

государственный научный центр российской федерации ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

> ИФВЭ 2006-20 ОЭФ

В.В. Абрамов, А.А. Волков, П.И. Гончаров, А.Ю. Калинин, А.В. Кораблев, Ю.П. Корнеев, А.В. Кострицкий, А.Н. Криницын, В.И. Крышкин, А.А. Марков, В.В. Талов, Л.К. Турчанович, А.В. Хмельников

ОДНОСПИНОВАЯ АСИММЕТРИЯ ЗАРЯЖЕННЫХ АДРОНОВ С БОЛЬШИМ p_T И ОТРИЦАТЕЛЬНЫМИ $x_{\rm F}$ В рА-СОУДАРЕНИЯХ ПРИ ЭНЕРГИИ 40 ГэВ

Направлено в $Я \Phi$

Протвино 2006

Аннотация

Абрамов В.В. и др. Односпиновая асимметрия заряженных адронов с большими p_T и отрицательными x_F в рА-соударениях при энергии 40 ГэВ: Препринт ИФВЭ 2006-20. – Протвино, 2006. – 10 с., 3 рис., 6 табл., библиогр.: 18.

Измерена поперечная односпиновая асимметрия заряженных адронов ($\pi^{\pm}, K^{\pm}, p, \bar{p}$), образующихся в протон-ядерных соударениях. Измерения выполнены на установке ФОДС-2 с использованием поляризованного протонного пучка ИФВЭ с энергией 40 ГэВ и ядерных мишеней (С и Си). Данные получены в диапазоне углов в с.ц.м. 95° – 112° вблизи центральной области ($-0, 08 < x_{\rm F} < -0, 06, 0, 7 < p_T < 3, 4 \Gamma э B/c$). Зависимость анализирующей способности от массового числа ядра мишени незначительная. Обсуждаются основные результаты измерений односпиновой асимметрии при трех значениях угла регистрации частиц.

Abstract

Abramov V.V. et al. Single-Spin Asymmetry of Charged Hadrons with Large p_T and Negative x_F in pA-Collisions at 40 GeV: IHEP Preprint 2006-20. – Protvino, 2006. – p. 10, figs. 3, tables 6, refs.: 18.

The transverse single-spin asymmetry has been measured for charged hadrons $(\pi^{\pm}, K^{\pm}, p, \bar{p})$, produced in proton-nucleus collisions. The measurements have been performed at FODS-2 experimental setup using IHEP 40 GeV polarized beam and nuclear targets (C and Cu). The data are obtained in c.m. angle range $95^{\circ} - 112^{\circ}$ near the central region $(-0.08 < x_{\rm F} < -0.06, 0.7 < p_T < 3.4 \text{ GeV}/c)$. The dependence of analyzing power off target nuclei mass is not significant. The main results of the single-spin asymmetry measurements at three different detection angles are discussed.

 © Государственный научный центр Российской Федерации
 Институт физики высоких энергий, 2006

Введение

Односпиновые асимметрии (A_N) в адрон-адронных взаимодействиях имеют значительно большую (на порядки) величину, чем можно было бы ожидать согласно предсказаниям теории возмущений КХД [1]. Величина A_N слабо меняется в широком диапазоне изменения энергии реакции в с.ц.м. (\sqrt{s}), от 4,9 ГэВ в экспериментах с фиксированной мишенью [2,3,4,5,6] до 200 ГэВ на адронном коллайдере RHIC в BNL [7,8]. Зависимость от других кинематических переменных, таких, как поперечный импульс (p_T), угол образования частиц в с.ц.м. ($\theta_{\rm cm}$) и фейнмановская переменная $x_{\rm F} = p_Z^{\rm cm}/p_{\rm max}^{\rm cm}$, где $p^{\rm cm}$ – импульс частицы в с.ц.м. налетающего адрона и нуклона мишени, оказывается более существенной и исследована экспериментально недостаточно подробно [9]. Знание детальной зависимости от кинематических переменных, а также от типа адронов A и h в реакциях

$$p^{\uparrow} + A \to h + X \tag{1}$$

может оказаться существенным при построении модели, адекватно описывающей всю совокупность имеющихся данных.

Данная работа завершает цикл исследований, выполненных на установке ФОДС-2 (эксперимент SERPUKHOV-175) в двух сеансах 2003 года в трех кинематических областях, соответствующих углам 90 [10], 160 [11] и 230 мрад между осью плеча и направлением пучка в л.с.к. В настоящей работе представлены только данные для номинального угла плеча 230 мрад, что соответствует углам образования π^{\pm} -мезонов $95^{\circ}-112^{\circ}$ в с.ц.м. налетающего протона с импульсом 40 ГэВ/с и нуклона мишени. В работе приведены результаты измерений односпиновой асимметрии для заряженных адронов $(\pi^{\pm}, K^{\pm}, p, \bar{p})$, образующихся в кинематической области, соответствующей большим поперечным импульсам (p_T) и небольшим, отрицательным значениям фейнмановской переменной $x_{\rm F}$. Данные при отрицательных значениях переменной $x_{\rm F}$ и энергии $\sqrt{s} = 200$ ГэВ указывают на совместимую с нулем величину A_N для заряженных пионов [8]. Модели, учитывающие корреляцию поляризации протона с поперечным импульсом кварка в функциях распределения (механизм Сиверса [12]), предсказывают значительную величину A_N при отрицательных $x_{\rm F}$ и энергиях $\sqrt{s} \leq 20$ ГэВ, в то время как аналогичные корреляции в функциях фрагментации (механизм Коллинза [13]) приводят к незначительной, слабо зависящей от энергии A_N при $x_{\rm F} < 0$ [14]. Таким образом, измерения A_N при отрицательных $x_{\rm F}$ и энергиях $\sqrt{s} \le 20$ ГэВ оказываются чувствительными к механизму происхождения односпиновых асимметрий и это является одной из причин интереса к области фрагментации неполяризованной мишени.

Данные, полученные в настоящем эксперименте при положительных $x_{\rm F}$, указывают на уменьшение $|A_N|$ при уменьшении $x_{\rm F}$ или угла $\theta_{\rm cm}$ [10,11].

Измерения выполнены на двух ядерных мишенях (С и Сu). Использование ядерных мишеней позволяет в 5 – 10 раз увеличить статистику при максимальных значениях $p_T \geq 2,5$ ГэВ/с. Измерения на нескольких ядрах интересны также с точки зрения выяснения возможного влияния ядерной среды на величину поляризационных эффектов [15,11]. В дальнейшем планируется измерение анализирующей способности также на водородной и дейтериевой мишенях.

1. Постановка эксперимента

Измерения выполнены на вертикально поляризованном протонном пучке ускорителя ИФВЭ. Поляризованные протоны образуются при распадах на лету неполяризованных А-гиперонов. Смена знака поляризации пучка проходит в течение 30 с каждые 18 минут. Средний импульс поляризованных протонов составляет 40 ГэВ/*c*, импульсный разброс $\Delta p/p = \pm 4,5\%$, поляризация пучка $P_B = 39 \pm 2\%$, интенсивность до 3×10^7 протонов за сброс. Подробное описание пучка, экспериментальной установки, условий измерений и процедуры обработки можно найти в [9,10].

Анализирующая способность (A_N) измерялась правым (если смотреть по пучку) плечом поворотного магнитного двухплечевого спектрометра ФОДС-2 [16], располагавшимся под углом 230 мрад к оси пучка. Область переменных $x_{\rm F}$ и p_T , захватываемых плечом спектрометра, составляла $-0,25 \le x_{\rm F} \le -0,05$ и $0,6 \le p_T \le 3,6$ ГэВ/c соответственно. Среднее значение $x_{\rm F}$ в каждом бине по p_T слабо зависит от величины поперечного импульса и составляет величину порядка $-0,07 \pm 0,01$.

В каждом плече спектрометра, после магнита, располагаются дрейфовые камеры для реконструкции траектории частицы, два сцинтилляционных счетчика и адронный калориметр для выработки триггера, спектрометр колец черенковского излучения и пороговый черенковский счетчик для идентификации адронов.

Перед ядерной мишенью толщиной 0,1 длины взаимодействия имеются две плоскости сцинтилляционных годоскопов (32 канала с шагом 3 мм на плоскость). Пучковые годоскопы используются для измерения координат поляризованных протонов в каждом событии и средних X- и Y-координат в течение сброса. Интенсивность пучка и его профили перед мишенью измеряются ионизационными камерами. Ионизационные профилометры используются также для настройки поляризованного пучка.

2. Вычисление анализирующей способности

Для уменьшения систематических погрешностей измерения анализирующей способности проводились при двух полярностях и при двух значениях величины поля ($\pm B$ и $\pm B/2$) в анализирующем магните. Анализирующая способность вычислялась по формуле

$$A_N^L = \frac{-1}{P_B \cdot \cos \phi} \cdot \frac{N_R^{\uparrow} - N_R^{\downarrow}}{N_R^{\uparrow} + N_R^{\downarrow}},\tag{2}$$

где P_B является средней поляризацией протонного пучка (39%), $\cos \phi$ – средний азимутальный угол образования частиц, N_R^{\uparrow} и N_R^{\downarrow} – выходы частиц каждого сорта в правом (R) плече, нормированные на число протонов с поляризацией вверх ([↑]) и вниз ([↓]) соответственно.

Анализирующая способность (A_N) для каждой экспозиции, соответствующей заданным значениям величины магнитного поля, его знака и порога по энерговыделению в калориметре, определялась независимо. Полученные величины A_N усреднялись, с учетом их статистических ошибок, отдельно для углеродной и медной мишеней. К статистической ошибке суммарной статистики в каждой точке (p_T, x_F) добавлена квадратично систематическая ошибка $\epsilon = 4\%$, связанная с неопределенностью в углах падения пучка на мишень, с точностью измерения его интенсивности и дрейфом пучка и аппаратуры в процессе измерений.

3. Результаты

Результаты измерения анализирующей способности A_N , соответствующие номинальному положению правого плеча ФОДС-2 под углом 230 мрад для инклюзивных реакций (1) на углеродной и медной мишенях, показаны ниже на рисунках и представлены в таблицах для шести типов заряженных адронов (π^{\pm} , K^{\pm} , p, \bar{p}). В таблицах указан также средний угол образования частиц в с.ц.м. для реакции на углеродной мишени, который уменьшается от 112° до 95° при увеличении p_T .

3.1. Анализируюшая способность для реакций $p^{\uparrow} + \mathrm{C}(\mathrm{Cu}) o \pi^{\pm} + X$

На рис. 1*a* и в табл. 1 представлена зависимость A_N от p_T для реакций образования π^+ мезонов на углеродной и медной мишенях. Имеется указание (на уровне трех стандартных отклонений) на наличие максимума $A_N(p_T)$ при $p_T \approx 1,9$ ГэВ/*c*, где A_N достигает величины порядка 0,14. Вне области $1,4 \leq p_T \leq 2,3$ ГэВ/*c* A_N совместима с нулем в пределах ошибок измерений. Среднее значение A_N в указанной выше области по p_T (вблизи возможного максимума) составляет $0,072 \pm 0,024$ и $0,076 \pm 0,025$ для *p*С- и *p*Си-взаимодействий соответственно.

Зависимость A_N от p_T для реакций образования π^- -мезонов на углеродной и медной мишенях показана рис. 16 и представлена в табл. 2. Величина A_N для π^- -мезонов совместима с нулем во всей исследованной области по p_T . Среднее значение A_N в области 0, $7 \leq p_T \leq 3,4$ составляет 0, $012 \pm 0,018$ и 0, $032 \pm 0,023$ для pС- и pСи-взаимодействий соответственно. Следует отметить, что A_N для π^- -мезонов близка к нулю также при положительных значениях $x_F \leq 0,3$ [10,11], что объясняется, возможно, значительным вкладом u-кварков и глюонов, компенсирующих в этой области отрицательный вклад в A_N d-кварков.

Зависимость A_N от массового числа A ядра мишени для π^{\pm} -мезонов – незначительная.

Рис. 1. Зависимости A_N от p_T для реакций $p^{\uparrow} + C(Cu) \rightarrow \pi^{\pm} + X.$

Таблица 1.	A_N и $ heta_{ m cm}$ для	і реакций $p^{\uparrow} + \mathrm{C}(\mathrm{Cu})$	$\mathfrak{l} (\mathfrak{l}) \to \pi^+ + X$	как функции <i>р</i>	ги хғ

$p_T, \ \Gamma$ э B/c	$x_{ m F}$	$A_N(pC)$	p_T,Γ э B/c	$x_{ m F}$	$A_N(pCu)$	$\theta_{\rm cm}({\rm pC})$
0.707	-0.069	-0.10 ± 0.14				112.20°
0.867	-0.062	$+0.043 \pm 0.043$				106.65°
1.111	-0.063	$+0.058 \pm 0.042$	1.358	-0.103	-0.051 ± 0.048	103.34°
1.426	-0.080	$+0.036 \pm 0.042$	1.554	-0.098	$+0.056 \pm 0.044$	103.20°
1.675	-0.079	$+0.064\pm0.044$	1.784	-0.091	$+0.101 \pm 0.047$	101.16°
1.915	-0.074	$+0.155 \pm 0.049$	2.011	-0.082	$+0.122 \pm 0.054$	99.18°
2.161	-0.069	$+0.036 \pm 0.062$	2.243	-0.074	-0.004 ± 0.069	97.61°
2.415	-0.068	$+0.036 \pm 0.090$	2.477	-0.068	$+0.14\pm0.10$	96.72°
2.684	-0.070	-0.16 ± 0.13	2.740	-0.069	-0.01 ± 0.16	96.22°
2.988	-0.068	$+0.27\pm0.18$	3.060	-0.067	-0.22 ± 0.22	95.44^{o}

$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	p_T, Γ э B/c	$x_{ m F}$	$A_N(pC)$	$p_T,$ Гэ B/c	$x_{ m F}$	$A_N(\mathrm{pCu})$	$\theta_{\rm cm}({\rm pC})$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.707	-0.071	-0.00 ± 0.18				112.63°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.868	-0.061	$+0.037 \pm 0.044$				106.26°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.110	-0.064	$+0.006 \pm 0.043$	1.370	-0.102	$+0.098 \pm 0.054$	103.46°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.426	-0.081	-0.003 ± 0.043	1.543	-0.095	$+0.017 \pm 0.045$	103.27°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.677	-0.081	$+0.008 \pm 0.045$	1.772	-0.088	$+0.048 \pm 0.048$	101.34°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.913	-0.074	$+0.013 \pm 0.051$	2.006	-0.081	$+0.001 \pm 0.058$	99.12°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.163	-0.069	$+0.026 \pm 0.066$	2.246	-0.075	-0.015 ± 0.078	97.54°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.417	-0.069	$+0.026 \pm 0.096$	2.482	-0.068	$+0.10\pm0.12$	96.76°
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.702	-0.075	-0.05 ± 0.14	2.749	-0.070	$+0.06\pm0.18$	96.57°
$3.379 -0.074 -0.03 \pm 0.38$ 95.19°	3.032	-0.078	-0.04 ± 0.17	3.087	-0.072	-0.33 ± 0.22	96.10°
	3.379	-0.074	-0.03 ± 0.38				95.19°

Таблица 2. A_N и $\theta_{\rm cm}$ для реакций $p^{\uparrow} + C({\rm Cu}) \rightarrow \pi^- + X$ как функция p_T и $x_{\rm F}$.

Таблица 3. A_N и $\theta_{\rm cm}$ для реакций $p^{\uparrow} + C({\rm Cu}) \rightarrow K^+ + X$ как функции p_T и $x_{\rm F}$.

$p_T,$ Гэ B/c	$x_{ m F}$	$A_N(pC)$	$p_T,$ Гэ B/c	$x_{ m F}$	$A_N(pCu)$	$\theta_{\rm cm}({\rm pC})$
1.342	-0.131	$+0.19\pm0.18$	1.385	-0.127	$+0.044 \pm 0.081$	111.95°
1.452	-0.107	$+0.127 \pm 0.051$	1.561	-0.123	$+0.119 \pm 0.053$	106.92°
1.685	-0.101	$+0.106\pm0.054$	1.797	-0.113	$+0.037 \pm 0.059$	103.90°
1.913	-0.090	$+0.119 \pm 0.065$	2.021	-0.101	$+0.066 \pm 0.075$	100.99°
2.156	-0.084	$+0.034 \pm 0.091$	2.256	-0.092	$+0.18\pm0.11$	99.14^{o}
2.399	-0.076	-0.13 ± 0.14	2.507	-0.086	-0.10 ± 0.16	97.45°
2.681	-0.076	-0.02 ± 0.19	2.770	-0.087	$+0.35\pm0.24$	96.68°
2.995	-0.078	-0.27 ± 0.21	3.113	-0.085	$+0.22\pm0.27$	96.14°
3.386	-0.085	$+0.01\pm0.55$				95.92°

3.2. Анализируюшая способность для реакций $p^{\uparrow} + C(Cu) \rightarrow K^{\pm} + X$

На рис. 2*a* и в табл. 3 представлена зависимость A_N от p_T для реакций образования K^+ -мезонов в pС- и pСu-соударениях. Как и в случае π^+ -мезонов, A_N положительна при $p_T \leq 2,3$ ГэВ/c, что связано, видимо, со значительным вкладом валентных поляризованных *u*-кварков в процессах образования π^+ - и K^+ -мезонов в этой области. Среднее значение A_N в области $1,3 \leq p_T \leq 3,4$ составляет $0,108 \pm 0,030$ и $0,089 \pm 0,033$ для pС-и pСu-взаимодействий соответственно.

На рисунке 26 и в табл. 4 показана зависимость A_N от p_T для K^- -мезонов. В пределах экспериментальных неопределеностей A_N согласуется с нулевой величиной, что и ожидается в большинстве моделей, поскольку K^- -мезон не имеет валентных кварков, общих с валентными кварками поляризованного протона, а морские кварки поляризованы незначительно [17]. Среднее значение A_N в области $1,3 \leq p_T \leq 3,1$ ГэВ/c составляет 0,028 ± 0,043 и 0,017 ± 0,057 для pС- и pСи-взаимодействий соответственно. Не наблюдается существенного различия в величине A_N для ядер С и Си в случае образования K^{\pm} -мезонов.

Рис. 2. Зависимости A_N от p_T для реакций $p^{\uparrow} + \mathcal{C}(\mathcal{Cu}) \rightarrow K^{\pm} + X.$

Таблица 4.	A_N и $ heta_{ m cm}$	для реакций	$p^{\uparrow} + C$	(Cu)	$\rightarrow K^{-} +$	X как	функции	p_T и $x_{\rm F}$.
------------	-------------------------	-------------	--------------------	------	-----------------------	-------	---------	-----------------------

$p_T,$ Гэ B/c	$x_{ m F}$	$A_N(pC)$	$p_T,$ Гэ B/c	$x_{ m F}$	$A_N(pCu)$	$\theta_{\rm cm}({\rm pC})$
1.288	-0.117	$+0.13\pm0.24$				110.19°
1.453	-0.110	-0.053 ± 0.073	1.575	-0.127	$+0.026 \pm 0.095$	107.04°
1.693	-0.107	$+0.059 \pm 0.079$	1.788	-0.112	$+0.04\pm0.11$	104.35°
1.925	-0.096	$+0.02\pm0.11$	2.006	-0.098	$+0.11\pm0.14$	101.41°
2.178	-0.088	$+0.06\pm0.16$	2.227	-0.086	-0.21 ± 0.20	99.29°
2.377	-0.071	$+0.23\pm0.20$	2.546	-0.096	$+0.10\pm0.34$	96.89°
2.658	-0.074	-0.11 ± 0.26	2.762	-0.084	-0.06 ± 0.41	96.43°
3.003	-0.081	$+0.20\pm0.27$				96.23°

3.3. Анализируюшая способность для реакций $p^{\uparrow} + \mathrm{C}(\mathrm{Cu}) o p(ar{p}) + X$

На рис. 3a и в табл. 5 представлена зависимость A_N от p_T для реакций образования протонов в pС- и pСu-соударениях. В пределах точности измерений A_N не зависит от

 p_T и массового числа ядра мишени и совместима с нулевой величиной. Среднее значение A_N в области $0, 6 \le p_T \le 3, 4 \ \Gamma \ni B/c$ составляет $0,020 \pm 0,016$ и $0,008 \pm 0,018$ для pС-и pСи-взаимодействий соответственно. Заметим, что среднее значение x_F при заданном p_T , ввиду большой массы протона, значительно более смещено в отрицательную область, чем в случае π^{\pm} -мезонов. Измерения на двух мишенях согласуются между собой.

Рис. 3. Зависимости A_N от p_T для реакций $p^{\uparrow} + C(Cu) \rightarrow p(\bar{p}) + X$.

Данные других экспериментов, измеренные, как правило, при $p_T \leq 1 \ \Gamma$ эВ/c либо в области отрицательных $x_{\rm F}$, имеют незначительную величину A_N [2,3,4]. Данные, полученные в области больших $x_{\rm F}$ и p_T , показывают значительную, меняющую свой знак односпиновую асимметрию [10].

На рис. 36 и в табл. 6 представлена зависимость A_N от p_T для реакций образования антипротонов в pC- и pCu-соударениях. Как и в случае образования K^- -мезонов, A_N в образовании антипротонов совместима в пределах довольно значительных ошибок измерений с нулем. Антипротоны не имеют общих с поляризованным протоном кварков, и это может объяснять незначительную величину наблюдаемой односпиновой асимметрии. В других кинематических областях величина A_N для антипротонов также близка к нулю [5,10,11]. Среднее значение A_N в области 2, $1 \leq p_T \leq 3, 3$ ГэB/c составляет $-0, 23 \pm 0, 18$ и 0,09±0,26 для *p*C- и *p*Cu-взаимодействий соответственно. Данные на медной и углеродной мишенях согласуются между собой в пределах экспериментальных неопределенностей.

$p_T,$ Гэ B/c	$x_{ m F}$	$A_N(pC)$	$p_T,$ Гэ B/c	$x_{ m F}$	$A_N(pCu)$	$\theta_{\rm cm}({\rm pC})$
0.672	-0.248	-0.04 ± 0.10				147.68°
0.833	-0.198	$+0.034 \pm 0.043$	1.144	-0.225	$+0.05\pm0.21$	135.51°
1.128	-0.172	$+0.064 \pm 0.042$	1.330	-0.189	-0.029 ± 0.044	123.15°
1.436	-0.166	$+0.034 \pm 0.042$	1.544	-0.174	$+0.026 \pm 0.042$	116.34°
1.717	-0.158	$+0.022 \pm 0.043$	1.817	-0.164	$+0.031 \pm 0.043$	111.51°
2.013	-0.157	-0.012 ± 0.045	2.113	-0.165	$+0.010 \pm 0.046$	108.47°
2.319	-0.161	$+0.010 \pm 0.047$	2.366	-0.159	$+0.018 \pm 0.048$	106.56°
2.404	-0.108	$+0.027 \pm 0.065$	2.489	-0.112	$+0.020 \pm 0.065$	100.89°
2.651	-0.100	-0.050 ± 0.091	2.730	-0.105	-0.015 ± 0.087	99.18°
2.945	-0.095	-0.12 ± 0.13	3.024	-0.097	-0.05 ± 0.13	97.87°
3.352	-0.097	$+0.08\pm0.39$				97.07°

Таблица 5. A_N и $\theta_{\rm cm}$ для реакций $p^{\uparrow} + C({\rm Cu}) \rightarrow p + X$ как функции p_T и $x_{\rm F}$.

Таблица 6. A_N и $\theta_{\rm cm}$ для реакций $p^{\uparrow} + C({\rm Cu}) \rightarrow \bar{p} + X$ как функции p_T и $x_{\rm F}$.

p_T, Γ э B/c	$x_{ m F}$	$A_N(pC)$	p_T, Γ э B/c	$x_{ m F}$	$A_N(pCu)$	$\theta_{\rm cm}({\rm pC})$
2.186	-0.119	-0.10 ± 0.48	2.284	-0.130	-0.74 ± 0.62	101.90°
2.434	-0.123	-0.67 ± 0.36	2.564	-0.136	-0.25 ± 0.45	101.07°
2.748	-0.129	$+0.00\pm0.40$	2.822	-0.136	$+0.45\pm0.53$	100.30°
3.011	-0.112	-0.04 ± 0.33	3.093	-0.116	$+0.78\pm0.52$	98.19^{o}
3.277	-0.091	-0.49 ± 0.77				96.13°

4. Обсуждение результатов

Проведенные на установке ФОДС-2 измерения показали наличие значительной односпиновой асимметрии в образовании поляризованных заряженных адронов при положительных значениях переменной $x_{\rm F}$ [10,11]. В области отрицательных значений $x_{\rm F}$ величина A_N для большинства адронов близка к нулю, и только для π^+ - и K^+ -мезонов A_N имеет небольшую положительную величину. Требуются дальнейшие исследования в области отрицательных значений $x_{\rm F}$ для подтверждения наблюдаемого эффекта. Интересно, что для π^- -мезонов A_N совместима с нулем уже при углах образования частиц $\theta_{\rm cm} \geq 73^{\circ}$ [11], тогда как для π^+ -мезонов $A_N > 0$ при $\theta_{\rm cm} \leq 103^{\circ}$. Таким образом, можно говорить о наличии порогового угла $\theta_{\rm cm}$ для π^- -мезонов, ниже которого A_N отлична от нуля (при энергии пучка 40 ГэВ). Различие в величине предельного угла $\theta_{\rm cm}$ для π^+ -и π^- -мезонов может быть связано с различием свойств u-и d-кварков, поскольку они вносят основной вклад в образование π^+ -и π^- -мезонов соответственно.

Подводя итоги измерений односпиновой асимметрии в сеансе 2003 г. (работы [10,11] и настоящая) отметим здесь наиболее важные результаты.

Для адронов, содержащих валентные кварки, общие с кварками поляризованного пучка (π^{\pm} , K^{+} , протоны), наблюдается значительная, отличная от нуля величина A_N , которая уменьшается по абсолютной величине при увеличении угла образования частиц в с.ц.м.

Для π^+ -мезонов A_N достигает максимума при p_T порядка 1,9 – 2,7 ГэВ/c и имеет тенденцию уменьшения A_N до нулю при более высоких p_T . Положение максимума A_N зависит от угла образования π^+ -мезонов в с.ц.м.

В реакциях образования протонов на ядрах значительная величина A_N наблюдается лишь в области $p_T \ge 1,2$ ГэВ/с и $\theta_{\rm cm} \le 70^{\circ}$. То есть здесь также имеется предельный угол в с.ц.м., выше которого $A_N \approx 0$. Результаты других экспериментов были получены вне этой области и совместимы с нулевой величиной A_N [2,3,4].

Односпиновая асимметрия адронов, в состав которых не входят валентные кварки поляризованного протона пучка, такие, как антипротоны и K^- -мезоны, во всей исследованной области кинематических переменных имеют совместимую с нулем в пределах точности измерений величину A_N , что можно интерпретировать как следствие малой степени поляризации морских кварков в протоне [17]. Уточнение этих измерений на большей статистике может выявить в будущем небольшую односпиновую асимметрию, связанную с поляризацией морских кварков.

Зависимость односпиновых асимметрий от массового числа ядра мишени для большинства типов адронов оказалась незначительной. Только в образовании протонов наблюдается небольшое уменьшение $|A_N|$ при переходе к более тяжелой мишени. Отметим, что поляризация вторичных протонов в соударениях неполяризованных протонов с протонами и ядрами также зависит от типа мишени [18]. Поскольку в настоящем эксперименте и в других экспериментах не было измерений на тяжелых ядрах (Sn, W, Pb), представляет интерес проведение таких исследований при одновременном уменьшении статистической и систематической погрешностей измерений. Это может позволить выявить тонкие эффекты, связанные с процессом образования адронов, и, в частности, с явлением цветовой прозрачности ядер [15].

Заключение

В области небольших отрицательных значений $x_{\rm F}$ наблюдается положительная асимметрия для π^+ - и K^+ -мезонов при $p_T \approx 1,9$ ГэВ/с. Зависимость от массового числа ядра мишени – незначительная. Измерения при трех значениях угла образования адронов, выполненные в настоящем эксперименте, и измерения при различных углах и энергиях, выполненные в других экспериментах, указывают на связь кваркового состава наблюдаемых адронов (наличие в них кварков из поляризованного протона пучка) с величиной и знаком односпиновых эффектов. Для адронов, не имеющих общих с протоном пучка кварков, односпиновая асимметрия совместима с нулем. Влияние размеров ядра мишени на величину односпиновой асимметрии оказалось незначительным для большинства типов адронов. Различие в величине предельных углов образования π^+ - и π^- -мезонов, выше которых $A_N \approx 0$, указывает на возможное различие свойств *u*- и *d*-кварков в сильных взаимодействиях, что более существенно проявляется при энергии настоящего эксперимента, чем при более высоких энергиях.

Авторы выражает благодарность сотрудникам подразделений ИФВЭ за помощь в подготовке и проведении эксперимента, а также дирекции ИФВЭ за поддержку данной

работы. Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант 05-02-08039).

Список литературы

- [1] Kane G., Pumplin J. and Repko W. Phys. Rev. Lett. 41, 1689 (1978).
- [2] Dragoset W.H. et al. Phys. Rev. **D18**, 3939 (1978).
- [3] Saroff S. et al. Phys. Rev. Lett. 64, 995 (1990).
- [4] Allgower C.E. et al. Phys. Rev. **D65**, 092008 (2002).
- [5] Abramov V.V., Dyshkant A.S., Evdokimov V.N. et al. Nucl. Phys. B492, 3 (1997); e-Print Archive: hep-ex/0110011.
- [6] Adams D.L. et al. Phys. Lett. **B264**, 462 (1991).
- [7] Adams J. et al. Phys. Rev. Lett. 92, 171801 (2004).
 Saito N. Int. J. Mod. Phys. A20, 4425 (2005); hep-ex/0505024.
- [8] Videbaek F. BRAHMS coll. Proceedings of the 13th International Workshop on Deep Inelastic Scattering (DIS 05), Madison, Wisco 27 Apr - 1 May 2005; AIP Conf. Proc. 792, 993 (2005); nucl-ex/0508015; nucl-ex/0601008.
- [9] Абрамов В.В. *ЯФ* **68** (2005) 414.
- [10] Абрамов В.В., Волков А.А., Гончаров П.И. и др. Препринт ИФВЭ 2006-09. Протвино, 2006. (Направлено в ЯФ.)
- [11] Абрамов В.В., Волков А.А., Гончаров П.И. и др. Препринт ИФВЭ 2006-18. Протвино, 2006. (Направлено в ЯФ.)
- [12] Sivers D. Phys. Rev. D41, 83 (1990); D43, 261 (1991).
- [13] Collins J.C. Nucl. Phys. **B396**, 161 (1993).
- [14] Anselmino M. et al. Phys. Rev. D73, 014020 (2006).
- [15] Kochelev N.I., Tokarev M.V. Phys. Lett. **B309**, 416 (1993).
- [16] Абрамов В.В., Балдин Б.Ю., Бузулуцков А.Ф. и др. ПТЭ 35, 1006 (1992). Препринт ИФВЭ 91-144. - Протвино, 1991.
- [17] Hirai M., Kumano S., Saito N. Phys. Rev. D74, 014015 (2006).
- [18] Polvado R.O. et al. Phys. Rev. Lett. 41, 1689 (1978).

Рукопись поступила 16 октября 2006 г.

В.В. Абрамов и др. Односпиновая асимметрия заряженных адронов с большими p_T и отрицательными $x_{\rm F}$ в рА-соударениях при энергии 40 ГэВ.

Оригинал-макет подготовлен с помощью системы ${\rm I\!AT}_{\!E\!} X.$

Редактор Л.Ф. Васильева.

Подписано к печати17.10.06.Формат 60 × 84/8.Офсетная печать.Печ.л. 1.5.Уч.-изд.л. 1.2.Тираж 90.Заказ 98.Индекс 3649.ЛР т020498 17.04.97.

ГНЦ РФ Институт физики высоких энергий 142284, Протвино Московской обл.

Индекс 3649

 $\Pi P Е П P И H T 2006-20, И Ф В Э, 2006$