

государственный научный центр российской федерации ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

> ИФВЭ 2006-23 ОЭФ

В.В. Абрамов

О ЗАВИСИМОСТИ ОДНОСПИНОВОЙ АСИММЕТРИИ ЗАРЯЖЕННЫХ ПИОНОВ ОТ КИНЕМАТИЧЕСКИХ ПЕРЕМЕННЫХ

Направлено в ЯФ

Протвино 2006

Аннотация

Абрамов В.В. О зависимости односпиновой асимметрии заряженных пионов от кинематических переменных: Препринт ИФВЭ 2006-23. – Протвино, 2006. – 9 с., 8 рис., 2 табл., библиогр.: 21.

Работа посвящена феноменологическому анализу зависимости экспериментальных данных по односпиновой асимметрии (A_N) заряженных пионов, образующихся в *pp*- и *pA*-соударениях, от кинематических переменных. Показано, что пороговая энергия пионов в с.ц.м. $(E_0^{\rm cm})$, выше которой $|A_N| > 0$, зависит от энергии реакции \sqrt{s} и угла образования частиц $\theta^{\rm cm}$. Зависимость односпиновой асимметрии от кинематических переменных в области $0, 7 < p_T < 2, 7$ ГэВ/*c* и $E^{\rm cm} > E_0^{\rm cm}$ имеет скейлинговое поведение. При умеренных и низких энергиях оказывается существенной зависимость A_N от \sqrt{s} . Получены формулы, позволяющие предсказать поведение A_N для заряженных пионов в пироком диапазоне кинематических переменных.

Abstract

Abramov V.V. About the Dependence of Single-Spin Asymmetry of Charged Pions on Kinematical Variables: IHEP Preprint 2006-23. – Protvino, 2006. – p. 9, figs. 8, tables 2, refs.: 21.

The work is dedicated to the phenomenological analysis of the dependence of experimental single-spin asymmetry data (A_N) of charged pions, produced in pp- and pA-collisions, on kinematical variables. It is shown, that the threshold pion energy in c.m. $(E_0^{\rm cm})$, above which the $|A_N| > 0$, depends on reaction energy \sqrt{s} and particle production angle $\theta^{\rm cm}$. The single-spin asymmetry dependence on kinematical variables in the region $0.7 < p_T < 2.7 \text{ GeV}/c$ and $E^{\rm cm} > E_0^{\rm cm}$ has a scaling behavior. At moderate and low energies the dependence of A_N on \sqrt{s} is essential. The formulas are obtained, which allow to predict the A_N behavior for charged pions in a wide range of kinematical variables.

> © Государственный научный центр Российской Федерации
> Институт физики высоких энергий, 2006

Введение

Измерения односпиновой асимметрии в адрон-адронных и адрон-ядерных соударениях показали наличие пороговой величины кинематических переменных, выше которых величина A_N существенно отлична от нуля [2,3,4,5,6,7,8,9,10]. В частности, зависимость A_N от кинематических переменных характеризуется наличием пороговой величины энергии адрона ($E_0^{\rm cm}$) в с.ц.м., выше которой A_N отлична от нуля. В работе [11] предполагается, что величина $E_0^{\rm cm}$ является универсальной величиной, не зависящей от энергии и других кинематических переменных. Данное утверждение не является очевидным, поскольку, как показано в работах [12,13,14], имеет место приближенный скейлинг для односпиновой асимметрии в реакциях

$$A^{\uparrow} + B \to h + X,\tag{1}$$

$$A_N = F(p_T)G(x_A, x_B), \tag{2}$$

$$x_A = (x_R + x_F)/2 \approx E^{\rm cm} (1 + \cos\theta_{\rm cm})/\sqrt{s}, \qquad (3)$$

$$x_B = (x_R - x_F)/2 \approx E^{\rm cm} (1 - \cos\theta_{\rm cm})/\sqrt{s}, \qquad (4)$$

где $x_R = p^{\rm cm}/p_{\rm max}^{\rm cm}$ – радиальная скейлинговая переменная, равная отношению импульса частицы к его максимально возможной величине в с.ц.м.

Наличие скейлинга (2) означает, что пороговая энергия $E_0^{\rm cm}$ должна линейно расти при увеличении энергии реакции \sqrt{s} в с.ц.м. Сравнение данных, полученных при разных углах образования адронов в с.ц.м. ($\theta^{\rm cm}$), указывает также на зависимость $E_0^{\rm cm}$ от $\theta^{\rm cm}$ [8]. В разделе 1 мы рассмотрим более подробно зависимость $E_0^{\rm cm}$ от $\theta^{\rm cm}$ и \sqrt{s} .

Скейлинговое поведение (2) становится существенно проще в области фрагментации поляризованного протона $x_{\rm F} > 0$ и $0, 7 < p_T < 2, 7$ ГэВ/с, где зависимость от поперечного импульса незначительна, а переменная $x_B \approx 0$. В разделе 2 рассмотрено более подробно скейлинговое поведение A_N и зависящие от \sqrt{s} поправки к нему. В настоящей работе анализируются лишь односпиновые асимметрии для заряженных пионов, образующихся в *pp*- и *pA*-соударениях. Другие реакции, в том числе реакции образования нейтральных пионов, будут рассмотрены в последующих работах. Данные, полученные в *pp*- и *pA*соударениях, аппроксимируются единой зависимостью, поскольку, как показано в [4,8,9, 10], зависимость от массового числа ядра мишени для рассматриваемых реакций оказалась несущественной. Результаты настоящей работы подтверждают возможность совместного анализа данных для pp- и pA-соударений. Физическая интерпретация зависимости A_N от кинематических переменных будет рассмотрена в последующих работах.

1. Зависимость пороговой энергии $E_0^{\rm cm}$ от кинематических переменных

Односпиновая асимметрия является в общем случае функцией трех независимых кинематических переменных, например \sqrt{s} , p_T и x_F . В случае наличия дополнительной симметрии либо связи между переменными A_N может зависеть от меньшего числа переменных. Зависимость A_N от энергии частицы $E^{\rm cm}$ в с.ц.м. для реакций $pp(A) \to \pi^+ X$ показана на рис. 1 для нескольких энергий \sqrt{s} и углов образования частиц $\theta^{\rm cm}$ [2,4,6,9]. Угол $\theta^{\rm cm}$ отсчитывается в с.ц.м. от направления движения поляризованных частиц. Энергия реакции \sqrt{s} в с.ц.м. в *pA*-соударениях вычисляется для системы, состоящей из налетающего протона и покоящегося нуклона мишени. Данные работы [6] при энергии $\sqrt{s} = 19, 4$ ГэВ показаны для $p_T > 0,7$ ГэВ/c (1) и $p_T < 0,7$ ГэВ/c (2) соответственно. На рис. 1 показаны также линейные аппроксимации зависимостей A_N от энергии частицы $E^{\rm cm}$ для различных экспериментов в виде

$$A_N = b_0 (E^{\rm cm} - E_0^{\rm cm}), \tag{5}$$

где параметры b_0 и $E_0^{\rm cm}$ определялись в результате аппроксимации данных.

Рис. 1. Зависимость A_N от E^{cm} для реакций $p \uparrow p(A) \to \pi^+ X$. Вависимость A_N от E^{cm} для реакций $p \uparrow p(A) \to \pi^- X$.

Из рис. 1 видно, что пороговая энергия $E_0^{\rm cm}$ увеличивается при росте энергии \sqrt{s} , а наклон b_0 – уменьшается. Зависимость от угла образования частиц иная – $E_0^{\rm cm}$ уменьшается, а b_0 увеличивается при росте $\theta^{\rm cm}$. Более полная информация о зависимости

параметров $E_0^{\rm cm}$ и b_0 от \sqrt{s} и $\theta^{\rm cm}$ представлена в табл. 1. Как и ожидается в общем случае, дополнительная связь $A_N = 0$ приводит к зависимости b_0 и $E_0^{\rm cm}$ от двух переменных, в данном случае от \sqrt{s} и $\theta^{\rm cm}$.

\sqrt{s} , ГэВ	$\theta^{\rm cm}$, град.	E_0^{cm}	b_0	Данные
4.89	13.0	1.422 ± 0.052	0.803 ± 0.146	pp [2]
5.18	76.0	1.185 ± 0.054	0.340 ± 0.087	pp [3]
6.05	85.3	1.265 ± 0.063	0.300 ± 0.086	pp [3]
6.55	20.0	1.583 ± 0.022	0.536 ± 0.038	pC [4]
6.55	22.0	1.542 ± 0.032	0.456 ± 0.040	pp [4]
8.77	104.5	0.570 ± 0.65	0.0684 ± 0.045	pA [8]
8.77	94.0	0.70 ± 0.29	0.0709 ± 0.0197	pA [9]
8.77	51.0	1.738 ± 0.075	0.219 ± 0.028	pA [10]
19.43	15.0	2.225 ± 0.41	0.0903 ± 0.020	pp [6]
19.43	5.88	2.416 ± 0.20	0.0417 ± 0.0084	pp [6]

Таблица 1. b_0 и $E_0^{\rm cm}$ для реакций $p^{\uparrow} p(\mathbf{A}) \to \pi^+ X$ как функции \sqrt{s} и $\theta^{\rm cm}$.

Зависимость A_N от энергии частицы $E^{\rm cm}$ в с.ц.м. для реакций $pp(A) \to \pi^- X$ показана на рис. 2 для нескольких энергий \sqrt{s} и углов образования частиц $\theta^{\rm cm}$ [2,4,6,8]. Более полная информация о зависимости параметров $E_0^{\rm cm}$ и b_0 от \sqrt{s} и $\theta^{\rm cm}$ для π^- -мезонов представлена в табл. 2.

Таблица 2. b_0 и $E_0^{\rm cm}$ для реакций $p^{\uparrow} p(\mathbf{A}) \rightarrow \pi^- X$ как функции \sqrt{s} и $\theta^{\rm cm}$.

\sqrt{s} , ГэВ	$\theta^{\rm cm}$, град.	$E_0^{\rm cm}$	b_0	Данные
4.89	27.0	1.694 ± 0.14	-0.408 ± 0.037	pp [2]
5.18	76.0	1.245 ± 0.14	$+0.208 \pm 0.132$	pp [3]
6.05	85.4	1.109 ± 0.19	$+0.115 \pm 0.108$	pp [3]
6.55	22.0	1.872 ± 0.041	-0.857 ± 0.149	pC [4]
6.55	22.0	1.818 ± 0.039	-0.632 ± 0.108	pp [4]
8.77	55.5	1.51 ± 0.33	-0.187 ± 0.066	pA [8]
19.43	15.0	3.025 ± 0.49	-0.725 ± 0.023	pp [6]

На рис. 3 показана зависимость величины $E_0^{\rm cm}$ для реакций $pp(A) \to \pi^+ X$ от функции известных в каждом конкретном эксперименте переменных \sqrt{s} и $\theta^{\rm cm}$:

$$U(\sqrt{s}, \theta^{\rm cm}) = E_0 + \sqrt{s} \left[f_0 - a_0 \, {\rm tg}^2(\theta^{\rm cm}/2) \right],\tag{6}$$

где параметры E_0 , f_0 и a_0 в правой части (6) определяются из аппроксимации $E_0^{\rm cm}$ выражением (6) для экспериментальных данных с установки ФОДС-2 [8,9] и из других экспериментов при различных энергиях и углах образования частиц [2,3,4,6,7]. Выбор вида функции (6) мотивирован моделью эффективного цветного поля (ЭЦП), которая является результатом развития идей скейлинга для односпиновых процессов [12,13,14]. В модели предполагается, что односпиновая асимметрия возникает в результате взаимодействия хромомагнитного дипольного момента составляющего кварка с неоднородным эффективным цветным полем в области взаимодействия адронов [15]. Подробное изложение данной модели выходит за рамки настоящей работы и будет представлено в последующих публикациях. Отметим здесь лишь важное для получения соотношения (6) предположение модели о наличии у кварков динамической массы $M_Q \sim 0,36 \ \Gamma \Rightarrow B/c^2$ и значительного отрицательного аномального хромомагнитного момента [16,17]. В контексте настоящей работы формулу (6) можно рассматривать как чисто эмпирическую зависимость, полученную из анализа существующих данных.

Рис. 3. Зависимость $E_0^{\rm cm}$ от $U(\sqrt{s}, \theta^{\rm cm})$ для Рис. 4. Зависимость $E_0^{\rm cm}$ от $U(\sqrt{s}, \theta^{\rm cm})$ для реакций $p \uparrow p(A) \to \pi^+ X$. реакций $p \uparrow p(A) \to \pi^- X$.

Из рис. З видно, что пороговая энергия $E_0^{\rm cm}$ не является константой и хорошо аппроксимируется функцией (6), зависящей от $\theta^{\rm cm}$ и \sqrt{s} . Для π^+ -мезонов получены следующие значения параметров в (6): $E_0 = 1,126 \pm 0,091$, $f_0 = 0,073 \pm 0,013$ и $a_0 = 0,073 \pm 0,014$. Величины $E_0^{\rm cm}$ в каждом из экспериментов получены в результате линейной аппроксимации зависимости A_N от энергии регистрируемого адрона h в с.ц.м. реакции (1), как показано на рис. 1 и 2.

На рис. 3 показаны три точки для эксперимента ФОДС-2 ($\sqrt{s} = 8,77$ ГэВ) при углах $\theta^{\rm cm}$ 51°(1) [8], 94°(2) [9] и 104°(3) [10] соответственно. Данные для двух мишеней (С и Cu) были объединены. Две точки для эксперимента Е704 ($\sqrt{s} = 19, 4$ ГэВ [6]) соответствуют данным с $p_T \ge 0,7$ ГэВ/c (1) и $p_T \le 0,7$ ГэВ/c (2). Для учета систематических погрешностей в оценках $E_0^{\rm cm}$ и $\theta^{\rm cm}$ к полученной ошибке величины $E_0^{\rm cm}$ добавлена квадратично величина 0,05 ГэВ, что позволило получить величину $\chi^2 = 7,11$ при 7 степенях свободы (dof). Если величина $\chi^2/dof > 1$, ошибки для каждого эксперимента увеличиваются, для чего к ним квадратично добавляется величина δ , такая, что после увеличения

ошибок $\chi^2/dof \approx 1$. Применяемая процедура служит для учета недооцененных ошибок в экспериментальных данных при их совместном анализе [18].

Зависимость величины $E_0^{\rm cm}$ для реакций $pp(A) \to \pi^- X$ от функции $U(\sqrt{s}, \theta^{\rm cm})$ показана на рис. 4. Значения параметров в (6) для π^- -мезонов получены следующие: $E_0 = 1, 31 \pm 0, 21, f_0 = 0,088 \pm 0,033$ и $a_0 = 0,155 \pm 0,031, \chi^2/dof = 1,11/4.$

Таким образом, экспериментально подтверждается соотношение (6) и, следовательно, зависимость $E_{\rm cm}^0$ от $\theta^{\rm cm}$ и \sqrt{s} как для π^+ -, так и для π^- -мезонов. Значение пороговой энергии $E_{\rm cm}^0$ при энергии коллайдера RHIC ($\sqrt{s} = 200$ ГэВ) [7] и малых углах $\theta^{\rm cm}$ может составить величину порядка 17 ГэВ. С увеличением угла регистрации частиц величина $E_0^{\rm cm}$ уменьшается благодаря отрицательному знаку перед a_0 в (6).

2. Зависимость односпиновой асимметрии заряженных пионов от кинематических переменных

Зависимость A_N от кинематических переменных (2) значительно упрощается для умеренно больших поперечных импульсов $0,7 \le p_T \le 2,7$ ГэВ/c в области фрагментации поляризованных протонов [12,14]. Зависимостью A_N от p_T и x_B в этом случае можно в первом приближении пренебречь. Однако при этом следует учитывать следующие из модели ЭЦП поправки к величине A_N и пороговую зависимость (5) от $E_0^{\rm cm}$:

$$A_N = \frac{v_0 [1 - \cos(\omega_A y_A)]}{\omega_A y_A (1 - E_R / \sqrt{s})},$$
(7)

$$y_A = x_A - (E_0/\sqrt{s} + f_0)(1 + \cos\theta^{\rm cm}) + a_0(1 - \cos\theta^{\rm cm}), \tag{8}$$

где параметры $v_0, E_R, \omega_A, E_0, f_0$ и a_0 определяются в результате аппроксимации данных.

На рис. 5 показана зависимость величины $(1 - E_R/\sqrt{s})A_N$ от y_A для π^+ -мезонов [2,3,4,6,7,8,9] в передней области $\theta^{\rm cm} \leq 90^{\circ}$. Для определения параметров в (7) к выборке, использованной для аппроксимации, применялся дополнительный критерий отбора $E_0^{\rm cm} \geq U(\sqrt{s}, \theta^{\rm cm}) - 0, 2$ ГэВ, выделяющий события вблизи и выше порога. Заметим, что на рис. 5 показаны и те точки, которые не удовлетворяют указанному выше дополнительному условию отбора.

Значения параметров в (7) для π^+ -мезонов получены следующие: $v_0 = 0,55 \pm 0,18$, $E_R = 1,92 \pm 0,30$ ГэВ, $\omega_A = 2,78 \pm 1,06$, $\chi^2/dof = 85,25/93$ при добавлении квадратично дополнительной ошибки 0,03 к индивидуальным ошибкам A_N . Добавление ошибки 0,03 позволяет учесть относительную систематику данных различных экспериментов. Значения параметров E_0 , f_0 и a_0 использовались те же, что и на рис. 3.

Зависимость величины $(1 - E_R/\sqrt{s})A_N$ от y_A для π^- -мезонов показана на рис. 6, где представлены, в отличие от случая π^+ -мезонов, данные также и в области отрицательных значений $x_{\rm F}$. Для данных при энергии $\sqrt{s} = 4,89$ ГэВ [2] в обоих случаях отбираются лишь точки с $p_T \ge 0,7$ ГэВ/c, что является условием выполнения скейлинга при низких энергиях [12].

Для определения параметров в (7) к выборке, использованной для аппроксимации, применялись дополнительные критерии отбора: $E_0^{\rm cm} \ge U(\sqrt{s}, \theta^{\rm cm}), \theta^{\rm cm} \le 73^{\circ}, \sqrt{s} \ge 5$ ГэВ. Данные критерии отбора выделяют те точки, которые на рис. 6 образуют подмножество с отрицательными значениями A_N , тогда как все остальные точки имеют близкие к нулю значения A_N . Точки, имеющие положительную величину y_A и $A_N \approx 0$, соответствуют большим углам образования $\theta^{\rm cm} \geq 73^{\rm o}$ [8,9,3]. Таким образом, для π^- -мезонов наблюдается пороговый характер зависимости A_N от угла $\theta^{\rm cm}$. Пороговый эффект для π^- -мезонов имеет аналогию с эффектом образования частиц вблизи определенных углов, поиску которого посвящен ряд работ [19]. Отметим, что для π^+ -мезонов при энергии $\sqrt{s} =$ 8,77 ГэВ пороговый угол составляет величину порядка 103°. Величину порогового угла можно оценить из выражения (6), поскольку $E_0^{cm} \geq m_{\pi}$ и, следовательно,

$$\operatorname{tg}^{2}(\theta^{\mathrm{cm}}/2) \leq \frac{f_{0}}{a_{0}} + \frac{E_{0} - m_{\pi}}{a_{0}\sqrt{s}},$$
(9)

где m_{π} – масса π -мезона. При асимптотически высоких энергиях $\sqrt{s} \gg E_0$ получаем минимальное значение порогового угла $\theta^{\rm cm} \approx 2 \arctan(\sqrt{f_0/a_0})$, что дает $\theta^{\rm cm} = 90^{\circ}$ для π^+ -и $\theta^{\rm cm} = 74^{\circ}$ для π^- -мезона соответственно.

Точки на рис. 6, имеющие отрицательную величину y_A и $A_N \approx 0$, лежат ниже порога по энергии реакции ($\sqrt{s} \leq 5 \ \Gamma$ эВ) либо по энергии адрона в с.ц.м. ($E_0^{\rm cm} \leq U(\sqrt{s}, \theta^{\rm cm})$). Наличие двух групп точек (с $A_N \approx 0$ и $A_N < 0$) на рис. 6 может указывать на существование двух различных механизмов образования адронов.

Рис. 5. Зависимость $(1 - E_R/\sqrt{s})A_N$ от y_A Рис. 6. Зависимость $(1 - E_R/\sqrt{s})A_N$ от y_A для реакций $p \uparrow A \to \pi^+ X$. Для реакций $p \uparrow A \to \pi^- X$.

Значения параметров в (7) для π^- -мезонов получены следующие: $v_0 = -0, 41 \pm 0, 05$, $E_R = 4,98 \pm 0,29$ ГэВ, $\chi^2/dof = 18,59/38$ при добавлении квадратично дополнительной ошибки 0,03 к индивидуальным ошибкам A_N . В отличие от случая π^+ -мезонов значения трех других параметров $E_0 = 1,71\pm0,11, f_0 = 0,059\pm0,014$ и $a_0 = 0,28\pm0,08$ также были свободными при аппроксимации. Параметр $\omega_A = 2,553$ фиксировался из модели ЭЦП, поскольку точности данных для его определения недостаточно. Как видно из рис. 5 и 6, данные в широком диапазоне энергий реакции и углов образования π^{\pm} -мезонов

описываются функциями одной безразмерной переменной y_A , то есть имеет место явление скейлинга (масштабной инвариантности). Следует отметить, что ранее масштабная инвариантность была экспериментально открыта для инклюзивных сечений образования частиц [20].

Выражение (7) позволяет сделать предсказания для односпиновой асимметрии заряженных пионов в еще неисследованных областях, например при энергии коллайдера RHIC либо при более низких энергиях для различных углов образования адронов. Проверка этих предсказаний в различных кинематических областях и при разных энергиях поможет понять механизм происхождения односпиновых асимметрий. Модели, претендующие на объяснение значительной односпиновой асимметрии, должны воспроизводить скейлинг (7). Наличие приближенного скейлинга (7) позволяет использовать реакции образования π^{\pm} -мезонов для создания поляриметров.

Рис. 7. Зависимость 1/C от $\sqrt{s_0/s}$ для реакций $p \uparrow \mathbf{A} \to \pi^+ X$. Зависимость -1/C от $\sqrt{s_0/s}$ для реакций $p \uparrow \mathbf{A} \to \pi^- X$.

Интересной особенностью выражения (7) является наличие зависимости $A_N \propto 1/(1 - E_R/\sqrt{s})$, которая в рамках модели ЭЦП связана с зависимостью частоты прецессии спина составляющего кварка в хромомагнитном поле от его энергии [21]. Для того, чтобы убедиться в наличии этой зависимости данных от энергии \sqrt{s} , вместо отношения $v_0/(1 - E_R/\sqrt{s})$ в (7) использовался свободный параметр нормировки C, величина которого определялась независимо для каждого конкретного эксперимента. Остальные параметры в (7) были зафиксированы на тех значениях, которые были получены выше для данных, показанных на рис. 5 и 6 для π^+ - и π^- -мезонов соответственно. Полученные значения обратной величины параметра C показаны на рис. 7 и 8 как функции переменной $\sqrt{s_0/s}$, где $s_0 = 100$ ГэВ². На рис. 7 и 8 показаны также результаты аппроксимации линейной функцией. Из рис. 7 и 8 видно, что величина 1/C является, в пределах точности измерений, линейной убывающей функцией переменной $\sqrt{s_0/s}$, что и ожидается согласно (7). Как следует из рис. 7 и 8, зависимость нормировки A_N от энергии более сильная для π^- -мезонов. Значения параметра E_R , полученные в результате линейной аппроксимации данных, показанных на рис. 7 и 8, равны 1,91 ± 0,29 ГэВ $(\chi^2/dof = 0,70)$ и 4,89 ± 0,32 ГэВ $(\chi^2/dof = 0,06)$ для π^+ - и π^- -мезонов соответственно. Отметим, что аппроксимация данных на рис. 7 и 8 не зависящей от энергии постоянной дает соответственно $\chi^2/dof = 4,91$ (π^+) и $\chi^2/dof = 17,27$ (π^-), что позволяет отвергнуть предположение о независимости A_N от энергии.

Заключение

Проведен анализ зависимости экспериментальных данных по односпиновой асимметрии заряженных пионов, образующихся в pp- и pA-соударениях, от кинематических переменных. Показано, что пороговая энергия заряженных пионов в с.ц.м. ($E_0^{\rm cm}$), выше которой $|A_N| > 0$, зависит от энергии реакции \sqrt{s} и угла образования частиц $\theta^{\rm cm}$. Зависимость односпиновой асимметрии заряженных пионов от кинематических переменных в области $0,7 < p_T < 2,7$ ГэВ/с и $E^{\rm cm} > E_0^{\rm cm}$ имеет скейлинговое поведение. При умеренных и низких энергиях оказывается существенной зависимость A_N от \sqrt{s} . Получены формулы, позволяющие предсказать поведение A_N для заряженных пионов в различных кинематических областях при умеренно больших поперечных импульсах. Использование скейлинговых переменных полезно учитывать при разработке поляриметров пучков. Модели, объясняющие происхождение односпиновой асимметрии, должны учитывать изложенные выше экспериментальные закономерности в зависимости A_N от кинематических переменных.

Автор выражает благодарность дирекции ИФВЭ за поддержку данной работы, а также А.Н. Васильеву, Н.И. Кочелеву, А.К. Лиходеду, В.В. Мочалову, В.А. Петрову и С.М. Трошину за полезные замечания.

Список литературы

- [1] Kane G., Pumplin J. and Repko W. Phys. Rev. Lett. 41, 1689 (1978).
- [2] Dragoset W.H. et al. Phys. Rev. **D18**, 3939 (1978).
- [3] Saroff S. et al. Phys. Rev. Lett. 64, 995 (1990).
- [4] Allgower C.E. et al. Phys. Rev. D65, 092008 (2002).
- [5] Abramov V.V., Dyshkant A.S., Evdokimov V.N. et al. Nucl. Phys. B492, 3 (1997); e-Print Archive: hep-ex/0110011.
- [6] Adams D.L. et al. Phys. Lett. **B264**, 462 (1991).
- [7] Videbaek F. BRAHMS coll., Proceedings of the 13th International Workshop on Deep Inelastic Scattering (DIS 05), Madison, Wisco 27 Apr - 1 May 2005; nucl-ex/0508015; nucl-ex/0601008.
- [8] Абрамов В.В., Волков А.А., Гончаров П.И. и др. Препринт ИФВЭ 2006-09. Протвино, 2006. (Направлено в ЯФ.)

- [9] Абрамов В.В., Волков А.А., Гончаров П.И. и др. Препринт ИФВЭ 2006-18. Протвино, 2006. (Направлено в ЯФ.)
- [10] Абрамов В.В., Волков А.А., Гончаров П.И. и др. Препринт ИФВЭ 2006-20. Протвино, 2006. (Направлено в ЯФ.)
- [11] Mochalov V.V., Troshin S.M., Vasiliev A.N. Phys. Rev. D69, 077503 (2004).
- [12] Abramov V.V. Eur. Phys. J. C14, 427 (2000); hep-ph/0110152.
- [13] Abramov V.V. Preprint IHEP 2001-13. Protvino, 2001; hep-ph/0111128.
- [14] Абрамов В.В. *ЯФ* **68** (2005) 414.
- [15] Ryskin M.G. Sov. J. Nucl. Phys. 48, 708 (1988).
- [16] Kochelev N.I. Phys. Lett. **B426**, 149 (1998).
- [17] Diakonov D. Prog. Part.Nucl.Phys. 51, 173 (2003); hep-ph/0212026.
- [18] Yao W.-H. et al. Journal of Physics G33, 1 (2006).
- [19] Dremin I.M. Nucl. Phys. A767, 233 (2006).
- [20] Бушнин Ю.Б. и др. *ЯФ* **10**, 585 (1969).
- [21] Bargmann V., Michel L. and Telegdy V. Phys. Rev. Lett. 2, 435 (1959).

Рукопись поступила 13 ноября 2006 г.

В.В. Абрамов

О зависимости односпиновой асимметрии заряженных пионов от кинематических переменных.

Оригинал-макет подготовлен с помощью системы ЦАТЕХ.

Редактор Л.Ф. Васильева.

Подписано к печати 15.11.06. Формат 60 × 84/8. Офсетная печать. Печ.л. 1,375. Уч.-изд.л. 1,1. Тираж 80. Заказ 105. Индекс 3649. ЛР т020498 17.04.97.

ГНЦ РФ Институт физики высоких энергий 142284, Протвино Московской обл.

Индекс 3649

 $\Pi P Е П P И H T 2006-23, И Ф В Э, 2006$