . A priori, both κ2 ≥ 0 and
κ2 < 0 can be envisaged, corresponding to physical particles or ghosts, respectively. Here and
in what follows in this subsection the notation for the dot product ω ∙ ω = ωαωα is understood
with the metric γαβ , until stated otherwise (and similarly for any two vectors). In the above,
the Lagrangian variable for the vector graviton is defined as follows

ωα = γβγΓαβγ + kγ
αγΓββγ , (5)

with

Γαβγ =
1

2
γαδ
(
∂βγδγ + ∂γγδβ − ∂δγβγ

)
(6)

2For the spin-half partiacles, the affine Goldstone boson itself should be used instead of its square [2].
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being the Christoffel connection and k any real. Eq. (5) is the most general expression for the
gravity vector variable allowed by the AS [2]. Remind that

γβγΓαβγ = −
1
√
−γ
∂δ(
√
−γγαδ),

Γββγ = ∂γ ln
√
−γ (7)

and thus
ωα = −∂βγ

αβ + (k − 1)∂α ln
√
−γ, (8)

where ∂α = γαβ∂β .

Isoharmonic covariance Consider the arbitrary change of the background coordinates: ξ̄α →
ξ̄′α = ξ̄α + ε̄α. Under this coordinate transformation, one has

Γ′αβγ(ξ̄
′) = ∂′β ξ̄

δ∂′γ ξ̄
ε
(
∂ϕξ̄

′αΓϕδε(ξ̄)− ∂δ∂εξ̄
′α
)
,

γβγ(ξ̄) = ∂β ξ̄
′δ∂γ ξ̄

′εγ′δε(ξ̄
′), (9)

where ∂′α = ∂/∂ξ̄
′α, etc. This gives for the small ε̄α:

ω′α(ξ̄′) = ωα(ξ̄) + ω ∙ ∂ε̄α − (∂ ∙ ∂ε̄α + k∂α∂ ∙ ε̄), (10)

where ω ∙ ∂ = ωβ∂β , ∂ ∙ ε̄ = ∂β ε̄β and ∂ ∙ ∂ = ∂β∂β = γαβ∂α∂β . The similar notations for the dot
product containing the (covariant) derivatives, mutatis mutandis, will be used in what follows.
For the theory to remain meaningful, only those background coordinates are allowed under the
substitution of which ωα transforms homogeneously as a vector. This gives

∂ ∙ ∂ε̄α + k∂α∂ ∙ ε̄ = 0. (11)

Call this equation the isoharmonic one 3. The respective transformation group will be called the
isoharmonic one, resulting in the isoharmonic covariance (IC). At k = 0, eq. (11) remains to be
valid for the finite ε̄α. In the limit |k| � 1, it reduces (up to a constant) to the unimodularity
condition, ∂ ∙ ε̄ = 0 (so that δγ = 0), corresponding to the (singlet) scalar graviton [1].

Weak-field limit For the physics interpretation, consider the weak-field limit of the theory
corresponding to the decomposition

γαβ = ηαβ + hαβ , (12)

with |hαβ | � 1. Accounting for eq. (8) and γ = −(1 + h), h = ηαβhαβ , one gets

ωα = ∂β

(
hαβ +

1

2
(k − 1)ηαβh

)
. (13)

All the indices are manipulated in the weak-field limit by means of ηαβ and ηαβ . In the limit
|k| � 1, one gets ωα ∼ ∂αh and thus this limit corresponds to the (singlet) scalar graviton,
indeed.

3It is not to be mixed with the conventional harmonicity condition, γβγΓαβγ = 0.
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Consider the “gauge” transformations for the “potentials” hαβ , initiated by the small trans-
formations of the background coordinates:

h′αβ(ξ̄) = hαβ(ξ̄)− (∂αε̄β + ∂β ε̄α) (14)

(and thus h′ = h− 2∂ ∙ ε̄). Under these gauge transformations, the field strength changes as

ω′α(ξ̄) = ωα(ξ̄)− (∂ ∙ ∂ε̄α + k∂α∂ ∙ ε̄). (15)

Clearly, ωα is gauge invariant only under the isoharmonic transformations eq. (11), with the dot
product defined now by ηαβ .

In the linearized GR in the flat background, the requirement for the r.h.s. of eq. (13) to be
zero is nothing but the Hilbert-Lorentz gauge condition eliminating from hαβ the three vector
and one scalar degrees of freedom. On the contrary, abandoning this requirement in the present
paper puts the respective degrees of freedom in action. It is for this reason, that we interpret
the extra gravity components contained in ωα as those corresponding to the vector graviton, the
scalar component incorporated. In this, ωα is nothing but the field strength for such a graviton.
The existence of the residual IC is crucial for the theory. It allows one to preserve the well-
established properties of the tensor gravity. Namely, the IC serves as the gauge symmetry to
remove from hαβ the remaining (singlet) scalar and three tensor components, leaving thus six
physical components: four for the vector graviton, the scalar component incorporated, and two
for the massless tensor graviton.

Note for completeness, that including in ΔKg the term quadratic in Γααβ with the indepen-
dent coefficient κ20 produces additionally the physical (singlet) scalar graviton, followed by the
unimodularity condition, ∂ ∙ ε̄ = 0, and the residual unimodular isoharmonic covariance (UIC).
This realizes the most general case for the scalar and vector gravitons, described by the three
independent constants.

Mass term To attribute the mass to the extra graviton one should account additionally for
the potential ΔVg. The latter is a scalar function ΔVg((γη)αβ) depending on the determinant
γ and tr((γη)αβ)n, with n being an arbitrary integer, positive or negative, and ηαβ being the
Minkowski symbol. Clearly, using the latter violates explicitly the AS to the Lorentz one, which
is supposed to be exact. In this, the general covariance is violated completely. The degree
of this violation is characterized by a mass parameter μ. Thus in the framework of the affine
Goldstone approach to gravity, one can structure the gravity Lagrangians, with Lg(R) being
both affine invariant and generally covariant, ΔLg(ωα) being also affine invariant though GC
violating, whereas ΔVg((γη)αβ) violating both the AS and the GC. The AS being the basic one
in the given framework, one expects MP > |κ| � μ with the natural hierarchy of the residual
covariance groups

GC
κ
−→ IC

μ
−→ TC (16)

for Lg, ΔKg and ΔVg, respectively (TC meaning the trivial covariance). Because the potential
supplies the mass to the tensor graviton, too, we postpone the mass issue to the cumulative
study of the graviton mass mixing in the future.

Varying the action (1) with respect to γαβ one would get the equation of motion for the
gravity in the basic form. Then one could transform the results into the observer’s coordinates.
For the physics generality, we rewrite the Lagrangian directly in the observer’s coordinates and
proceed therein. The results in the background coordinates will be recovered as a marginal case.
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2.2. Observer’s coordinates

Lagrangian The action now looks like

I =

∫
(Lg +ΔLg + Lm)

√
−g d4x, (17)

with the metric
gμν = ∂μξ̄

α∂ν ξ̄
βγαβ , (18)

(the inverse one gμν = ∂αxμ∂βxνγαβ) and g = det gμν . Throughout this subsection, all the indices
are manipulated by means of gμν and gμν , unless stated otherwise. The generally covariant
Lagrangian Lg gets unchanged:

Lg = −M
2
P

(1
2
R(gμν)− Λ

)
. (19)

To proceed, introduce the auxiliary fields

ḡμν = ∂μξ̄
α∂ν ξ̄

βηαβ ,

ḡ−1μν = ∂αx
μ∂βx

νηαβ . (20)

By definition, call ḡμν the background metric (ḡ−1μν being the inverse one)4. The mass term is
modified straightforwardly to the scalar function ΔVg((gḡ−1)μν) which depends on the ratio of
the determinants, g/ḡ, and tr((gḡ−1)μν)n. The matter Lagrangian Lm will be discussed in the
next Section.

Kinetic term As for ΔKg, it gets modified as follows:

ωλ = Ωλ − Ω̄λ, (21)

where

Ωλ = gμνΓλμν + kg
λνΓμμν ,

Ω̄λ = gμν Γ̄λμν + kg
λν Γ̄μμν . (22)

In the above, Γλμν is the dynamical Christoffel connection defined, mutatis mutandis, by eq. (6)
through gμν . Accounting for the reduced connections gμνΓλμν and Γμμν , given by eq. (7) with
the proper substitutions, one gets similarly to eq. (8):

Ωλ = −∂νg
λν + (k − 1)∂λ ln

√
−g. (23)

By the construction, the symbol Γ̄λμν is as follows

Γ̄λμν = ∂αx
λ∂μ∂ν ξ̄

α. (24)

It can be expressed in terms of ḡμν as the respective Christoffel connection

Γ̄λμν =
1

2
ḡ−1λρ

(
∂μḡρν + ∂ν ḡρμ − ∂ρḡμν

)
, (25)

4Note that ḡ−1μν is to be distinguished from ḡμν = gμλgνρḡλρ.
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so that one has, in particular,
Γ̄μμν = ∂ν ln

√
−ḡ. (26)

Thus ultimately, the gravity is described by the fourteen independent fields: ten for the
tensor gμν and four for the scalars ξ̄α. The latter ones are to be found through observations,
with the former ones being reproduced by the dynamics in the self-consistent fashion. More
particularly, only the quadratic combination of ∂μξ̄α in the form of ḡμν , eq. (20), enters5. Due
to the compensating terms with the background connection, the theory can be studied in the
arbitrary observer’s coordinates, in contrast to the background coordinates. It should be stressed
that ḡμν (and thus Γ̄λμν) is not the most general one, but depends on the four scalar parameter-
fields ξ̄α. It is for this reason, that there can be chosen the coordinates where Γ̄λμν = 0. From the
observer viewpoint, the last property is precisely what distinguishes the background coordinates
from the remaining ones, all of the coordinates being for the observer a priori equivalent.

Isoharmonic covariance It follows from eqs. (21), (22) that ωλ is the vector transforming
homogeneously under the arbitrary change of the coordinates xμ → x′μ = xμ+εμ. This allows ωλ

to serve as the Lagrangian variable. The infinitesimal changes of the background and observer’s
coordinates being related as ε̄α = ∂μξ̄αεμ, the residual covariance group corresponds now to those
εμ which are related with ε̄α, satisfying eq. (11). This results straightforwardly in the modified
isoharmonic equation:

∇̄ ∙ ∇̄ελ + k∇̄λ∇̄ ∙ ε = 0. (27)

Here ∇̄μ is the background covariant derivative and

∇̄ ∙ ∇̄ = gμν∇̄μ∇̄ν ,

∇̄λ∇̄ ∙ ε = gλμ∂μ

( 1
√
−ḡ
∂ν(
√
−ḡεν)

)
. (28)

At Γ̄λμν = 0, eq. (27) reduces, mutatis mutandis, to eq. (11). In the limit |k| � 1, it reduces to
the modified unimodularity condition ∇̄ ∙ ε = 0 (up to a constant), or otherwise ∂ ∙ (

√
−ḡε) = 0.

Weak-field limit In the observer’s coordinates, the weak-field decomposition becomes

gμν = ḡμν + hμν , (29)

with hμν = ∂μξ̄α∂ν ξ̄βhαβ , |hμν | � 1. From eqs. (22) and (23) with account for δḡμν = 0, one
gets

δΩλ = −∂νδg
λν + (k − 1)gλν∂νδ ln

√
−g

+(k − 1)∂ν ln
√
−g δgλν ,

δΩ̄λ = Γ̄λμνδg
μν + kΓ̄μμνδg

λν . (30)

Accounting for the the relations δ
√
−g = −1/2

√
−ggμνδgμν , δgλρ = −gλμgρνδgμν and substi-

tuting δgμν → hμν , gμν → ḡμν , one gets from eqs. (21) – (23)

ωλ = ∇̄μ
(
hλμ +

1

2
(k − 1)ḡλμh

)
, (31)

5For the spin-half particles, ∂μξ̄α themselves are operative.
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which clearly generalizes eq. (13). Here one puts hμν = ḡλμḡρνhμν , h = ḡμνhμν . In the weak-field
limit, the indices are manipulated by means of ḡμν and its inverse ḡμν 6. Remind that one has,
in particular, ∇̄λḡμν = 0, etc.

The gauge transformations for the potentials hμν initiated by the infinitesimal transforma-
tions of the observer’s coordinates, the dependence of ḡμν on the coordinates including, now look
like

h′μν(x) = hμν(x)− (∇̄μεν + ∇̄νεμ) (32)

(and thus h′ = h − 2∇̄ ∙ ε). Respectively, the field strength ωλ changes under the gauge trans-
formations as

ω′λ(x) = ωλ(x)− (∇̄ ∙ ∇̄ελ + k∇̄λ∇̄ ∙ ε), (33)

where

∇̄ ∙ ∇̄ =
1
√
−ḡ
∂μ(
√
−ḡ ḡμν∂ν),

∇̄λ∇̄ ∙ ε = ∂λ
( 1
√
−ḡ
∂ ∙ (
√
−ḡε)

)
. (34)

Clearly, the requirement for ωλ to be gauge invariant, ω′λ(x) = ωλ(x), results in the isohar-
monicity condition, eqs. (27), (28), with the metric gμν substituted by ḡμν .

Equations of motion Varying the action (17) with respect to gμν (ḡμν being unchanged) one
arrives at the gravity equation:

Gμν +ΔGμν =M
−2
P T

(m)
μν . (35)

Here Gμν is the gravity tensor defined as usually:

−M2PGμν =
2
√
−g
δLg
δgμν

, (36)

with Lg =
√
−g Lg being the gravity Lagrangian density (and similarly for ΔGμν corresponding

to ΔLg). T
(m)
μν is the conventional energy-momentum tensor of the matter defined through

Lm =
√
−g Lm by the r.h.s. of eq. (36). Introduce the notation (∇ ∙G)ν = ∇μGμν , etc, with ∇μ

being the generally covariant derivative. Due to the GC of Lg and thus the relation (∇∙G)μ = 0,
one gets from eq. (35) the modified conservation law for the matter:

(
∇ ∙ (Tm +ΔT )

)μ
= 0. (37)

The extra termΔTμν ≡ −M2PΔG
μν is to be interpreted as the contribution of the vector graviton

to the DM. In other terms, the equation above can be written as

(∇ ∙ Tm)
μ = Qμ, (38)

where
Qμ =M2P (∇ ∙ΔG)

μ (39)

6In this limit ḡμν = ḡ−1μν .
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is the external force acting on the matter from the site of the vector gravitons.
Varying the Einstein-Hilbert Lagrangian density Lg with respect to gμν one gets the gravity

tensor as usually

Gμν = Rμν −
1

2
Rgμν + Λgμν . (40)

With account for eq. (30), one gets from ΔLg

−M2PΔGμν = κ2
(
k(ωμ∂ν ln

√
g/ḡ + ων∂μ ln

√
g/ḡ )− ωμων −

1

2
ω ∙ ω gμν

)

+κ2
(
(k − 1)∇ ∙ ω gμν + (∇̄μων + ∇̄νωμ)

)

+ΔVg gμν − 2∂ΔVg/∂g
μν , (41)

where

∇ ∙ ω =
1
√
−g
∂ ∙ (
√
−g ω). (42)

In the weak-field limit, ∇̄μ coincides with ∇μ. In the limit |k| � 1 with the redefinition κ→ κ/k,
one recovers the results for the (singlet) scalar graviton [1]. At Γ̄λμν = 0, mutatis mutandis, the
results in the background coordinates follow.

3. Matter

Energy-momentum tensor For the applications to cosmology, it suffices to treat the matter
as the continuous medium. Describe it directly in the observer’s coordinates with the metric gμν .
To apply the Lagrangian framework to the medium [1], characterize the latter by the proper
(i.e., measured in the comoving coordinates) concentration n of the medium particles and by
the specific entropy σ (the entropy per particle), in addition to the medium 4-velocuty Uμ,
U ∙ U = 1. Besides, the medium is characterized by the nondynamical parameters such as the
particle mass m, etc. The particle number current Nμ = nUμ satisfies the generic continuity
condition ∇ ∙N = 0. This constraint has to be valid identically, independently of the equations
of motion.

Take the Lagrangian for the medium generically as

Lm(n, σ, U
μ) = −E(|N |, σ), (43)

with the scalar E(|N |, σ) being the energy function. Here one puts |N | = (N ∙N)1/2. One can
also add the interactions of the vector graviton with the medium as follows:

L′m(n, σ, U
μ) = −F (|N |, σ)

1

|N |
N ∙ ω, (44)

with the scalar F (|N |, σ) being the formfactor. Introducing the vector density N μ =
√
−g Nμ as

the independent variable and the respective scalar density |N | = (N ∙N )1/2 =
√
−g |N |, wright

the total Lagrangian density as follows:

L(tot)m = −
√
−g

(

E
( |N |
√
−g
, σ
)
+ F

( |N |
√
−g
, σ
) 1
|N |
N ∙ ω

)

+ λ∂ ∙ N , (45)

with λ being the Lagrange’s multiplier.
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Varying eq. (45) relative to λ one reproduces the continuity condition, ∂ ∙ N = 0. Varying

L(tot)m with respect to gμν and accounting for δN μ = 0, δ(|N |/
√
−g) = n/2 (gμν−UμUν)δgμν one

gets the energy-momentum tensor for the matter

T (m)μν = ρUμUν + p(UμUν − gμν) + τμν , (46)

with

ρ = e− (k − 1)∇ ∙ (fU),

p = ne′ − e+ (nf ′ − f)U ∙ ω + (k − 1)∇ ∙ (fU),

τμν = f(Uμων + Uνωμ)− kf
(
Uμ∂ν ln

√
g/ḡ + Uν∂μ ln

√
g/ḡ

)

−
(
∇̄μ(fUν) + ∇̄μ(fUν)

)
. (47)

Here e(n, σ) ≡ E(|N |, σ)||N |=n, e
′ = ∂e(n, σ)/∂n and likewise for f . In the equations above, ρ

is the scalar coinciding with the energy per unit proper volume, p is the scalar coinciding with
the (isotropic) pressure, while f is the new scalar state function. The terms proportional to f
distort the medium. Being of the odd degree in the medium velocity these terms reflect the
energy dissipation/pumping for the medium in the vector graviton environment. As a result,

there appears in T (m)μν one more independent tensor structure τμν accounting, in particular, for
the anisotropy of the medium. In the limit |k| � 1 with the redefinition f → f/k, eq. (47)
reproduces the results for the (singlet) scalar graviton [1], in particular, τμν = 0. The trace of
the energy-momentum tensor gets modified as

Tm
μ
μ = ρ− 3p+ τ

μ
μ . (48)

Equations of motion As the equation of motion for the continuous medium, there serves the
conservation condition in the external field, eq. (38), for the matter energy-momentum tensor.
This equation can be divided into two parts. First, projecting it on the streamlines by multiplying
on Uμ and accounting for U ∙∇νU = 0, one gets the energy equation for the medium in the vector
graviton field:

∇ ∙
(
(ρ+ p)U

)
− U ∙ ∂p+ U ∙ (∇ ∙ τ) = q. (49)

The scalar q = U ∙Q on the r.h.s. of the equation above coincides with the power Q0 depositing
in (dissipating from) the medium per unit proper volume due to interactions with the vector
gravitons. Second, restricting eq. (38) by the projector Πμν = gμν − UμUν , (Π ∙ U)μ = (gμν −
UμUν)U

ν = 0, on the hypersurface orthogonal to the streamlines one gets the modified Euler
equation:

(ρ+ p)U ∙ ∇Uμ + U ∙ ∂pUμ − ∂μp+ (Π ∙ (∇ ∙ τ))μ = Qμ − qUμ. (50)

When all the terms above, but the first one proportional to ρ, are missing eq. (50) is nothing
but the geodesic condition: U ∙ ∇Uμ = 0. Otherwise, it describes the deviation of the flow from
the geodesics due to the medium pressure and the influence of the vector graviton field.
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4. Conclusion

The classical theory of gravity with the GC violation and the residual IC can consistently
be constructed. The theory describes the vector graviton, the scalar component incorporated,
as a part of the metric (in addition to the massless tensor graviton). Similarly to the previ-
ously studied (singlet) scalar graviton, the vector graviton may constitute one more fraction
of the gravitational DM. The case study for the tensor graviton, as the remaining part of the
gravitational DM, is to be given in the future.
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