

государственный научный центр российской федерации ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

> ИФВЭ 2006–9 ОЭФ

В.В. Абрамов, А.А. Волков, П.И. Гончаров, А.Ю. Калинин, А.В. Кораблев, Ю.П. Корнеев, А.В. Кострицкий, А.Н. Криницын, В.И. Крышкин, А.А. Марков, В.В. Талов, Л.К. Турчанович, А.В. Хмельников

ОДНОСПИНОВАЯ АСИММЕТРИЯ ЗАРЯЖЕННЫХ АДРОНОВ В рА-СОУДАРЕНИЯХ ПРИ ЭНЕРГИИ 40 ГэВ И УГЛАХ ОБРАЗОВАНИЯ 40-79° В с.ц.м.

Направлено в ЯФ

Протвино 2006

Аннотация

Абрамов В.В. и др. Односпиновая асимметрия заряженных адронов в рА-соударениях при энергии 40 ГэВ и углах образования 40–79° в с.ц.м.: Препринт ИФВЭ 2006–9. – Протвино, 2006. – 18 с., 8 рис., 6 табл., библиогр.: 27.

Измерена поперечная односпиновая асимметрия для заряженных адронов ($\pi^{\pm}, K^{\pm}, p, \bar{p}$), образующихся в протон-ядерных соударениях в диапазоне углов в с.ц.м. 40–79°. Измерения выполнены на установке ФОДС-2 с использованием поляризованного протонного пучка ИФВЭ с энергией 40 ГэВ и ядерных мишеней (С и Си). Данные получены в области фрагментации поляризованных протонов (0, 0 < x_F < 0, 7; 0, 6 < p_T < 2, 5 ГэВ/с). Односпиновая асимметрия для π^{\pm} -мезонов достигает значительной величины при больших значениях x_F в согласии с данными, полученными при других энергиях. Впервые наблюдается значительная анализирующая способность для протонов, меняющая свой знак при $x_F = 0, 43$. Зависимость анализирующей способности от массового числа ядра мишени незначительная.

Abstract

Abramov V.V. et al. Single-Spin Asymmetry of Charged Hadron Production in pA-Collisions at 40 GeV and c.m. Angles 40–79°: IHEP Preprint 2006–9. – Protvino, 2006. – p. 18, figs. 8, tables 6, refs.: 27.

The transverse single-spin asymmetry has been measured for charged hadrons $(\pi^{\pm}, K^{\pm}, p, \bar{p})$, produced in proton-nucleus collisions in c.m. angle range 40–79°. The measurements have been performed at FODS-2 experimental setup using IHEP 40 GeV polarized beam and nuclear targets (C and Cu). The data are obtained in polarized proton fragmentation region $(0.0 < x_F < 0.7; 0.6 < p_T < 2.5 \text{ GeV/c})$. The single-spin asymmetry for π^{\pm} -mesons becomes large at high x_F , in agreement with the data, obtained at other energies. Significant analyzing power has been observed for protons which changes its sign at $x_F = 0.43$. The dependence of analyzing power off target nuclei mass is not significant.

> (с) Государственный научный центр Российской Федерации Институт физики высоких энергий, 2006

Введение

Интерес к односпиновым асимметриям обусловлен наблюдением больших значений односпиновых эффектов в широком диапазоне энергий [1–7] и потенциальной связью их со структурой адронов и цветными силами, действующими между кварками. Большое значение односпиновых эффектов не удается объяснить в рамках теории возмущений КХД в силу киральной симметрии лагранжиана и малой величины масс токовых кварков [8].

Ответственными за происхождение больших односпиновых асимметрий могут быть эффекты, выходящие за рамки теории возмущений КХД. Предложенные модели основываются на: взаимодействии составляющих кварков с эффективным хромомагнитным полем струн [9], влиянии орбитального момента валентных кварков [10] либо токовых кварков в составляющем кварке [11], учете корреляции между спином и поперечным импульсом в структурных функциях (механизм Сиверса) [12] либо в функциях фрагментации (механизм Коллинза) [13], а также на учете вкладов высших твистов [14].

Для выяснения механизма односпиновых эффектов и его исследования требуются высокоточные измерения в широком диапазоне энергий пучка, продольных и поперечных компонент импульса регистрируемых адронов, а также для различных типов адронов в начальном и конечном состояниях. Существующие данные имеют в большинстве случаев довольно ограниченный диапазон указанных выше переменных.

Измерения на установке ФОДС-2 при энергии пучка 40 ГэВ выполнены для шести типов вторичных адронов ($\pi^{\pm}, K^{\pm}, p, \bar{p}$) на двух ядерных мишенях (С и Сu). Ранее на этой же установке при меньшей статистике получены первые данные на водородной мишени [4]. Измерения на ядерных мишенях позволяют получить дополнительную информацию о спиновых эффектах. Во-первых, это другой состав мишени на уровне адронов (протоны и нейтроны) и на уровне кварков (*u*- и *d*кварки). Во-вторых, сравнение результатов на двух различных ядрах позволяет сделать выводы о влиянии размеров ядра на величину односпиновых эффектов, в том числе об эффектах перерассеяния и поглощения в ядре. Поскольку набор ядер может выступать в роли анализатора пространственно-временной картины взаимодействия, подавляя либо выделяя события с определенными временами формирования, это может дать информацию о связи процессов адронизации кварков и их поляризации. С методической точки зрения, измерения на твердых ядерных мишенях более предпочтительны, поскольку позволяют получить существенно большую (в 4–10 раз) статистику, а также имеют меньший фон от взаимодействий пучка вне мишени.

Измерения 2003 г. выполнены в трех кинематических областях соответственно: при углах в л.с.к. между осью плеча и направлением пучка 90; 160 либо 230 мрад. В настоящей работе представлены только данные для угла 90 мрад, что соответствует углам 40–79° в с.ц.м. протон-нуклонных соударений. Результаты для других кинематических областей будут представлены отдельно.

1. Поляризованный протонный пучок

Поляризованный протонный пучок создан на универсальном 22-м канале ускорителя ИФВЭ. Поляризованные протоны образуются в нарушающих четность слабых распадах Л-гиперонов, которые в свою очередь рождаются при соударениях протонов с энергией 60–70 ГэВ с бериллиевой мишенью, расположенной в начале 22-го канала [15], [4], [16].

Первичный пучок с интенсивностью до 10^{13} протонов за сброс направляется с помощью систем медленного вывода в 22-й канал. Образующиеся в первичной бериллиевой мишени Λ -гипероны проходят через очищающий магнит, через отверстие в поглотителе заряженных частиц и распадаются на лету на протоны и π^- -мезоны. Поперечная поляризация вторичного пучка достигается отбором с помощью подвижного коллиматора протонов, летящих под углами вблизи 90° к оси канала в системе покоя Λ -гиперонов.

Далее поляризованные протоны отбираются по импульсу с помощью поворотных магнитов и коллиматоров и транспортируются до вторичной мишени, расположенной перед спектрометрическим магнитом установки ФОДС-2. Два корректирующих магнита, расположенные перед вторичной мишенью установки, компенсируют вертикальное смещение протонного пучка, которое возникает при отборе протонов в заданном интервале углов. Управление знаком поляризации пучка происходит от компьютера системы приема данных, который подает через каждые 100 сбросов сигнал на 22-й канал для смены положения коллиматора и тока в корректирующих магнитах. Смена знака поляризации пучка проходит в течение 30 с. Средний импульс поляризованных протонов составляет 40 ГэВ/с, $\Delta p/p = \pm 4,5\%$, поляризация пучка $P_B = (39 \pm 2)\%$, интенсивность до 3×10^7 протонов за сброс. Сигнал о выполнении смены знака поляризации передается с 22-го канала в систему приема данных и записывается в буфер данных.

В 22-м канале перед мишенью установки расположены два пороговых черенковских счетчика для идентификации частиц, а также ионизационные детекторы положения и интенсивности пучка. Там же находятся два сцинтилляционных годоскопа для измерения координат частиц по вертикали и горизонтали.

Расчетные параметры пучка оказались близки к измеренным. Размер пучка на мишени экспериментальной установки составляет $\sigma_x = 10,6$ мм; $\sigma_y = 8,1$ мм; расходимость — $\theta_x = \pm 6,5$ мрад; $\theta_y = \pm 6,0$ мрад. Фон π^+ -мезонов от распада $K_s^0 \to \pi^+\pi^-$ составляет 0,8% [15].

Точность измерения односпиновой асимметрии зависит в наибольшей степени от точности выравнивания параметров пучка при двух направлениях поляризации. Перед началом физических измерений происходит настройка поляризованного пучка, в ходе которой выравниваются координаты и интенсивности пучка для спина, направленного вверх и вниз соответственно. В ходе сеанса параметры пучка контролируются с помощью системы приема данных, и при необходимости происходит дополнительная настройка пучка.

2. Экспериментальная установка

Установка ФОДС-2 является двухплечевым магнитным спектрометром и создана для исследования процессов образования адронов с большими поперечными импульсами на протонном и π^- -мезонном пучках [17], [4], [16]. Схема установки показана на рис. 1.

Рис. 1. Схема установки ФОДС-2. Цифрами указано расстояние от мишени (в метрах).

Спектрометрический магнит установки расположен на подвижной платформе для изменения угла регистрации частиц. Внутри магнита имеются два канала для прохождения частиц в плечи спектрометра. Остальная часть объема магнита заполнена железом, а в его центральной части — дополнительно вольфрамом для поглощения частиц, прошедших через мишень без взаимодействия.

В каждом плече установки имеются: система из 14 модулей дрейфовых камер (DC) для реконструкции треков [18], два сцинтилляционных триггерных счетчика (S_1, S_2) , адронный калориметр (HCAL) для отбора в триггере частиц с энергией выше заданного порога, спектрометры колец черенковского излучения (СКОЧ) для идентификации частиц [19], [20]. В каналах магнита расположены пороговые черенковские счетчики, которые работают на воздухе при атмосферном давлении и используются совместно с детекторами СКОЧ для улучшения идентификации частиц.

Адронные калориметры состоят из 37 железных пластин толщиной 25 мм, после которых располагаются горизонтально 10 сцинтилляционных полос размерами 1000 x 200 x 5 мм³. Свет из сцинтилляторов собирается спектросмещающими волокнами (полистерол) диаметром 1,2 мм, транспортируется прозрачными волокнами (ПММА) и регистрируется фотоумножителем ФЭУ-110 [22].

Детекторы в каждом плече располагаются на подвижных платформах, что позволяет менять номинальный угол поворота плеч по отношению к оси канала в пределах 0–160 мрад для левого плеча и в пределах 160–320 мрад — для правого плеча.

Система приема данных использует электронику в стандарте СУММА [21]. Управление системой сбора данных производится из VME-корзины, в которой находятся компьютер MVME167 фирмы Motorola, три контроллера ветви СУММА и два модуля памяти, общий объем которых составляет 16 Мб. Три контроллера ветви в стандарте VME V-02 управляют тремя ветвями системы сбора данных. В две ветви входит электроника дрейфовых камер и электроника СКОЧ с левого и правого плеч соответственно. В третью ветвь входит электроника калориметров (для обоих плеч), а также схема контроля и калибровки. Объем физического события, зависящий от конфигурации режима чтения и типа принимаемых событий, изменяется в пределах от 800 байт до 1,6 Кб. Пиковая скорость приема событий, достигнутая в физическом сеансе, составляет 600 событий за сброс при длительности сброса 1,4 с.

Интенсивность и профили пучка перед мишенью измеряются системой ионизационных камер [23]. Абсолютные и относительные точности измерения интенсивности составляли ± 15 и $\pm 3\%$ соответственно.

Измерения X- и Y-координат пучковых частиц производились с помощью сцинтилляционных годоскопов с шагом 3 мм и числом каналов 32 на плоскость. Статистическая точность измерения средних координат пучка за экспозицию достигала 3–5 мкм, что позволило выровнять с указанной точностью средние координаты пучка (для двух знаков поляризации протонного пучка) и минимизировать возможную систематическую ошибку в измерениях односпиновой асимметрии.

3. Измерения

Измерения односпиновой асимметрии (A_N) выполнены при положении левого (если смотреть по пучку) плеча установки под углом 90 мрад по отношению к оси пучка. Поскольку магнитное поле в спектрометрическом магните отклоняет частицы в вертикальном направлении, то точности измерения импульса и угла образования частицы коррелируют незначительно. Однако угловой аксептанс плеча зависит от импульса регистрируемой частицы, что приводит к уменьшению среднего полярного угла θ_{cm} за счет его вертикальной компоненты, от 79 до 40° в с.ц.м. при увеличении импульса. Для увеличения импульсного диапазона принимаемых событий измерения проводились при двух величинах магнитного поля B и B/2, где B — максимальная величина поля. Для уменьшения возможной систематики измерения проводились при двух знаках магнитного поля.

Для выравнивания статистики при различных импульсах измерения при магнитном поле *B* проводились при двух порогах в адронном калориметре (ослабление сигнала 10 и 20 дБ соответственно), а при поле B/2 сигнал, идущий с калориметра на формирователь, не ослаблялся. Основная статистика (13×10^6 событий) была набрана на углеродной мишени, кроме того, $4, 6 \times 10^6$ событий были получены на медной мишени (только при максимальном поле).

Измерения проводились при энергии ускорителя У-70 60 ГэВ со сменой знака поляризации пучка каждые 100 циклов У-70 (длительность цикла составляла 9,74 с) с целью минимизировать влияние дрейфа параметров аппаратуры установки и пучка в ходе измерений.

Данные получены в областях $(0,6 \le p_T \le 2,5 \ \Gamma \ni B/c; 0,0 \le x_F \le 0,7)$ и $(1,1 \le p_T \le 2,5 \ \Gamma \ni B/c; 0,1 \le x_F \le 0,7)$ на углеродной и медной мишенях соответственно.

4. Обработка данных

Первый этап обработки данных состоит в отбраковке сбросов, не соответствующих заданным условиям, куда входят интенсивность пучка, длительность сброса, размеры и положение пучка на мишени и его поляризация, требования к мониторам, контролирующим пучок и принимаемую за сброс информацию. Данный этап проходят 60% сбросов.

4.1. Реконструкция траектории частиц

Реконструкция траектории частицы после магнита осуществляется программой, использующей измеренные в дрейфовых камерах (ДК) координаты, результаты калибровки шкалы время-амплитудных преобразователей, скоростей дрейфа и времен задержки сигналов в ДК. Затем вводится поправка на угол поворота платформы с дрейфовыми камерами в горизонтальной плоскости (до нескольких мрад), которая позволяет совместить X-координату экстраполированной в мишень траектории с X-координатой пучка в центре мишени. Поскольку частица в горизонтальной плоскости не отклоняется магнитным полем, это позволяет учесть возможный поворот платформы с дрейфовыми камерами при реконструкции параметров траектории.

Для реконструкции импульса и углов вылета частицы из мишени, а также Zкоординаты вершины взаимодействия используется программа, которая учитывает измерение координаты пучковой частицы перед мишенью (сцинтилляционным годоскопом и ионизационными камерами) и реконструированную траекторию частицы после магнита.

Для обработки используются лишь те события (79%), в которых множественность в годоскопах лежит в пределах $1 \leq N_X + N_Y \leq 2$ и $1 \leq N_Y \leq 2$, где N_X и N_Y — множественности в годоскопах, которые измеряют горизонтальную (X) и вертикальную (Y) координаты соответственно. Анализ показал, что множественностям более двух соответствуют взаимодействия пучковой частицы в годоскопах. В случае несрабатывания X-плоскости годоскопа ($N_X = 0$) в качестве координаты X используется среднее значение этой координаты за сброс, которое измеряется ионизационной камерой. Для уменьшения фона случайных срабатываний в годоскопах в каждом его канале измеряется время срабатывания и в распределениях по времени выделяется пик истинных совпадений с триггером.

Программа использует табулированную информацию о магнитном поле и рассчитанную ранее по методу Монте-Карло связь между параметрами траектории на входе магнита и после него с импульсом и углами вылета из мишени. Точность измерения импульса частиц слабо зависит от величины импульса и составляет 2–3%.

Реконструкция траектории частицы, а также введение порога на сигнал с адронного калориметра позволяют подавить фон от электромагнитных и адронных ливней, образующихся в детекторах установки. Эффективность реконструкции траектории частиц в левом плече составила 67 и 76% при ослаблении сигнала с калориметра 10 и 20 дБ соответственно.

Для подавления фона от взаимодействий пучка с воздухом, с пучковыми годоскопами и с другим оборудованием вводятся пределы по Z-координате (вдоль пучка) вершины взаимодействия. Отбор событий по Z-координате, импульсу, углам вылета из мишени и множественностям в пучковых годоскопах проходят 44% событий.

4.2. Идентификация частиц

Идентификация частиц ($\pi^{\pm}, K^{\pm}, p, \bar{p}$) осуществляется в каждом плече спектрометром колец черенковского излучения (СКОЧ), который позволяет реконструировать квадрат массы частицы (M^2) [19], [20]. Дополнительно используется информация с порогового черенковского счетчика, которая позволяет подавить доминирующие в области малых масс π^{\pm} -мезоны, что улучшает выделение K^{\pm} -мезонов и антипротонов. В качестве радиатора в СКОЧ используется газ фреон-13 при давлении 8 атм.

Черенковский свет регистрируют 24 годоскопических фотоумножителя (ГФЭУ), позволяющих измерять координаты фотона с точностью порядка ±1 мм.

Пределы по M^2 для идентификации частиц устанавливаются независимо в каждом из 9 интервалов по импульсу, что позволяет оптимизировать их величины. Границы интервалов определяются порогами регистрации π^{\pm} , K^{\pm} и протонов в пороговом черенковском счетчике и в СКОЧ, а при больших импульсах (p > 20 ГэВ/с) они устанавливаются с шагом 5 ГэВ/с.

Для реконструкции масс частиц в спектрометре СКОЧ была разработана новая программа обработки. Она отличается от использовавшейся ранее существенно меньшим числом параметров для описания отдельного ГФЭУ (два вместо 17) и учетом следующих из оптической схемы СКОЧ связей между измеряемыми величинами и параметрами трека частицы в детекторе. Угол черенковского излучения θ может быть выражен через параметры ГФЭУ и параметры трека частицы:

$$tg(\theta) = (t - t_0)/kf - \vartheta_T \cos(\varphi - \varphi_T), \tag{1}$$

где t, t_0, k и φ — время срабатывания, постоянная задержка, удельная задержка и азимутальный угол данного ГФЭУ соответственно; f — фокусное расстояние зеркала СКОЧ (250 см); ϑ_T и φ_T — полярный и азимутальный углы частицы на входе СКОЧ. Параметры t_0 и k в (1) определяются для каждого ГФЭУ программой калибровки.

Рис. 2. Зависимость $V(\theta_Y)$ от угла $\theta_Y - (a)$. Распределение адронов по $M^2 - (b)$.

Квадрат массы частицы выражается через измеряемые величины:

$$M^{2} = p^{2} [n^{2} \cos^{2} \theta - 1 - V(\vartheta_{T} \sin(\varphi - \varphi_{T}))] , \qquad (2)$$

где p — импульс частицы; n = 1,00621 — показатель преломления газа в СКОЧ, а функция $V(\theta_Y)$, общая для всех ГФЭУ данного плеча, определяется при калибровке в виде полинома 10-й степени. Функция $V(\theta_Y)$ в (2) учитывает аберрации оптической системы СКОЧ при больших углах $\theta_Y = \vartheta_T \sin(\varphi - \varphi_T)$ между плоскостью, проходящей через ось СКОЧ и данный ГФЭУ, и траекторией частицы. Зависимость $V(\theta_Y)$ от угла показана на рис. 2а, где кривая есть результат аппроксимации данных полиномом.

Величина удельной задержки варьируется в пределах $15 \le k \le 21$ нс/см. Использование указанных алгоритмов при обработке информации СКОЧ позволяет идентифицировать адроны в диапазоне углов $\vartheta_T \le 110$ мрад и на расстоянии до 32 см от оси СКОЧ, что позволяет идентифицировать до 92% адронов, которые прошли реконструкцию, отбор по вершине взаимодействия и поляризации пучка. Пример распределения по M^2 показан на рис. 26. Расширение угловой и координатной апертуры СКОЧ в данном алгоритме обработки позволило вдвое увеличить число идентифицированных адронов по сравнению с прежней версией программы обработки [20].

4.3. Вычисление анализирующей способности

Анализирующая способность в области фрагментации поляризованного пучка измерялась левым плечом установки. Для определения A_N вычислялись выходы частиц каждого сорта, нормированные на число протонов с поляризацией вверх (N_L^{\uparrow}) и вниз (N_L^{\downarrow}) соответственно. Мертвое время системы приема данных находится из отношения числа блокированных (принятых) и неблокированных триггеров. Анализирующая способность вычислялась по формуле

$$A_N^L = \frac{1}{P_B \cdot \cos\phi} \cdot \frac{N_L^{\uparrow} - N_L^{\downarrow}}{N_L^{\uparrow} + N_L^{\downarrow}} , \qquad (3)$$

где P_B является средней поляризацией протонного пучка (39%); $cos\phi$ — средний косинус азимутального угла образования частиц. Величина $cos\phi$ растет от 0,50 до 0,93 при увеличении импульса частицы, поскольку средний угол отклонения частиц в магните уменьшается с ростом их импульса.

Статистическая ошибка анализирующей способности определялась по формуле

$$\delta A_N^L = \frac{1}{2P_B \cdot \cos\phi} \cdot \sqrt{1/n_L^{\uparrow} + 1/n_L^{\downarrow}} , \qquad (4)$$

где $n_L^{\uparrow}(n_L^{\downarrow})$ — число частиц в левом плече для протонов, поляризованных вверх (\uparrow) или вниз (\downarrow) соответственно.

Анализирующая способность очень чувствительна к разности координат пучковых частиц для двух возможных поляризаций пучка. Средние за сброс координаты измерялись сцинтилляционными годоскопами с точностью порядка ±0.1 мм при числе принимаемых событий порядка 200 за сброс. Средние координаты (X и Y) пучка на расстоянии 1 м перед мишенью отличаются для двух знаков поляризации пучка на величину до 0,5 мм, что приводит к ложной асимметрии величиной до 20%, зависящей от импульса частиц. На рис. 3 показаны распределения X-координат пучка для поляризации вверх (X_{up}) и вниз (X_{dn}) , до выравнивания средних координат (вверху) и после их выравнивания (внизу). Зависимость A_N от p_T показана на рис. 4 для трех случаев разности средних координат $\delta X_{up/dn} = X_{up} - X_{dn}$ (0, +0,5 и -0,5 мм). Указанные выше три значения $\delta X_{up/dn}$ получены введением соответствующих пределов по координате пучка для одной и той же экспозиции.

Рис. 3. Распределения по координате *X* пучка с поляризацией вверх и вниз, до (а) и после (б) выравнивания средних координат в экспозиции.

Рис. 4. Зависимость A_N от p_T для разности средних X-координат пучка с поляризацией вверх и вниз +0.5; 0,0 и -0.5 мм соответственно.

Абсолютная величина ложной асимметрии достигает минимума в области максимума распределения числа реконструированных событий по соответствующим переменным (p_T, x_F) .

Для минимизации ложной асимметрии средние значения X- и Y-координат выравнивались при обработке данных путем введения пределов по этим координатам на уровне сброса. Достигнутая точность выравнивания координат пучка составляла порядка 4 мкм для экспозиций с одинаковыми условиями набора, что позволило снизить вклад ложной поляризации, зависящей от разности координат пучка до уровня 0,2%, что меньше статистической ошибки измерений.

Другие источники систематических ошибок, прежде всего зависимость асимметрии от разности углов падения пучка на мишень при поляризации вверх и вниз, составляют в сумме величину порядка $\epsilon = 4\%$, которая была добавлена квадратично к статистической ошибке. В указанную систематическую ошибку вносят вклад также погрешность системы мониторирования пучка, дрейф аппаратуры и пучка за период, соответствующий заданной поляризации (100 сбросов). Анализирующая способность (A_N) для каждой экспозиции, соответствующей заданным значениям величины магнитного поля, его знака и порога по энергии в калориметре, определялась независимо. Величины A_N , полученные при различных условиях измерений, усреднялись с учетом их статистических ошибок. Как отмечено выше, к статистической ошибке суммарной статистики добавлена квадратично систематическая ошибка $\epsilon = 4\%$ в каждой экспериментальной точке (p_T, x_F) . Число событий после всех критериев отбора составило 19% от числа принятых событий.

5. Результаты

Результаты измерения анализирующей способности A_N , соответствующие номинальному углу поворота левого плеча 90 мрад для инклюзивных реакций

$$p^{\uparrow} + A \to h + X, \tag{5}$$

на углеродной и медной мишенях, показаны на рис. 5–7, и представлены в табл. 1–6 для шести типов заряженных адронов (π^{\pm} , K^{\pm} , p, \bar{p}). В таблицах указан также средний угол образования частиц в с.ц.м. протон-нуклон для реакции на углеродной мишени, который уменьшается от 79 до 40° при увеличении p_T и коррелированной с p_T фейнмановской переменной $x_F = p_Z^{cm}/p_{max}^{cm}$, где p^{cm} — импульс адрона в с.ц.м.

$p_T(\Gamma$ э $\mathrm{B/c})$	x_F	$A_N(C)$	$p_T(\Gamma$ э $\mathrm{B/c})$	x_F	$A_N(\mathrm{Cu})$	$\theta_{cm}(C)$
0.588	0.028	-0.028 ± 0.066				78.74^{o}
0.678	0.076	$+0.025 \pm 0.047$				64.88^{o}
0.947	0.138	-0.050 ± 0.042	1.134	0.131	-0.023 ± 0.044	58.64^{o}
1.190	0.211	-0.041 ± 0.044	1.259	0.212	-0.012 ± 0.045	53.44^{o}
1.321	0.259	-0.043 ± 0.043	1.360	0.264	$+0.034\pm0.045$	50.65^{o}
1.439	0.308	-0.010 ± 0.043	1.470	0.314	$+0.050 \pm 0.045$	48.17^{o}
1.559	0.356	$+0.055 \pm 0.044$	1.590	0.362	$+0.091 \pm 0.047$	46.32^{o}
1.683	0.404	$+0.161\pm0.046$	1.717	0.409	$+0.223\pm0.050$	44.89^{o}
1.825	0.461	$+0.212\pm0.048$	1.864	0.465	$+0.199\pm0.054$	43.43°
2.001	0.534	$+0.260 \pm 0.059$	2.052	0.538	$+0.299 \pm 0.070$	41.86^{o}
2.179	0.607	$+0.201 \pm 0.081$	2.239	0.609	$+0.31\pm0.11$	40.64^{o}
2.458	0.708	$+0.36\pm0.11$	2.484	0.705	$+0.12\pm0.14$	39.70°

<u>Таблица 1.</u> A_N и θ_{cm} для реакций $p^{\uparrow} + C(Cu) \rightarrow \pi^+ + X$ как функция p_T и x_F .

5.1. Анализирующая способность для реакций $p^{\uparrow} + C(Cu) \rightarrow \pi^{\pm} + X$

В табл. 1 и на рис. 5а представлена зависимость A_N от x_F для реакций образования π^+ -мезонов на углеродной и медной мишенях. Зависимость $A_N(x_F)$ характеризуется быстрым ростом A_N до величины порядка 0,3 при $x_F = 0,55$. При $x_F \leq 0, 3 \ A_N$ совместима в пределах ошибок измерений с нулевой величиной. Положительная величина A_N при больших значениях переменной x_F наблюдалась ранее при энергиях 200 ГэВ [5] и 22 ГэВ [3].

Зависимость A_N от x_F для реакций образования π^- -мезонов на углеродной и медной мишенях показана рис. 56 и представлена в табл. 2. Величина A_N имеет для π^- -мезонов отрицательный знак. Она растет по абсолютной величине при увеличении x_F , достигая значения -0,4 при $x_F = 0,55$, в согласии с данными при энергиях 200 ГэВ [5] и 22 ГэВ [3]. Зависимость A_N от массового числа A ядра мишени для π^{\pm} -мезонов незначительная.

$p_T(\Gamma$ э $\mathrm{B/c})$	x_F	$A_N(\mathrm{C})$	$p_T(\Gamma$ э $\mathrm{B/c})$	x_F	$A_N(\mathrm{Cu})$	$\theta_{cm}(C)$
0.674	0.078	$+0.002 \pm 0.050$	1.010	0.047	-0.051 ± 0.087	64.34^{o}
0.947	0.141	-0.005 ± 0.043	1.133	0.132	-0.083 ± 0.045	58.28^{o}
1.192	0.212	-0.030 ± 0.045	1.258	0.214	-0.067 ± 0.047	53.56^{o}
1.315	0.262	-0.067 ± 0.044	1.361	0.265	-0.079 ± 0.046	50.41^{o}
1.434	0.311	-0.060 ± 0.044	1.477	0.315	-0.117 ± 0.047	48.00^{o}
1.557	0.359	-0.117 ± 0.046	1.602	0.363	-0.150 ± 0.050	46.25^{o}
1.685	0.406	-0.116 ± 0.050	1.724	0.412	-0.193 ± 0.057	44.99^{o}
1.840	0.462	-0.202 ± 0.053	1.874	0.468	-0.246 ± 0.061	43.81^{o}
2.014	0.535	-0.332 ± 0.072	2.064	0.541	-0.230 ± 0.087	42.20^{o}
2.216	0.608	-0.47 ± 0.12	2.250	0.611	-0.41 ± 0.14	41.28^{o}
2.514	0.708	-0.47 ± 0.17	2.547	0.704	-0.57 ± 0.20	40.54^{o}
			-			

<u>Таблица 2.</u> A_N и θ_{cm} для реакций $p^{\uparrow} + C(Cu) \rightarrow \pi^- + X$ как функция p_T и x_F .

<u>Таблица 3.</u> A_N и θ_{cm} для реакций $p^{\uparrow} + C(Cu) \rightarrow K^+ + X$ как функция p_T и x_F .

$p_T(\Gamma$ э $\mathrm{B/c})$	x_F	$A_N(\mathrm{C})$	$p_T(\Gamma$ э $\mathrm{B/c})$	x_F	$A_N(\mathrm{Cu})$	$\theta_{cm}(\mathbf{C})$
0.735	0.064	-0.090 ± 0.099				70.23^{o}
0.973	0.123	-0.038 ± 0.053	1.167	0.117	-0.006 ± 0.061	62.44^{o}
1.218	0.198	-0.077 ± 0.059	1.276	0.201	$+0.037 \pm 0.062$	56.13^{o}
1.340	0.251	-0.081 ± 0.055	1.371	0.257	-0.024 ± 0.059	52.28^{o}
1.440	0.304	-0.029 ± 0.055	1.471	0.310	$+0.057 \pm 0.060$	48.93^{o}
1.549	0.354	$+0.026 \pm 0.058$	1.587	0.360	$+0.117 \pm 0.065$	46.67^{o}
1.671	0.404	$+0.125 \pm 0.065$	1.702	0.410	$+0.278 \pm 0.079$	45.05^{o}
1.821	0.461	$+0.210 \pm 0.072$	1.842	0.468	$+0.209 \pm 0.088$	43.73°
1.954	0.528	$+0.32\pm0.13$	2.007	0.530	$+0.15\pm0.17$	41.87^{o}
			•			•

$p_T(\Gamma$ э $\mathrm{B/c})$	x_F	$A_N(\mathbf{C})$	$p_T(\Gamma$ э $\mathrm{B/c})$	x_F	$A_N(\mathrm{Cu})$	$\theta_{cm}(C)$
0.721	0.067	$+0.155 \pm 0.178$				69.39^{o}
0.946	0.127	$+0.025 \pm 0.082$	1.157	0.118	$+0.05\pm0.10$	61.48^{o}
1.200	0.205	$+0.036 \pm 0.092$	1.274	0.205	-0.03 ± 0.11	55.34^{o}
1.335	0.256	-0.045 ± 0.088	1.368	0.261	-0.13 ± 0.11	52.18^{o}
1.457	0.308	$+0.027 \pm 0.092$	1.493	0.312	-0.36 ± 0.12	49.45^{o}
1.563	0.360	-0.15 ± 0.11	1.622	0.363	-0.17 ± 0.16	47.01^{o}
1.700	0.409	-0.10 ± 0.14	1.773	0.411	$+0.04\pm0.19$	45.76^{o}
1.836	0.467	-0.19 ± 0.15	1.860	0.475	-0.14 ± 0.20	44.16^{o}
1.978	0.551	-0.07 ± 0.29	2.069	0.548	$+0.02\pm0.37$	41.57^{o}
2.161	0.620	-0.06 ± 0.45				40.73^{o}

Таблица 4. A_N и θ_{cm} для реакций $p^{\uparrow} + C(Cu) \rightarrow K^- + X$ как функция p_T и x_F .

Таблица 5. A_N и θ_{cm} для реакций $p^{\uparrow} + C(Cu) \rightarrow p + X$ как функция p_T и x_F .

$p_T(\Gamma$ э $\mathrm{B/c})$	x_F	$A_N(C)$	$p_T(\Gamma$ э $\mathrm{B/c})$	x_F	$A_N(\mathrm{Cu})$	$\theta_{cm}(C)$
0.576	-0.107	-0.02 ± 0.12				128.51^{o}
0.705	-0.020	-0.004 ± 0.067	0.963	-0.029	-0.004 ± 0.095	96.93^{o}
1.023	0.085	-0.055 ± 0.046	1.148	0.081	-0.073 ± 0.047	70.41^{o}
1.209	0.163	-0.126 ± 0.045	1.283	0.165	-0.046 ± 0.046	60.00^{o}
1.337	0.219	-0.193 ± 0.043	1.384	0.222	-0.110 ± 0.044	54.95^{o}
1.451	0.272	-0.177 ± 0.042	1.489	0.276	-0.082 ± 0.043	51.24^{o}
1.563	0.322	-0.145 ± 0.042	1.602	0.328	-0.066 ± 0.043	48.58^{o}
1.683	0.372	-0.070 ± 0.042	1.724	0.377	-0.042 ± 0.044	46.57^{o}
1.837	0.430	-0.014 ± 0.042	1.878	0.435	$+0.005 \pm 0.043$	44.93^{o}
2.017	0.503	$+0.078\pm0.044$	2.064	0.507	$+0.086 \pm 0.047$	43.11^{o}
2.190	0.576	$+0.164\pm0.048$	2.242	0.580	$+0.047 \pm 0.053$	41.60^{o}
2.472	0.686	$+0.052 \pm 0.051$	2.479	0.674	-0.007 ± 0.059	40.08^{o}

5.2. Анализирующая способность для реакций $p^{\uparrow} + C(Cu) \rightarrow K^{\pm} + X$

На рис. 6а и в табл. 3 представлена зависимость A_N от x_F для реакций образования K^+ -мезонов в pС- и pСи-соударениях. Как и в случае π^+ -мезонов, A_N положительна и растет при $x_F \ge 0, 3$, достигая величины порядка 0,2 при $x_F = 0, 45$. Подобное поведение связано, возможно, с доминированием валентных поляризованных u-кварков в процессах образования π^+ - и K^+ -мезонов в области фрагментации поляризованного протона.

Величина A_N впервые измерена для K^- -мезонов при энергиях выше 18,5 ГэВ [2]. На рис. 66 и в табл. 4 показана зависимость A_N от x_F . В пределах экспериментальных ошибок A_N согласуется с нулевой величиной, что и ожидается в большинстве моделей, поскольку K^- -мезон не имеет валентных кварков, общих с валентными кварками поляризованного протона. Не наблюдается существенного различия в величине A_N в случае образования K^{\pm} на мишенях С и Сu.

Рис. 5. Зависимости анализирующей способности от x_F для реакций $p^{\uparrow} + C(Cu) \rightarrow \pi^+ + X$ (a) и $p^{\uparrow} + C(Cu) \rightarrow \pi^- + X$ (б).

5.3. Анализирующая способность для реакции $p^{\uparrow} + C(Cu) \rightarrow p + X$

На рис. 7а и в табл. 5 представлена зависимость A_N от x_F для реакций образования протонов в pC- и pCu-соударениях. Зависимость A_N от x_F весьма необычна. A_N осциллирует при увеличении x_F , с переходом от отрицательных значений в интервале $0, 1 \le x_F \le 0, 43$ к положительным величинам при $x_F \ge 0, 43$, с последующим приближением к нулю при $x_F \approx 0, 68$. Немногочисленные данные других экспериментов были получены при более низких энергиях и $p_T \le 1, 2 \ \Gamma$ эB/с, и имеют незначительную асимметрию в указанной области [1], [2]. Данные на медной мишени показывают несколько меньшую асимметрию по сравнению с pC-данными.

5.4. Анализирующая способность для реакции $p^{\uparrow} + C(Cu) \rightarrow \bar{p} + X$

На рис. 76 и в табл. 6 представлена зависимость A_N от p_T для реакций образования антипротонов в pC- и pCu-соударениях. Как и в случае образования K^- мезонов, A_N в образовании антипротонов согласуется, в пределах довольно больших ошибок измерений, с нулевой величиной. Антипротоны не имеют общих с поляризованным протоном кварков, что может быть причиной незначительной асимметрии. Ранее было известно единственное измерение A_N для антипротонов, выполненное на установке ФОДС-2 в $p^{\uparrow}p$ -соударениях в области малых x_F , где асимметрия также близка к нулю [4]. Данные на медной и углеродной мишенях согласуются в пределах экспериментальных неопределенностей.

Рис. 6. Зависимости анализирующей способности от x_F для реакций $p^{\uparrow} + C(Cu) \rightarrow K^+ + X$ (a) и $p^{\uparrow} + C(Cu) \rightarrow K^- + X$ (б).

Таблица 6.	A_N и $ heta_{cm}$ Д	цля реакций p^{\uparrow}	+C(Cu	$(b) \rightarrow \bar{p} + X$	как функция	p_T и x_F .
------------	------------------------	----------------------------	-------	-------------------------------	-------------	-----------------

$p_T(\Gamma$ э $\mathrm{B/c})$	x_F	$A_N(C)$	$p_T(\Gamma$ э $\mathrm{B/c})$	x_F	$A_N(\mathrm{Cu})$	$\theta_{cm}(\mathbf{C})$
1.088	0.128	-0.11 ± 0.22				65.52^{o}
1.225	0.178	$+0.13\pm0.14$	1.162	0.129	-0.01 ± 0.20	60.65^{o}
1.339	0.237	-0.05 ± 0.13	1.279	0.180	$+0.06\pm0.15$	55.59^{o}
1.473	0.294	$+0.01\pm0.15$	1.381	0.241	$+0.11\pm0.17$	52.31^{o}
1.580	0.350	$+0.03\pm0.19$	1.510	0.299	$+0.10\pm0.19$	49.39^{o}
1.693	0.408	$+0.01\pm0.27$	1.608	0.360	$+0.11\pm0.25$	46.99^{o}
1.826	0.469	-0.01 ± 0.31	1.685	0.416	-0.24 ± 0.35	45.17^{o}
2.120	0.547	$+0.22\pm0.38$	1.940	0.471	$+0.01\pm0.42$	45.04^{o}
2.316	0.623	-0.50 ± 0.39	2.278	0.550	-0.36 ± 0.56	43.85^{o}

Рис. 7. Зависимости анализирующей способности от x_F для реакций $p^{\uparrow} + C(Cu) \rightarrow p + X$ (a) и $p^{\uparrow} + C(Cu) \rightarrow \bar{p} + X$ (б).

6. Обсуждение результатов

В результате измерений односпиновой асимметрии заряженных адронов в области больших значений p_T и x_F на установке ФОДС-2 при энергии 40 ГэВ получены данные в неисследованной ранее кинематической области. Так например, впервые была измерена A_N для реакций $p\uparrow + C(Cu) \rightarrow p + X$ в области $p_T \ge 1$ ГэВ/с и $0,1 \le x_F \le 0,7$, где A_N имеет значительную, осциллирующую с ростом x_F величину. Подобные осцилляции наблюдаются в ряде реакций, где измерялась поляризация образующихся гиперонов в соударениях неполяризованных адронов [24]. В области $x_F \le 0,43$ ГэВ/с наблюдается сходство в поведении A_N для протонов и поляризации для Ξ^0 - и Ξ^- -гиперонов, как функций x_F . Величина A_N отрицательная, растет по абсолютной величине (табл. 5), и затем убывает при приближении $x_F \ge 0,43$.

В образовании адронов (K^-, \bar{p}) , не имеющих в своем составе валентных кварков поляризованного протона пучка, не наблюдается заметной односпиновой асимметрии. Указанные выше особенности поведения A_N в образовании протонов, K^- и \bar{p} позволяют предположить, что односпиновая асимметрия достигает значительной величины лишь в области фрагментации поляризованных протонов, поляризованные кварки из которых должны переходить в наблюдаемые адроны. Данный механизм возникновения A_N (в результате фрагментации поляризованных кварков в адроны) качественно согласуется с поведением A_N в реакциях образования заряженных мезонов (π^{\pm} , K^+), которые имеют в своем составе валентные кварки из поляризованного протона.

Данные ФОДС-2 сравниваются на рис. 8а и 86 с данными других экспериментов для реакций $p^{\uparrow} + C \rightarrow \pi^+ + X$ и $p^{\uparrow} + C \rightarrow \pi^- + X$ соответственно. Эксперименты выполнены при различных энергиях и углах образования частиц в с.ц.м. протоннуклонных соударений.

Зависимость A_N для π^+ -мезонов от фейнмановской переменной x_F при эквивалентных энергиях пучка 22 ГэВ [3], 40; 200 [5] и 21,3 ТэВ [7] показана на рис. 8а. Наблюдается рост A_N при увеличении x_F , причем при энергии 22 ГэВ этот рост начинается при больших значениях x_F и происходит быстрее, чем при более высоких энергиях. Заметим, что при эквивалентной энергии 21,3 ТэВ [7] ($\sqrt{s} = 200$ ГэВ) рост A_N начинается при меньших значениях x_F , чем это происходит при более низких энергиях.

Рис. 8. Зависимости A_N от x_F при различных энергиях и углах образования адронов в с.ц.м. для реакций $p\uparrow +C \to \pi^+ + X$ (а) и $p\uparrow +C(Cu) \to \pi^- + X$ (б).

На пороговый характер зависимости A_N от кинематических переменных указывается в работе [25], где высказывается предположение об универсальности величины пороговой энергии адрона E_{cm}^0 в с.ц.м., при которой A_N начинает расти. Универсальность E_{cm}^0 связывается с энергией возбуждения и диссоциации массивного валентного кварка (валлона) на его составляющие. Однако совокупность имеющихся на сегодняшний день данных, включая данные коллайдера RHIC при энергии $\sqrt{s} = 200$ ГэВ в Брукхейвене (BNL) [6], [7], указывает на зависимость E_{cm}^0 от энергии реакции \sqrt{s} и, возможно, угла образования адрона θ_{cm} в с.ц.м. [16].

Зависимость A_N от массового числа A ядра мишени оказалась незначительной и слабо меняющейся при увеличении x_F для большинства адронов, за исключением реакции образования протонов, для которой $\Delta A_N = |A_N(Cu) - A_N(C)| \leq 0, 1$ (для легких и средних ядер). Незначительная зависимость A_N от массового числа Aядра мишени говорит в пользу механизма происхождения односпиновой асимметрии адронов в результате фрагментации валентных поляризованных кварков протона, которая происходит при высоких энергиях за пределами ядра [26]. Перерассеяние кварков в ядре не приводит к их поглощению, а лишь меняет их цвет [27], поэтому кварки приобретают лево-правую асимметрию, близкую к той, что наблюдается в $p^{\uparrow}p$ -соударениях [3].

Заключение

Наблюдается большая односпиновая асимметрия для заряженных адронов (π^{\pm}, K^+, p) в области фрагментации поляризованных протонов $(x_F > 0, 35)$ в том случае, если в их состав входят поляризованные валентные кварки. Адроны, содержащие только морские кварки (K^-, \bar{p}) , не имеют заметной односпиновой асимметрии. Анализирующая способность протонов, впервые измеренная в области $p_T > 1 \ \Gamma$ эB/с, меняет свой знак при увеличении кинематических переменных (p_T, x_F) . Не наблюдается существенной зависимости A_N от массового числа A ядра мишени для большинства адронов, за исключением, возможно, протонов. Указанные выше особенности поведения A_N как функции кинематических переменных, типа адронов и размера ядра качественно согласуются с механизмом возникновения односпиновой асимметрии в процессе фрагментации поляризованных валентных кварков.

Авторы выражают благодарность сотрудникам подразделений ИФВЭ за помощь в подготовке и проведении эксперимента, а также дирекции ИФВЭ за поддержку данной работы.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (грант 05-02-08039).

Список литературы

- [1] Dragoset W.H. et al. Phys. Rev. **D18**, 3939 (1978).
- [2] Saroff S. et al. Phys. Rev. Lett. 64, 995 (1990).
- [3] Allgower C.E. et al. Phys. Rev. **D65**, 092008 (2002).
- [4] Abramov V.V., Dyshkant A.S., Evdokimov V.N. et al. Nucl. Phys. B492, 3 (1997).

- [5] Adams D.L. et al. Phys. Lett. **B264**, 462 (1991).
- [6] Adams J. et al. Phys. Rev. Lett. 92, 171801 (2004).
 Saito N., Int. J. Mod. Phys. A20, 4425 (2005); hep-ex/0505024.
- [7] Videbaek F. BRAHMS coll. Proceedings of the 13th International Workshop on Deep Inelastic Scattering (DIS 05), Madison, Wisco 27 Apr - 1 May 2005; nuclex/0508015; nucl-ex/0601008.
- [8] Kane G., Pumplin J. and Repko W. Phys. Rev. Lett. 41, 1689 (1978).
- [9] Рыскин М.Г. *ЯФ.* **48**, 1114 (1988).
- [10] Liang Zuo-tang and Boros C. Int. J. Mod. Phys. A15, 927 (2000); hep-ph/0001330.
- [11] Troshin S.M., Tyurin N.E. Phys. Rev. **D54**, 838 (1996).
- [12] Sivers D. Phys. Rev. **D43**, 261 (1991).
- [13] Collins J.C. Nucl. Phys. **B396**, 161 (1993).
- [14] Efremov A.V., Korotkian V. and Teryaev O. Phys. Lett. B348, 577 (1995).
 Qui J.W. and Sterman G., Phys. Rev. D59, 014004 (1999).
- [15] Галяев Н.А. и др. Препринт ИФВЭ 92-159. Протвино, 1992.
- [16] Абрамов В.В. *ЯФ.* **68** (2005) 414.
- [17] Абрамов В.В., Балдин Б.Ю., Бузулуцков А.Ф. и др. ПТЭ. **35**, 1006 (1992).
- [18] Алексеев А.В. и др. ПТЭ. 23, 847 (1981).
- [19] Abramov V.V. et al. Nucl. Instrum. Meth. A235, 497 (1985).
- [20] Абрамов В.В. и др. Препринт ИФВЭ 86-148. Протвино, 1986.
- [21] Бушнин Ю.Б. и др. ПТЭ 6, 64, (1975).
- [22] Kryshkin V.I., Ronzhin A.I. Nucl.Instrum.Meth. A247, 583 (1986).
- [23] Дышкант А.С., Суляев Р.М. ПТЭ. 27, 533, (1984).
- [24] Abramov V.V. Preprint IHEP 2001-13, Protvino, 2001; hep-ph/0111128.
- [25] Mochalov V.V., Troshin S.M., Vasiliev A.N. Phys. Rev. D69, 077503 (2004).
- [26] Абрамов В.В. ЯФ. 44 (1986) 1318.
- [27] Копелиович Б.З. и Недермайер Ф. ЯФ. 42 (1985) 797.

Рукопись поступила 22 июня 2006 г.

В.В. Абрамов и др. Односпиновая асимметрия заряженных адронов в рА-соударениях при энергии 40 ГэВ и углах образования 40–79° в с.ц.м.

Оригинал-макет подготовлен с помощью системы ЦАТЕХ.

Редактор Н.В.Ежела.

Подписано к печати16.06.06.Формат 60 × 84/8.Офсетная печать.Печ.л. 2.25.Уч.-изд.л. 1.85.Тираж 90.Заказ 71.Индекс 3649.ЛР т020498 17.04.97.

ГНЦ РФ Институт физики высоких энергий 142284, Протвино Московской обл.

Индекс 3649

ПРЕПРИНТ 2006-9, ИФВЭ, 2006