

государственный научный центр российской федерации ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

> ИФВЭ 2005–47 ОЭФ

Ф. Бинон¹, А.М. Блик, А.М. Горин, С.В. Донсков, С. Инаба³, В.Н. Колосов, М.Е. Ладыгин, А.А. Леднев, В.А. Лишин,
И.В. Мануйлов, Ю.В. Михайлов, Ж.-П. Пенье², В.А. Поляков,
В.Д. Самойленко, А.Е. Соболь, Ж.-П. Строот⁴, В.П. Сугоняев, К. Такаматсу³, Т. Тсуру³, Г.В. Хаустов

ПОИСК РЕДКИХ И ЗАПРЕЩЕННЫХ НЕЙТРАЛЬНЫХ РАСПАДОВ η -МЕЗОНА НА УСТАНОВКЕ ГАМС-4 π

Протвино 2005

¹ Брюссельский свободный университет, Брюссель, Бельгия

² Лаборатория физики частиц в Анси, Анси, Франция

³ Национальная лаборатория физики высоких энергий – КЕК, Тсукуба, Япония

 $^{^4}$ Институт ядерных исследований университетов, Брюссель, Бельгия

Аннотация

Бинон Ф., Блик А.М. Горин А.М. и др. Поиск редких и запрещенных нейтральных распадов η -мезона на установке ГАМС-4 π : Препринт ИФВЭ 2005–47. – Протвино, 2005. – 13 с., 11 рис., 1 табл., библиогр.: 25.

На установке ГАМС-4 π выполнен поиск редких и запрещенных нейтральных распадов η -мезона. Источником 3,7 · 10⁶ η -мезонов служила реакция перезарядки при импульсе 32,5 ГэВ/с. На 90% уровне достоверности получены следующие верхние пределы: $BR(\eta \to 3\gamma) < 1,6 \cdot 10^{-4}, BR(\eta \to 4\gamma) < 2,8 \cdot 10^{-4}, BR(\eta \to \pi^o \pi^o) < 3,5 \cdot 10^{-4}, BR(\eta \to \pi^o \pi^o \gamma) < 1,7 \cdot 10^{-3}, BR(\eta \to \pi^o \pi^o \gamma \gamma) < 4,0 \cdot 10^{-3}, BR(\eta \to 3\pi^o \gamma) < 2,4 \cdot 10^{-4}, BR(\eta \to 4\pi^o) < 2,0 \cdot 10^{-5}.$

Abstract

Binon F., Blik A.M., Gorin A.M. et al. Search the Rare and Forbidden Neutral Decays of η -meson on GAMS- 4π .: IHEP Preprint 2005–47. – Protvino, 2005. – p. 13, figs. 11, tables 1, refs.: 25.

A search for the rare and forbidden neutral decays of η -meson with GAMS- 4π setup has been performed. The charge-exchange reaction at 32.5 GeV/c was used as a source of $3.7 \cdot 10^6 \eta$ -mesons. At the 90% confidence level the following upper limits was established: $BR(\eta \rightarrow 3\gamma) < 1.6 \cdot 10^{-4}, BR(\eta \rightarrow 4\gamma) < 2.8 \cdot 10^{-4}, BR(\eta \rightarrow \pi^o \pi^o) < 3.5 \cdot 10^{-4}, BR(\eta \rightarrow \pi^o \pi^o \gamma) < 1.7 \cdot 10^{-3}, BR(\eta \rightarrow \pi^o \pi^o \gamma \gamma) < 4.0 \cdot 10^{-3}, BR(\eta \rightarrow 3\pi^o \gamma) < 2.4 \cdot 10^{-4}, BR(\eta \rightarrow 4\pi^o) < 2.0 \cdot 10^{-5}.$

 (с) Государственный научный центр Российской Федерации
 Институт физики высоких энергий, 2005

Введение

В последнее время значительно возрос интерес к поиску редких и запрещенных распадов легких скалярных мезонов η , η' . Это связано с интенсивными поисками явлений, выходящих за пределы Стандартной Модели (СМ). Перспективным местом для таких поисков является установление пределов правильности основных симметрий — зарядовой четности C, пространственной четности P и обращения времени T, или сочетаний C, P и T в различных взаимодействиях. В рамках СМ зарядовая четность сохраняется в сильных и электромагнитных взаимодействиях, но нарушается в слабых из-за V - Aструктуры слабого тока. η -мезон обладает положительной C-четностью, и распады на нечетное число фотонов нарушают зарядовую четность. Распады $\eta \rightarrow 2\pi^o$ и $\eta \rightarrow 3\pi^o$ с четным числом фотонов в конечном состоянии нарушают P- и CP-инвариантность и G-четность соответственно. Поэтому поиск запрещенных и редких распадов η -мезона предоставляет широкие возможности для проверки современных теорий. Экспериментальная и теоретическая ситуация с распадами η -мезона подробно изложена в обзоре [1].

Ранее сотрудничеством ГАМС был выполнен ряд работ по исследованию распадов η - [2], ω - [3] и η' -мезонов [4]. Настоящая работа является логическим продолжением исследований по нейтральным распадам легких мезонов.

1. Экспериментальная установка

Настоящий эксперимент выполнен на модернизированной установке ГАМС-4 π (рис. 1), которая значительно отличается от предыдущей версии — ГАМС-2000 [5]. Изменения коснулись всех детекторов установки. Трек пучковой частицы измеряется годоскопом на сцинтилляционных волокнах [6] с высокими пространственным (0.3 мм) и временным (1 нс) разрешениями. Последнее свойство особенно важно при работе в высокоинтенсивном пучке для уменьшения эффекта наложения событий. Тип пучковой частицы определялся двумя пороговыми черенковскими счетчиками.

Охранная система из свинцового стекла имеет расширенную апертуру и увеличенную до $5X_o$ радиационную длину. Вместо апертурных счетчиков [7] был разработан широкоапертурный детектор ШАД, который позволяет измерять энергию и координаты γ -квантов. ШАД представляет собой проекционный электромагнитный калориметр типа "сэндвич". Энергетическое разрешение ШАД составляет $13\%/\sqrt{E[\Gamma \ni B]}$ при $12.5X_o$ рад. длинах. Пороговая энергия регистрации γ -квантов по сравнению с применявшимися ранее апертурными счетчиками понижена с 200 до 50 МэВ.

Рис. 1. Общий вид модернизированной установки ГАМС-4π. LH — жидководородная мишень; А — сцинтилляционные счетчики; GS — охранная система из свинцового стекла; WAD широкоапертурный детектор; GAMS — спектрометр ГАМС-2000; PWO — спектрометр на основе кристаллов PWO; HCAL — адронный калориметр HC100.

Центральная часть электромагнитного калориметра ГАМС (160 × 160 мм²) заменена кристаллическим детектором на основе кристаллов РWO [8] с размером ячейки 20×20 мм². Это позволило улучшить реконструкцию перекрывающихся ливней в наиболее загруженной части детектора. Проведенные усовершенствования увеличили аксептанс установки практически до 4π в системе центра масс.

Модернизация системы сбора данных с применением модулей в стандарте VME позволила снизить мертвое время приема до 150 мкс/событие.

Несмотря на проведенные изменения, постановка эксперимента практически не изменилась, методика калибровки установки и геометрическая реконструкция событий описаны ранее [9,10].

2. Отбор событий

Для поиска нейтральных распадов η -мезонов использованы данные, полученные сотрудничеством ГАМС на 70-ГэВ ускорителе ИФВЭ в 2002 г. Источником моноэнергичных η -мезонов служила реакция перезарядки

$$\pi^- p \to \eta n$$
 (1)

при импульсе π^- -мезона 32.5 ГэВ/с. Для подавления аппаратного и физического фонов без существенной потери эффективности регистрации исследуемых процессов были применены следующие отборы:

- расстояние между осями ливней в ГАМС больше 45 мм;
- расстояние точки попадания γ-кванта в ГАМС от оси пучка больше 40 мм (для подавления фона в наиболее загруженных центральных счетчиках ГАМС);
- энергия каждого γ-кванта больше 0,5 ГэВ, и в центральной области порог плавно повышается до 0,7 ГэВ;
- суммарная энергия в ГАМС ограничена интервалом 28–36 ГэВ;

События, не удовлетворяющие любому из вышеперечисленных требований, были исключены. Дальнейшей анализ базируется на кинематическом фите событий с разным набором условий связи (констрейнтов) для каждой изучаемой системы.

За время измерений зарегистрировано $1, 22 \cdot 10^6$ событий $\eta \to 2\gamma$, что с учетом вероятности распада $BR(\eta \to 2\gamma) = 0, 39$ [13] и эффективности регистрации 83% соответствует образованию $3, 73 \cdot 10^6 \eta$ -мезонов. Качество набранного статистического материала показано на рис. 2.

Рис. 2. (а) Спектр масс 2γ-событий после 1С-фита (фиксирована масса нейтрона отдачи).
 (b) Спектр масс 3π^o-событий после 4С-фита (фиксированы массы нейтрона и трех π^o-мезонов). Стрелками указано табличное значение массы η-мезона.

3. Поиск распадов

3.1. $\eta \rightarrow 3\gamma$

Для поиска нарушающего С-четность распада

$$\eta \to 3\gamma$$
 (2)

были отобраны события, классифицированные программой реконструкции как содержащие три γ -кванта, и которые после кинематического 1С-фита (фиксирована масса нейтрона отдачи) имели вероятность (Confidence Level) $CL(1C, 3\gamma) > 0, 1$. Поиск распада (2) требует тщательного анализа источников физического фона, которые включают собственные нейтральные распады η -мезона по каналам

$$\eta \to 3\pi^o$$
 , (3)

$$\eta \to \pi^o \gamma \gamma \tag{4}$$

и интенсивно образующуюся в реакции перезарядки систему $\pi^o \pi^o$ с потерянными низкоэнергичными γ -квантами. Отметим, что обсуждаемый ниже процесс $\eta \to 4\gamma$ не учитывался, хотя он должен приниматься во внимание по мере увеличения статистики эксперимента.

Неправильно идентифицированные 2γ -события с дополнительным ложным γ -квантом, сгенерированным программой реконструкции из-за флуктуации формы электромагнитного ливня или шумящих каналов в ГАМС, тоже служат источником фона. Для подавления таких событий, происходящих от распадов $\eta \rightarrow 2\gamma$ и $\pi^o \rightarrow 2\gamma$, выполнялся 1С-фит с учетом только двух γ -квантов из трех. Если в результате такого фита вероятность была больше, чем для оригинального события $CL(1C, 2\gamma) > CL(1C, 3\gamma)$, то это событие отбрасывалось.

Из обработки была исключена область малых передач импульса $t > -0, 10 \ (\Gamma \Rightarrow B/c)^2$ с повышенным уровнем аппаратного фона. Спектр парных масс γ -квантов в области η мезона (рис. 3a) подтверждает сделанное предположение об источниках фоновых реакций.

Рис. 3. (а) Сплошная гистограмма — экспериментальный спектр парных масс γ-квантов в области η-мезона (450 < M(3γ) < 650 МэВ); прерывистая — спектр парных масс в распаде (2), полученный методом Монте-Карло, 3 вх./соб. (b) Экспериментальный спектр парных масс после перечисленных в тексте отборов.

На следующем этапе был выполнен 2С-фит гипотезами (нейтрон, π^{o}) и (нейтрон, η). События, имеющие по результатам фита $CL(2C, n, \eta) > 5 \cdot 10^{-2}$ и $CL(2C, n, \pi^{o}) > 1 \cdot 10^{-4}$, также отбрасывались. Примененная система отборов позволила значительно уменьшить фон от $\pi^{o}\pi^{o}$ - и $3\pi^{o}$ -систем (рис. 3b). Для определения верхних пределов в настоящей работе используется метод [21], который учитывает конечность статистики эксперимента, расчетов Монте-Карло¹ и позволяет определить вклад каждого источника событий в экспериментальный спектр масс.

Источниками 3γ -событий для экспериментального спектра масс (рис. 4a) являются распады η -мезона (3), (4) и система $\pi^o \pi^o$. Предполагается, что процесс (2) тоже служит источником событий.

Рис. 4. (а) Спектр масс экспериментальных 3γ -событий, полученный после перечисленных отборов. (b) Спектры масс событий Монте-Карло: сплошная гистограмма — $\eta \to 3\gamma$; прерывистая — $\eta \to 3\pi^o \to 3\gamma$; пунктирная — $\pi^o \pi^o \to 3\gamma$; штрих-пунктирная — $\eta \to \pi^o \gamma \gamma \to 3\gamma$.

События каждой реакции, рассматриваемой в качестве источника событий для экспериментального спектра 3γ , были получены методом Монте-Карло с учетом измеренных в настоящей работе *t*-зависимости сечения образования η -мезона и массового спектра (для $\pi^o \pi^o$), рис. 4b. Верхний предел вычисляется как

$$BR(\eta \to 3\gamma) < \frac{N_{exp} \cdot (W(\eta \to 3\gamma) + dW(\eta \to 3\gamma))}{\epsilon(\eta \to 3\gamma) \cdot N_{\eta}} , \qquad (5)$$

где $W(\eta \to 3\gamma)$ — вес данного процесса в экспериментальной гистограмме; $dW(\eta \to 3\gamma)$ — ошибка; соответствующая 90% уровню достоверности при фитировании весов обобщенной функцией максимального правдоподобия [21]; $\epsilon(\eta \to 3\gamma)$ — эффективность регистрации; N_{exp} — число событий в экспериментальной гистограмме; N_{η} — число η -мезонов. В результате проведенного анализа вес искомого процесса $W(\eta \to 3\gamma) = 0 \pm 0, 03$, и верхний предел на 90% уровне достоверности

$$BR(\eta \to 3\gamma) < 1, 6 \cdot 10^{-4}. \tag{6}$$

Следует отметить, что этот распад исследовался и в других экспериментах. Недавно коллаборация КLOE, работающая на ϕ -фабрике, сообщила об установлении верхнего предела $BR(\eta \to 3\gamma) < 1, 6 \cdot 10^{-5}$ [14].

¹Подпрограмма HMCMLL [25].

3.2. $\eta \rightarrow 4\gamma$

Редкий радиационный распад

$$\eta \to 4\gamma$$
 (7)

ранее экспериментально не изучался. Простые теоретические оценки [1] дают $BR(\eta \rightarrow 4\gamma) \approx 10^{-6}$.

Для поиска этого распада были отобраны события, в которых программой реконструкции были восстановлены 4 γ -кванта. После кинематического 1С-фита (фиксирована масса нейтрона отдачи) для дальнейшего анализа использованы события с CL(1C, n) > 0, 1 и t < -0, 10 (ГэВ/с)².

Рис. 5. (а) Сплошная гистограмма — экспериментальный спектр парных масс после перечисленных в тексте отборов; прерывистая — спектр парных масс в распаде η → 4γ, полученный методом Монте-Карло, 6 вх./соб. (b) Сплошная гистограмма — экспериментальный спектр масс 4γ-событий после применения перечисленных в тексте отборов; прерывистая — η → 4γ (Монте-Карло события)

Дополнительный отбор был выполнен с применением кинематического фита, и события, имеющие для 2С-фита гипотезой (n, π^o) вероятность $CL(2C, n, \pi^o) > 1 \cdot 10^{-2}$, исключались из дальнейшей обработки. Такой отбор позволил ослабить вклад $3\pi^o$ и практически полностью подавить $\pi^o \pi^o$ -систему. Вклад распада (4) после примененных отборов в исследуемый процесс пренебрежимо мал. Фон от распада $K_s^o \to \pi^o \pi^o$, сосредоточенный в области 400 МэВ, не учитывается. Эффективность регистрации процесса (7) после отборов упала до 3,7%. В качестве источников событий в гистограмме экспериментальных 4 γ -событий (рис. 5b) рассматриваются $3\pi^o$ -система и собственно исследуемый процесс (7), и его вес в экспериментальной гистограмме составляет $W(\eta \to 4\gamma) = 0,001 \pm 0,006$. Верхний предел для данной моды на 90% уровне достоверности

$$BR(\eta \to 4\gamma) < 2, 8 \cdot 10^{-4}.$$
 (8)

3.3. $\eta \rightarrow \pi^o \pi^o$

Этот распад, запрещенный по P- и CP-четностям, ранее исследовался на e^+e^- - пучках в экспериментах SND [15] и CMD-2 [16], где верхний предел поставлен на уровне 4, $3 \cdot 10^{-4}$.

Для поиска распада

$$\eta \to \pi^o \pi^o \tag{9}$$

были отобраны события, в которых программой реконструкции были восстановлены 4 γ кванта. Качество выделения системы $\pi^o \pi^o$ показано на рис. 6а. После кинематического 3С-фита (фиксированы массы нейтрона отдачи и двух π^o -мезонов) для дальнейшего анализа использованы события с $CL(3C, n, 2\pi^o) > 0, 1$ и t < -0, 20 (ГэВ/с)².

Рис. 6. (а) Спектр масс нефитированной пары γ-квантов после 2С-фита (фиксированы массы нейтрона и одного π^o-мезона), когда масса 4γ находится в области η-мезона. (b) Сплошная гистограмма — экспериментальный спектр масс π^oπ^o событий после применения перечисленных в тексте отборов, прерывистая — η → π^oπ^o (Монте-Карло события).

Эффективность регистрации при данных отборах составляет 23%. В качестве источников событий в экспериментальном спектре $\pi^o \pi^o$ (рис. 6b) рассматриваются система $\pi^o \pi^o$ и собственно исследуемый процесс (9). Вес распада (9) в экспериментальной гистограмме $W(\eta \to \pi^o \pi^o) = 0,002 \pm 0,004$. Верхний предел для данной моды на 90% уровне достоверности

$$BR(\eta \to \pi^o \pi^o) < 3, 5 \cdot 10^{-4}.$$
 (10)

3.4. $\eta \rightarrow \pi^o \pi^o \gamma$

Исследование С-нарушающего распада

$$\eta \to \pi^o \pi^o \gamma \tag{11}$$

затруднено интенсивным фоном от процесса $\eta \to 3\pi^o$, примерно половина этих распадов после реконструкции переходит в $\pi^o \pi^o \gamma$. Другим источником фона является генерация ложного γ -кванта программой реконструкции в системе $\pi^o \pi^o$.

Рис. 7. (а) Экспериментальный спектр $\pi^o \pi^o \gamma$ событий после применения перечисленных в тексте отборов. (b) Спектр масс событий Монте-Карло: сплошная гистограмма — $\eta \to \pi^o \pi^o \gamma$, прерывистая — $\eta \to 3\pi^o \to \pi^o \pi^o \gamma$.

Для анализа были отобраны 5 γ -события, которые после 3С-фита (нейтрон, $2\pi^{o}$) имели $CL(3C, n, 2\pi^{o}) > 0, 1$. С целью уменьшения вклада от $\pi^{o}\pi^{o}$ -системы требовалось, чтобы в событии любая комбинация из 4γ -квантов после 3С-фита имела бы меньшую вероятность чем исходное 5γ -событие — $CL(3C, 2\pi^{o}, 4\gamma) < CL(3C, 2\pi^{o}, 5\gamma)$. Спектр масс экспериментальных событий после отборов приведен на рис. 7а.

Единственным источником фоновых событий в спектре масс $\pi^o \pi^o \gamma$ в области η -мезона может быть $3\pi^o$ -система с потерянным γ -квантом, и ее спектр, полученный методом Монте-Карло, приведен на рис. 7b. Вес гистограммы искомого распада (11) в экспериментальном спектре $W(\eta \to \pi^o \pi^o \gamma) = 0,002 \pm 0,007$, что с учетом эффективности регистрации 15% приводит к следующему значению верхнего предела на 90% уровне достоверности:

$$BR(\eta \to \pi^o \pi^o \gamma) < 1, 7 \cdot 10^{-3}.$$
 (12)

3.5. $\eta \rightarrow \pi^o \pi^o \gamma \gamma$

Данный распад рассматривается в работах, посвященных обобщенным киральным теориям [17,18,19], в которых вероятность распада оценивается на уровне $\approx 10^{-7}$.

Выделение моды

$$\eta \to \pi^o \pi^o \gamma \gamma \tag{13}$$

также затруднено распадом $\eta \to 3\pi^o$, причем масса пары γ -квантов, не связанных в π^o , заключена в узком интервале $(0, m_\eta - m_{2\pi})$, в которую попадает и нефитированный π^o -мезон, рис. 8а. Для выделения процесса (13) были отобраны 6 γ -события с переданным импульсом t < -0, 1 (ГэВ/с)². После фитирования гипотезами $(n, 3\pi^o)$ и $(n, 2\pi^o)$ для выделения системы $\pi^o \pi^o \gamma \gamma$ применены два противоречивых требования: $CL(3C, n, 2\pi^o) > 0, 1$ и $CL(4C, n, 3\pi^o) < 1 \cdot 10^{-2}$.

Рис. 8. (а) Смоделированный спектр масс пары γ -квантов, несвязанных в π^{o} , после 3C-фита: сплошная гистограмма — $\eta \to \pi^{o} \pi^{o} \gamma \gamma$, прерывистая — $\eta \to 3\pi^{o}$. (b) Экспериментальный спектр масс несвязанной $\gamma \gamma$ -пары после применения перечисленных в тексте отборов.

Последний отбор подавляет $3\pi^{o}$ -систему (см. рис. 8b), но ценой уменьшения эффективности регистрации (13) до 2,2%. Дополнительное требование, понижающее фон при работе с большой множественностью γ -квантов, заключалось в том, чтобы масса нефитированный пары γ -квантов была больше 30 МэВ. Следует отметить, что конечное разрешение калориметра не позволяет полностью подавить $3\pi^{o}$ -систему, и это является основным препятствием при работе с данной модой.

Рис. 9. Экспериментальный спектр $\pi^o \pi^o \gamma \gamma$ событий (сплошная гистограмма) и смоделированный распад (13) (прерывистая).

Экспериментальный спектр масс $\pi^o \pi^o \gamma \gamma$ -системы приведен на рис. 9. При определении верхнего предела в качестве источников событий рассматривались $3\pi^o$ -система в окрестности η -мезона, полученная из экспериментальных данных, и искомый процесс (13). В результате на 90% уровне достоверности $W(\eta \to \pi^o \pi^o \gamma \gamma) = 0,06 \pm 0,05$, что приводит к ограничению

$$BR(\eta \to \pi^o \pi^o \gamma \gamma) < 4, 0 \cdot 10^{-3}.$$
(14)

3.6. $\eta \rightarrow 3\pi^o \gamma$

Распад

$$\eta \to 3\pi^o \gamma \tag{15}$$

запрещен по C-четности. Основными источниками фона являются собственный распад η -мезона в моде $3\pi^{o}$ и система $\eta\pi^{o}$. В первом случае из-за возможной флуктуации электромагнитного ливня программа реконструкции может восстановить лишний γ -квант, и событие переходит в класс 7γ .

Такой процесс трудно смоделировать методом Монте-Карло, но косвенным указанием на происхождение события из $3\pi^o$ -системы служит малая (≈ 30 МэВ) парная масса γ -квантов и низкая энергия непарного фотона в событии. Другим источником фона является система $\eta\pi^o$ при распаде η -мезона по каналу $3\pi^o$ с потерей одного фотона. Вклад "прямой" $4\pi^o$ -системы в области масс η -мезона пренебрежимо мал и не рассматривается.

Для подавления фоновых процессов были отброшены события, где есть хотя бы одна парная масса γ -квантов меньше 30 МэВ, или энергия непарного γ -кванта меньше 1 ГэВ. Дополнительное требование заключалось в том, чтобы в событии не существовало комбинации из 6γ -квантов, удовлетворяющей гипотезе распада $\eta \to 3\pi^o$ с $CL(5C, n, \eta, 3\pi^o) > 0, 1$.

Рис. 10. (а) Экспериментальный спектр масс $3\pi^{o}\gamma$ после применения перечисленных в тексте отборов. (b) Спектры масс событий Монте-Карло: прерывистая гистограмма — $\eta\pi^{o} \to 4\pi^{o} \to 3\pi^{o}\gamma$; сплошная — $\eta \to 3\pi^{o}\gamma$.

Для анализа были использованы события, имеющие после 4С-фита (фиксированы массы нейтрона отдачи и трех π^{o}) $CL(4C, n, 3\pi^{o}) > 0, 1$. Спектр масс $3\pi^{o}\gamma$ -событий после отборов приведен на рис. 10а. При вычислении верхнего предела основным источником событий считалась система $\eta\pi^{o}$ с потерянным γ -квантом, и ее спектр, полученный на основе экспериментальных данных, приведен на рис. 10b. Вес распада $W(\eta \to 3\pi^{o}\gamma) = 0,02 \pm 0,024$. С учетом всех отборов эффективность регистрации данной моды распада составляет 4,2%. Верхний предел на 90% уровне достоверности

$$BR(\eta \to 3\pi^o \gamma) < 2, 4 \cdot 10^{-4}.$$
 (16)

3.7. $\eta \rightarrow 4\pi^o$

Данный распад подавлен малым фазовым объемом и высокой степенью импульсов π^{o} мезонов в матричном элементе. Ранее он был исследован в работе коллаборации Crystal Ball [20], где и получено ограничение, приведенное в настоящее время в [13].

Рис. 11. (а) Спектр масс четвертой нефитированной пары γ -квантов, когда остальные три пары γ -квантов идентифицированы как три π^{o} -мезона и $M(8\gamma) < 1,5$ ГэВ. (b) Сплошная гистограмма — экспериментальный спектр масс $4\pi^{o}$ -системы; прерывистая — спектр распада $\eta \to 4\pi^{o}$, полученный методом Монте-Карло.

С целью определения фона при выделении системы $4\pi^o$ в области малых масс отобранные 8 γ -события были отфитированы гипотезой $(n, 3\pi^o)$, а масса четвертой пары γ -квантов оставлена свободной. Спектр этой пары, когда масса 8 γ меньше 1,5 ГэВ, представлен на рис. 11а, из которого видно, что фон не превышает 10%. В экспериментальном спектре масс $4\pi^o$ -событий, имеющих после 5С-фита $CL(5C, n, 4\pi^o) > 0, 1$, отсутствуют события в области η -мезона, рис. 11b. Согласно [23,24], это соответствует верхнему пределу 2,3 события при уровне достоверности 90%. С учетом эффективности регистрации 3% верхний предел

$$BR(\eta \to 4\pi^o) < 2, 0 \cdot 10^{-5}.$$
 (17)

Заключение

В данной работе был проведен поиск редких и запрещенных нейтральных распадов η -мезона. Полученные результаты на 90% уровне достоверности суммированы в табл. 1.

Мода распада	Part.Data Group 2002	$\Gamma AMC-4\pi$
$\eta \to 3\gamma$	$5\cdot 10^{-4}$	$1,6\cdot 10^{-4}$
$\eta \to 4\gamma$		$2,8\cdot10^{-4}$
$\eta \to \pi^o \pi^o$	$4,3\cdot 10^{-4}$	$3.5\cdot10^{-4}$
$\eta \to \pi^o \pi^o \gamma$		$1,7\cdot10^{-3}$
$\eta \to \pi^o \pi^o \gamma \gamma$		$4, 0 \cdot 10^{-3}$
$\eta \to 3\pi^o \gamma$		$2,4\cdot10^{-4}$
$\eta \to 4\pi^o$	$6,9\cdot 10^{-7}$	$2,0\cdot 10^{-5}$

<u>Таблица 1.</u> Данные по распадам η -мезона [13] и ГАМС-4 π .

Работа была поддержана грантами РФФИ 05-02-16861-а и 05-02-08082 (частично). Авторы благодарны С.И.Битюкову (ИФВЭ) за полезные обсуждения.

Список литературы

- [1] B.M.K.Nefkens, J.W.Price. e-Print Archive: nucl-ex/0202008.
- [2] Алди Д. и др. ЯФ, Т. 40 Вып. 6(12) С. 1447-1453. 1984; D.Alde et al. Z.Phys.C 25 (1984) 225-229.
- [3] Алди Д. и др. ЯФ, Т.56 Вып. 9. С. 137-146. 1993; D.Alde et al., Z.Phys.C 61 (1994) 35-40.
- [4] D.Alde et al. Z.Phys.C 36 (1987) 603.
- [5] F. Binon et al. Nucl. Instr. Meth. A248, P. 86, 1986.
- [6] A.M.Gorin et al. Proc. of SCIFI 97, Edited by Alan D. Bross et al. (1998) 627.
- [7] Дацко В.С. и др. Препринт ИФВЭ 85-35, Серпухов, 1985; ПТЭ, Т.3. С. 70-72, 1986.
- [8] А.М.Блик и др. ПТЭ, Т.6. С. 38-42,1997.
- [9] Алди Д. и др. ЯФ. Т. 49 (1989) 1021; Phys.Lett. В V. B216 (1989) 451. Здесь же даны ссылки на предыдущие работы.
- [10] Бинон Ф. и др. Черенковские детекторы и их применение в науке и технике. М.: Наука, 1990. - С. 149.
- [11] Леднев А.А. Препринт ИФВЭ 93-152, Протвино, 1993.
- [12] Кулик А.В. и др. Препринт ИФВЭ 85-17, Протвино, 1985.
- [13] Particle Data Group, Review of Particle Physics, Phys. Rev. D. V. 66 (2002).

- [14] A.Aloisio et al. e-Print Archive: hep-ex/0307042.
- [15] M.N.Achasov et al. Phys.Lett. B425 (1998) 388-390; e-Print Archive: hep-ex/9803008.
- [16] R.R.Akhmetshin et al. Phys.Lett. B462 (1999) 380; e-Print Archive: hep-ex/9907006.
- [17] M. Kolesar, J. Novotny. e-Print Archive: hep-ph/0301005.
- [18] G. Knochlein, S. Scherer, D. Drechsel. Phys.Rev.D 53 (1996) 3634-3642; e-Print Archive: hep-ph/9601252.
- [19] G. Knochlein, S. Scherer, D. Drechsel. Prog.Part.Nucl.Phys.36 (1996) 137-139; e-Print Archive: hep-ph/9510374.
- [20] S.Prakhov et al. Phys. Rev. Lett., V.84 (2000) 4802-4805.
- [21] R.Barlow, C.Beeston. Comp.Phys.Comm. V.77 (1993) 219-228.
- [22] G.Feldman, R.Cousins. Phys.Rev. D, V. 57 (1998) N 7. 3873-3889.
- [23] G.Zech. Eur.Phys.J direct C4 (2002) 12.
- [24] S.I.Bityukov, N.V.Krasnikov, V.A.Tapereshkina. Preprint IHEP 2000-61, Protvino, 2000;
 e-Print Archive: hep-ex/0108020.
- [25] CERN Program Library. Geneva, 1996.

Рукопись поступила 28-го декабря 2005.

Ф.Бинон, А.М. Блик, А.М.Горин и др.

Поиск редких и запрещенных нейтральных распадов η -мезона на установке ГАМС-4 $\pi.$

Оригинал-макет подготовлен с помощью системы **LAT**_EX. Редактор Н.В.Ежела.

Подписано к печати 30.12.2005. Формат $60 \times 84/8$. Офсетная печать. Печ.л. 1,65. Уч.-изд.л. 1,4. Тираж 90. Заказ 29. Индекс 3649.

ГНЦ РФ Институт физики высоких энергий 142284, Протвино Московской обл.

Индекс 3649

ПРЕПРИНТ 2005–47, ИФВЭ, 2005