

ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ ФЕДЕРАЦИИ ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

> ИФВЭ 2007–20 ОЭФ

Г.А. Акопджанов, В.А. Беззубов, Н.А. Галяев, В.И. Гаркуша, С.П. Денисов, В.Н. Запольский, В.Г. Заручейский, А.В. Козелов, Ф.Н. Новоскольцев, Д.А. Стоянова

ОБОГАЩЕНИЕ АДРОННЫХ ПУЧКОВ К⁺-МЕЗОНАМИ С ПОМОЩЬЮ ПОГЛОТИТЕЛЯ НА УСКОРИТЕЛЕ ИФВЭ

Направлено в ЯФ

Протвино 2007

Аннотация

Акопджанов Г.А., Беззубов В.А., Галяев Н.А. и др. Обогащение адронных пучков К⁺-мезонами с помощью поглотителя на ускорителе ИФВЭ: Препринт ИФВЭ 2007–20 – Протвино, 2007. – 6 с., 4 рис., 2 табл., библиогр.: 5.

Изучена возможность увеличения содержания каонов в пучках заряженных адронов с помощью пассивного поглотителя. Показано, что доля каонов может быть увеличена в несколько раз без заметного увеличения импульсного и углового разбросов частиц в канале. Поток каонов в канале №23 может достигать величины ~10⁸ K⁺ за цикл, что позволяет провести широкий круг экспериментов по прецизионному исследованию распадов заряженных К-мезонов.

Abstract

Akopdzhanov G.A., Bezzubov V.A., Galyaev N.A. et al. Enrichment of Kaon Content in Hadron Beams Using Absorber at the IHEP Accellerator. IHEP Preprint 2007–20. – Protvino, 2007. – p. 6, figs. 4, tabs. 2, refs. 5.

A possibility to increase kaon contamination in charge hadron beams using a passive absorber was studied. It was shown that the kaon admixture could be increased several times without degradation of the beam momentum spread and beam angular divergence. Kaon flux of $\sim 10^8$ K⁺ per spill can be achived in the beam channel N 23 that allows one to perform a wide range of experiments to investigate the charged kaon decays with high precision.

Государственный научный центр
Российской Федерации
Институт физики высоких энергий, 2007

Введение

Хотя исследования распадов заряженных каонов ведутся уже несколько десятилетий, интерес к ним не ослабевает. Это связано с тем обстоятельством, что в этих экспериментах возможны проверка современных теоретических представлений о структуре и механизмах распада частиц, а также поиск «новой» физики путем регистрации распадов, запрещенных в Стандартной Модели. В подтверждение упомянем лишь два распада: К→3π и К→πνν.

Первый распад интересен прежде всего с точки зрения поиска прямого нарушения СРинвариантности по зарядовой асимметрии A параметра наклона графиков Далитца. Для нейтральных каонов это явление наблюдалось уже несколько лет назад, а для заряженных каонов существует только верхняя граница $A < 3 \cdot 10^4$, следующая из данных эксперимента NA48/2 [1]. Большинство современных моделей дает для величины A оценку меньше 10^4 . Поэтому для наблюдения нарушения СР-симметрии нужно улучшить точность измерения A по крайней мере на порядок величины, что означает регистрацию ~ 10^{10} распадов К $\rightarrow 3\pi$.

Распад К $\rightarrow \pi vv$ важен для проверки расчетов по Стандартной Модели, которая предсказывает с хорошей точностью (~5%) вероятность этого распада на уровне 10⁻¹⁰. Пока имеется сообщение [2] о регистрации трех таких распадов. Для проверки же СМ было бы важно увеличить статистику на порядок величины, а лучше довести ее до 100–200 событий.

Проведенные оценки показали, что для достижения указанных выше целей в опытах на ускорителе ИФВЭ интенсивность обычных адронных пучков, в которых доля K⁺-мезонов составляет 1–3%, должна быть >10⁹ за цикл. Работа с пучками такой интенсивности представляет по разным причинам значительные трудности. Поэтому необходимо использовать различные методы повышения доли каонов в пучках. Одним из них является метод высокочастотных сепараторов, который используется, например, в установке OKA [3]. Таким путем можно получить достаточно чистые пучки каонов, но эффективность метода сильно зависит от энергии пучка. В эксперименте OKA ожидаемый поток K⁺-мезонов с энергией 12,5 ГэВ составляет ~10⁶ за цикл (при интенсивности первичного протонного пучка 10¹³ за цикл), что недостаточно для выполнения рассмотренных выше экспериментов. Кроме того, сепараторы являются весьма дорогими и сложными в эксплуатации приборами.

Другой способ обогащения адронного пучка каонами состоит в использовании пассивного поглотителя. Игра в этом методе идет на разнице сечений поглощения каонов, пионов и протонов в веществе [4]. Эта методика проста, она практически не требует дополнительных затрат и применима в широкой области энергий.

В настоящей работе изучена возможность использования пассивного поглотителя для увеличения доли каонов в пучках положительных частиц на канале № 23 ускорителя ИФВЭ.

1. Характеристики канала № 23 и пучка частиц

Эксперимент проводился на существующем канале № 23 [5]. Вторичные частицы (в основном адроны), захватываемые в канал, образуются в алюминиевой мишени, которая облучается пучком протонов с энергией 60 ГэВ, выведенных из ускорителя. Диаметр мишени 7 мм, длина 300 мм. Размер протонного пучка на мишени 4 мм. Длительность временной растяжки пучка находится в пределах 2–3 с. Канал рассчитан на сброс на мишень до 3 · 10¹³ протонов/цикл.

Оптическая схема канала приведена на рис. 1. Первый объектив Q1–Q3 захватывает частицы из мишени и фокусирует их в коллиматоры C1, C2. Второй объектив Q5, Q6 формирует «параллельный» пучок перед распадной базой. Необходимая для импульсного анализа пучка дисперсия создается магнитом B1 и компенсируется линзой Q4 и магнитом B2. Не провзаимодействовавшие в мишени протоны и не захваченные в канал вторичные частицы поглощаются в стальном абсорбере DUMP толщиной 4 м. Канал позволяет формировать пучки вторичных частиц обоих знаков заряда с импульсами от 5 до 35 ГэВ/с. Угловой аксептанс канала составляет 80 мкстерад. Ширина $\sigma(P)/P$ импульсного распределения частиц в пучке может варьироваться от 2,5 до 5% в зависимости от раскрытия импульсного коллиматора C1.

Рис. 1. Оптическая схема канала № 23 и расположение детекторов частиц (Т – мишень, Q – квадрупольные линзы, В – магнит, С – коллиматор, F – поглотитель, S – сцинтилляционный счетчик, ВН – сцинтилляционный годоскоп, D – дифференциальный черенковский счетчик, DUMP – стальной абсорбер). Огибающие пучка (сплошные линии) приведены для ΔР/Р = 0, а дисперсия (пунктир) – для ΔР/Р = 5%.

Доля K⁺-мезонов в пучке перед распадной базой меняется от 3% при импульсе частиц $P = 20 \ \Gamma_9B/c$ до 1,25% при $P = 32 \ \Gamma_9B/c$. Для увеличения содержания каонов в пучке использовались пассивные поглотители из полиэтилена (CH₂). Идея этого метода обогащения адронного пучка каонами состоит в том, что сечения поглощения каонов ядрами меньше, чем сечения поглощения пионов и протонов [4]. Особенно большой эффект получается для положительно заряженных адронов, так как протоны составляют в этом случае основную долю в пучке (например, при $P = 32 \ \Gamma_9B/c$ их 85%), а сечение их поглощения в полиэтилене в 1,7 раза больше, чем для K⁺-мезонов. Разница между сечениями поглощения каонов и пионов заметно меньше – около 20%.

Конечно, наличие поглотителя приводит к уменьшению интенсивности пучка частиц, но канал № 23 является достаточно светосильным (например, при P = 28 ГэВ/с поток адронов составляет 5,5 $\cdot 10^9$ на 10^{13} первичных протонов), и уменьшение общей интенсивности на 1-2порядка может оказаться вполне приемлемым. Кроме того, поглотитель увеличивает импульсный разброс и угловую расходимость частиц в пучке. Импульсный разброс, связанный с ионизационными потерями энергии, описывается с хорошей точностью распределением Ландау, полная ширина которого на полувысоте составляет примерно 20%. Но даже для поглотителя длиной 3 м, что составляет 5 длин поглощения для протонов, эта величина равна 120 МэВ или около 0,5% от энергии пучка, что много меньше минимального (2,5%) импульсного разброса частиц в канале. Известно, что распределение Ландау имеет длинный «хвост» в области больших потерь энергии, но по оценкам в нем за пределами 2,5% будет находиться не более 2% частиц.

Казалось бы, что большую опасность для качества пучка представляет многократное рассеяние частиц в поглотителе. С целью минимизации эффекта поглотитель должен иметь малый заряд ядра. Наилучшим вариантом является жидкий дейтерий, но его большая стоимость, низкая температура ожижения (23 К) и малая плотность (0,17 г/см³) затрудняют его использование. Поэтому в качестве материала поглотителя был выбран обычный полиэтилен. Угол многократного рассеяния в 3-метровом блоке полиэтилена (около 6 рад. длин) составляет $\sigma = 2$ мрад (P = 24 ГэВ/с), что вчетверо больше угловой расходимости пучка частиц перед распадной базой в канале без поглотителя. Однако, как показали расчеты, выполненные по программе НАLO, при расположении поглотителя вблизи (внутри) полевой линзы Q4 влияние многократного рассеяния на параметры формируемого пучка становится несущественным.

2. Измерения и результаты

Для экспериментальной проверки влияния поглотителя на интенсивность, состав и угловые характеристики пучка были выполнены измерения с полиэтиленовыми поглотителями толщиной 1,7 и 3,08 м и диаметром 19 см. Они устанавливались внутри линзы Q4, где пучок сфокусирован как в вертикальной, так и горизонтальной плоскостях (см. рис. 1). Для измерения интенсивности и угловой расходимости пучка использовались сцинтилляционные счетчики S1–S4 и сцинтилляционные годоскопы BH1–BH4 с ячейкой 5 мм (рис. 1). Состав пучка определялся с помощью дифференциальных черенковских счетчиков D1, D2 (рис. 1). Фон под пиком К-мезонов в зависимости эффективности D1, D2 от давления в них не превышал 1%.

Измерения проводились при импульсах пучка частиц 20; 24; 28 и 32 ГэВ/с. На рис. 2 показаны зависимости потоков частиц в канале от импульса для разных щелей коллиматоров C1, C2 и толщин поглотителя, пересчитанные на 10¹³ первичных протонов.

Для оценки интенсивности выведенного из ускорителя пучка протонов использовался монитор Отдела вывода пучков. В табл.1 приведены экспериментальные данные и расчетные оценки содержания π^+ - и K⁺-мезонов в пучках с разным импульсом. Из таблицы следует, что доля K⁺-мезонов в пучке может быть увеличена в несколько раз – до 5 и 9% с поглотителями 1,7 и 3,08 м соответственно. Экспериментальные данные и результаты расчетов находятся в разумном (±10%) согласии.

На рис. 3 представлены расчетные и экспериментальные угловые распределения частиц в пучке. Видно, что они неплохо согласуются. Зависимость угловой расходимости пучка от его импульса при разных толщинах поглотителя показана на рис. 4. Углы частиц измерялись годоскопами ВН3–ВН4 (рис.1). Из рис. 4 следует, что угловая расходимость пучка как в вертикальной, так и горизонтальной плоскостях слабо зависит от импульса частиц и толщины поглотителя и составляет 0,4–0,6 мрад.

Рис. 2. Поток частиц в канале в зависимости от импульса для разных щелей коллиматоров C1, C2 и толщин поглотителя, пересчитанный на 10¹³ первичных протонов. Погрешность измерений составляет ~10%. Сплошные линии – результаты фита линейной функцией.

Таблица 1. Состав пучка в канале № 23 в % (эксперимент/расчет) в зависимости от импульса Р и толщины поглотителя (полиэтилен) L. Расчеты проведены при следующих значениях длин поглощения в полиэтилене: λ_{π} = 84 см, λ_{K} = 100 см, λ_{p} = 60 см.

Р, ГэВ/с	20		24		28		32	
L, см	π^+	K^+	π^+	\mathbf{K}^+	π^+	\mathbf{K}^+	π^+	K^+
0	49	3,0	31	2,5	23	1,9	14	1,25
170	55 / 64	5,1 / 5,3	39 / 47	4,9 / 5,1	38 / 37	4,1/4,1	21 / 25	2,5 / 3,0
308	76 / 74	7,6 / 8,3	68 / 62	9,0 / 8,7	52 / 52	7,9/7,8	45 / 35	7,3 / 6,5

Потоки K⁺-мезонов и полная интенсивность пучка в канале для разных импульсов частиц и толщин поглотителя приведены в табл. 2. Без поглотителя поток каонов I_K достигает 10^8 на 10^{13} протонов, но очень большая величина полной интенсивности делает его использование пока проблематичным, хотя в будущем или для некоторых специальных опытов такая интенсивность может и не оказаться серьезным препятствием.

Более реальной представляется работа с поглотителем толщиной ~1,7 м: $I_K = 2 \cdot 10^7$ при $I_B = 3 \cdot 10^8$. При распадной базе, соответствующей 20% распадов каонов, в этом случае, например при импульсе каонов $P = 28 \ \Gamma \Rightarrow B/c$, можно достичь 4 $\cdot 10^{10}$ распадов в сутки, что может оказаться достаточным для изучения очень редкого распада $K \rightarrow \pi vv$.

Рис. 3. Рассчитанные (штриховые линии) и измеренные (сплошные линии) угловые распределения пучка частиц в горизонтальной (A_X) и вертикальной (A_Y) плоскостях на выходе канала № 23. Импульс частиц 24 ГэВ/с, толщина поглотителя (полиэтилен) 3,08 м.

Рис. 4. Зависимость угловой расходимости пучка в горизонтальной (A_x) и вертикальной (A_y) плоскостях от его импульса и толщины поглотителя.

Для более частых распадов может оказаться предпочтительней более толстый поглотитель, обеспечивающий больший процент каонов в пучке. Таким образом, в зависимости от исследуемого распада, поток K^+ -мезонов в пучке частиц может меняться от нескольких миллионов до сотни миллионов на 10^{13} протонов путем выбора оптимальной толщины поглотителя.

Так как в пучке отрицательных частиц доминируют π -мезоны, а сечения поглощения К-и π -мезонов разнятся всего на 20%, применение поглотителя для обогащения пучка каонами в этом случае не будет столь эффективно, как для положительного пучка. Кроме того, интенсивность отрицательного пучка на порядок величины меньше положительного.

Таблица 2. Измеренные потоки K^+ -мезонов (I_K) и всех частиц (I_B) в канале № 23 в зависимости от импульса P и толщины поглотителя L на 10¹³ выведенных из ускорителя протонов с энергией 60 ГэВ.

Р, ГэВ/с	20		24		28		32	
L, см	I _K	I _B	I _K	IB	I _K	IB	I _K	I _B
0	6,9·10 ⁷	2,3.109	8,3·10 ⁷	3,3.109	$10,5.10^{7}$	5,5·10 ⁹	8,4·10 ⁷	6,7·10 ⁹
170	1,6.107	3,1.108	1,8.107	3,7.108	$2,1.10^{7}$	5,2.108	$1,5.10^{7}$	6,0·10 ⁸
308	$2,5.10^{6}$	3,3.107	3,2.106	3,6.107	$3,2.10^{6}$	4,0.107	3,3.106	4,5.107

Но следует принять во внимание, что содержание каонов в отрицательном пучке значительно больше, чем в положительном: при импульсе 35 ГэВ/с доля К⁻ составляет 2,5% против 1,1% для K⁺. Для P = 24 ГэВ/с доля К⁻ в пучке составляет уже 5%, и поток К⁻ на 10¹³ протонов ожидается на уровне 3 $\cdot 10^8$. Таким образом, при необходимости одновременного изучения распадов К⁻ и К⁺-мезонов, что важно, например, при поиске эффектов прямого нарушения СРинвариантности, возможен вариант, когда при работе с положительным пучком используется поглотитель толщиной ~1,7 м, а при переходе на отрицательный пучок поглотитель убирается.

Заключение

Показано, что с помощью пассивного поглотителя можно в несколько раз увеличить долю К⁺-мезонов в адронном пучке. При этом как угловая расходимость, так и импульсный разброс частиц в пучке меняются незначительно. Оптимальная толщина поглотителя определяется экспериментом. Интенсивность потока К⁺-мезонов в канале № 23 может доходить до 10⁸ за цикл работы ускорителя, что позволяет проводить прецизионные исследования редких каонных распадов. Дальнейший рост содержания каонов в пучке возможен за счет использования поглотителя большей толщины. Уменьшение абсолютного потока каонов в этом случае может быть скомпенсировано увеличением интенсивности первичного протонного пучка.

Авторы выражают благодарность Отделу вывода ОУ У70 за помощь в проведении эксперимента и И.Н.Белякову, С.А.Звягинцеву, О.Н.Ромашову, И.В.Швабовичу за подготовку аппаратуры.

Настоящая работа поддержана грантами РФФИ № 05-02-16557 и № 06-02-16605.

Список литературы

- [1] J.R.Batley et al. [NA48/2 Collaboration], Eur. Phys.J., C52 (2007) 875.
- [2] V.V.Anisimovsky et al. Phys.Rev.Lett. 93, 031801 (2004).
- [3] V.F.Obraztsov and L.G.Landsberg. Nucl. Phys., B99 (2001) 257.
- [4] Ю.П.Горин и др. Ядерная физика, **18** (1973) 336; Nucl. Phys., **B61** (1973) 62.
- [5] М.В.Акопян и др. Препринт ИФВЭ 86-129, Серпухов 1986.

Рукопись поступила 14 декабря 2007 г.

Акопджанов Г.А., В.А.Беззубов, Н.А.Галяев и др. Обогащение адронных пучков К⁺-мезонами с помощью поглотителя на ускорителе ИФВЭ.

Оригинал-макет подготовлен с помощью системы *Word*. Редактор Н.В.Ежела.

ГНЦ РФ Институт физики высоких энергий, 142281, Протвино, Московской обл.

Индекс 3649

ПРЕПРИНТ 2007-20, ИФВЭ, 2007