

ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ ФЕДЕРАЦИИ ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

> ИФВЭ 2009–12 ОРИ

В.Е. Бородин, О.В. Зятьков, Г.И. Крупный, Л.П. Обращикова,В.Н. Пелешко, Я.Н. Расцветалов, Ю.С. Федотов

Наведённая радиоактивность конструкционных материалов при развитии межьядерного каскада, инициированного протонами энергией 50 ГэВ

Направлено в АЭ

Протвино 2009

Аннотация

Бородин В.Е. и др. Наведённая радиоактивность конструкционных материалов при развитии межъядерного каскада, инициированного протонами энергией 50 ГэВ: Препринт ИФВЭ 2009–12. – Протвино, 2009. – 15 с., 22 рис., 10 табл., библиогр.: 4.

Описана установка для изучения наведенной радиоактивности конструкционных материалов под действием высокоэнергетических протонов. Приведены экспериментальные данные по нуклидному составу и распадным кривым наведенной радиоактивности в 9 видах конструкционных материалов. Полученные данные важны в задачах обеспечения радиационной безопасности на ускорителях протонов, а также могут использоваться как реперные данные для верификации соответствующих расчетных кодов.

Abstract

Borodin V.E. et al. Induced Radioactivity of Constructive Materials at Condition of Intranuclear Cascade in Matter Initiated by 50 GeV Protons: IHEP Preprint 2009–12. – Protvino, 2009. – p. 15, figs. 22, tables 10, refs.: 4.

The set-up for constructional materials induced radioactivity study under high energy protons is described. The experimental data on radionuclides content and decay curves for 9 constructional materials types are given. Data obtained are important for radiation safety on proton accelerators and so could be used as a reference data for relevant calculation codes benchmarking.

> © Государственный научный центр Российской Федерации Институт физики высоких энергий, 2009

Введение

При решении задач обеспечения радиационной безопасности на высокоэнергетических ускорителях протонов возникает потребность в прогнозных оценках уровней наведенной радиоактивности, радионуклидного состава и времени выдержки конструкционных материалов и оборудования, подвергающихся воздействию пучков протонов. При этом нужно учитывать, что с увеличением толщины исследуемого материала вдоль направления прохождения пучка в нем развивается каскад вторичных частиц (см., например, [1]) и, следовательно, изменяется компонентный состав, пространственные и энергетические распределения частиц, ответственных за наведенную радиоактивность материала. Экспериментальные данные по нуклидному составу наведенной радиоактивности конструкционных материалов в таких условиях могут играть роль реперных данных для верификации соответствующих расчетных кодов. В качестве среды для формирования межьядерного каскада под действием высокоэнергетических протонов был выбран свинец.

Установка

Установка для моделирования условий развития межъядерного каскада в веществе под действием высокоэнергетических протонов показана на рис. 1. Она состоит из свинцового основания толщиной 100 мм размером 200х600 мм² и вертикально установленных на нем 9 свинцовых блоков толщиной 50 мм размером 100х200 мм² с воздушными промежутками между ними (10 мм) для размещения образцов конструкционных материалов (КМ). Ось пучка протонов параллельна свинцовому основанию и проходит на 10 мм выше его плоскости. Вдоль этого направления в промежутках между свинцовыми блоками размещаются образцы КМ. Суммарная толщина свинца вдоль оси пучка – 450 мм.

Рис. 1. Схема установки по облучению сборок с образцами КМ (вид сверху).

Исследовались 9 видов конструкционных материалов. Образцы КМ: ВНЖ (сплав вольфрама, никеля и железа), титан, молибден, АМГ (алюминиевый сплав), сталь 20, медь, свинец, медь нагартованная и уран-238 были изготовлены в виде дисков диаметром 20 мм и толщиной 1 мм. Подготовлено к проведению эксперимента 9 сборок, состоящих из 9 образцов каждого вида КМ.

Номер сборки соответствовал номеру экспериментального места (зазора) в установке. Сборка 1 находилась на лицевой стороне первого свинцового блока. Перед ней помещалась мониторная алюминиевая фольга толщиной 200 микрон и диаметром 20 мм.

Поскольку в число КМ включен уран, необходимо знать нуклидный состав и степень радиоактивности образцов этого материала до облучения.

Активности урана-234 и урана-235 до облучения определены на полупроводниковом гамма-спектрометре с кристаллом из особо чистого германия [2]. В полученном амплитудном спектре идентифицированы и обработаны линия 186 кэВ, принадлежащая ²³⁵U, а также линия 1001 кэВ, принадлежащая ²³⁴Pa. Этот нуклид с периодом полураспада 6,7 часа переходит (β -распад) в уран-234. Активности [A] в единицах Бк/г для всех образцов одинаковы в пределах погрешностей измерений (~5%), поэтому в табл. 1 приведены данные для одного образца.

На основании данных табл. 1 доли ядер урана-235 и урана-234 в образцах урана до облучения составили 0,13% и 0,052% соответственно. По литературным данным [3] в природном (естественном) уране эти доли равны 0,14% и 0,057% соответственно. Собственные гаммалинии ²³⁸U с энергиями 49,55 кэВ и 113,5 кэВ, дающие незначительный вклад в суммарную активность, не определялись.

Образец	Macca,	Контактная	²³⁵ U		234 Pa \Rightarrow^{234} U		²³⁵ U ²³⁴ Ра⇒ ²³⁴ U Число ядер		ло ядер
	Г	мощность					в об	оазце N _{act}	
		ү-дозы,	А,	[A],	А,	[A],	²³⁵ U	²³⁴ U	
		мкЗв/ч	Бк	Бк/г	Бк	Бк/г	·10 ¹⁹	$\cdot 10^{17}$	
U	5,637	0,92	556	99	65619	11600	1,78	7,33	
			±5%		±5%				

<u>Таблица 1</u>. Исходные данные для образца урана до облучения.

Мониторирование

До начала облучения образцов КМ была проведена настройка устройств быстрого вывода пучка ускоренных до 50 ГэВ протонов таким образом, чтобы он попал в центр сборок КМ, т.е. проходил на высоте 10 мм от поверхности свинцовой платформы. Диаметр выводимого пучка равнялся 1 мм.

Наведение пучка контролировалось с помощью телекамеры по свечению сцинтиллятора размером 10x10x10 мм³, установленного в том месте, где затем размещалась сборка 1. Перед облучением образцов сцинтиллятор был удален.

Для определения числа выведенных на установку протонов по реакции ²⁷Al (p, spall) ⁷Be [4] использовалась алюминиевая фольга.

Облучение

Облучение образцов КМ выполнено на выведенном пучке протонов энергией 50 ГэВ ускорительного комплекса ГНЦ ИФВЭ (У-70). Длительность облучения – 1 минута. В результате обработки алюминиевой фольги на полупроводниковом спектрометре определено число протонов, прошедших через установку, – (1,4 ±0,1)·10¹³. Погрешность определения активности ⁷Ве – 6%, погрешность сечения образования ⁷Ве ($\sigma = 8$ мбарн) в реакции ²⁷Al (p, spall) ⁷Ве, по нашим данным, ~10%.

Нуклидный состав

Активности образуемых после облучения радионуклидов в образцах также измерены на полупроводниковом спектрометре. Ввиду достаточно длительного набора статистики (1 – 1,5 ч) для измерений нуклидного состава была взята только сборка с максимальными уровнями наведенной радиоактивности – сборка 3. В качестве примера на рис. 2 показан аппаратурный спектр облученного образца из свинца через 173 суток после конца облучения.

Рис. 2. Аппаратурный спектр гамма-радионуклидов свинца, облученного в сборке 3. Время выдержки 173 суток.

Данные об удельной активности образуемых после облучения долгоживущих радионуклидов (период полураспада более суток) в исследуемых образцах сборки 3 на конец облучения приведены в табл. 2 – 9.

Пространственно-временные зависимости уровней наведенной активности образцов в сборках 1 – 9

Для относительных измерений наведенной активности образцов был использован сцинтилляционный радиометр (кристалл NaJ(Tl)) из состава прибора РГГ-01Т. Эффективность регистрации гамма-квантов оценивалась с помощью набора образцовых источников ОСГИ. Результаты измерений приведены в табл. 10.

Радионуклид	²² Na	⁶⁰ Co	¹³³ Ba	¹³⁷ Cs	¹⁵² Eu
Эффективность регистрации, %	4,8	4,0	4,9	5,2	4,4

Таблица 10. Эффективность регистрации гамма-квантов.

Градуировочные источники и образцы с наведенной активностью помещались по центру кристалла на расстоянии 20 мм от его поверхности и от каждого из них регистрировались соответствующие скорости счета. Переход от скорости счета к флюенсу гамма-квантов в первом приближении (без учета различий в спектрах образцовых источников и спектров наведенной активности в образцах) можно осуществить с помощью среднего значения эффективности регистрации гамма-квантов (4,7%).

Дозиметрическая привязка на том же расстоянии (20 мм) с помощью компаратора-дозиметра ДРБП-03 дает усредненный по всем образцам коэффициент перехода от скорости счета к мощности дозы – 1,3·10⁻³ (мкЗв/ч)/имп/с.

Продольная зависимость (вдоль оси установки) скорости счёта для всех видов образцов показана на рис. 3 – 11. Характерной особенностью представленных данных является наличие максимума наведенной радиоактивности для всех образцов КМ на глубине 12 см свинца.

Зависимость изменения скорости счёта (кривые распада) в образцах приведены на рис. 12 – 20. Для всех образцов КМ наблюдается достаточно резкий спад суммарной наведенной активности в первые 30 суток и более плавное уменьшение активности в последующее время. Наименее активными, как и следовало ожидать, оказались образцы из АМГ.

Зависимость изменения скорости счёта (кривые распада) для всех образцов в сборке 3 показаны на рис. 21 – 22.

Представленные здесь данные показывают вариации уровней наведенной активности для различных образцов КМ.

Заключение

В данной работе в одних и тех же условиях получен обширный материал по характеристикам наведенной радиоактивности различных видов конструкционных материалов КМ при развитии межъядерного каскада в свинце, инициированного пучком протонов энергией 50 ГэВ.

Результаты эксперимента могут быть использованы при решении задач радиационной защиты и обеспечения радиационной безопасности на высокоэнергетических протонных ускорителях.

Полученные экспериментальные результаты и, прежде всего, данные по радионуклидному составу наведенной радиоактивности в образцах КМ могут являться реперными для верификации соответствующих расчетных кодов.

Руководствуясь полученными экспериментальными данными по изотопному составу и периоду полураспада образуемых долгоживущих радионуклидов после облучения конструкционных материалов протонным пучком, можно систематизировать образуемые PB и PAO и решать оперативные вопросы по организации временного хранения и выдержки PB и PAO.

Авторы выражают благодарность Ю.В. Белецкой и А.М. Мамаеву за помощь в обсчете экспонированных образцов.

Список литературы

- [1] А.И. Волынчиков, В.Б. Гетманов, Г.И. Крупный и др. Препринт ИФВЭ 83-86. Серпухов, 1983.
- [2] Г.И. Крупный, Г.Н. Стеценко, А.А. Янович. Препринт ИФВЭ 2000-30. Протвино, 2000.
- [3] К. Бекурц, К. Виртц. Нейтронная физика. М.: Атомиздат, 1968.
- [4] Г.И. Крупный, Д.В. Снитко, А.А. Янович. Препринт ИФВЭ 2000-13. Протвино, 2000.

Рукопись поступила 30 июня 2009 г.

Радионуклид	Период	Энергия	Выход	Удельная	Погрешность,
	полураспада,	ү-кванта,	ү-квантов,	активность	±%
	сутки	кэВ	отн. единицы	Бк/г	
Sc-46	83,83	889,2	$1,00.10^{\circ}$	9,4	11
Mn-54	312,5	834,8	$1,00.10^{\circ}$	6,2	10
Fe-59	44,529	1099	5,61.10-1	14,3	6
Co-56	78,76	846,8	9,99·10 ⁻¹	10,5	12
Co-58	70,8	810,8	9,94·10 ⁻¹	60,0	5
Y-88	106,64	898,0	9,34.10-1	6,5	11
Zr-88	83,4	392,9	$1,00.10^{\circ}$	13,0	7
Tc-95m	61,0	204,1	6,32·10 ⁻¹	23,6	9
Te-121	17,0	573,1	8,03.10-1	103,4	20
Gd-146	48,3	633,2	4,80.10-1	90,7	5
Yb-169	32,01	198,0	3,59.10-1	272,9	5
Lu-173	500,05	272,0	1,30.10-1	44,3	9
Hf-175	70,0	343,4	8,69.10-1	260,9	4
Hf-181	42,4	482,0	8,60.10-1	13,6	17
Ta-182	115	1231	1,16.10-1	51,7	13
Re-184	38,0	792,1	3,75.10-1	36,1	10
Re-184m	165,0	161,3	6,64.10-2	98,0	12

Таблица 2. Образец: ВНЖ, т=4,489 г

<u>Таблица 3</u>. Образец: титан, m=1,407 г

Радионуклид	Период	Энергия	Выход	Удельная	Погрешность,
	полураспада,	ү-кванта,	ү-квантов,	активность,	±%
	сутки	кэВ	отн. единицы	Бк/г	
K-43	0,942	617,5	8,05.10-1	7,1·10 ³	16
Sc-44m	2,44	271,2	8,66·10 ⁻¹	$4,0.10^{3}$	5
Sc-46	83,83	889,2	$1,00.10^{\circ}$	$7,2.10^{2}$	9
Sc-47	3,351	159,4	6,80·10 ⁻¹	$1,7.10^{4}$	4
Sc-48	1,82	983,5	$1,00.10^{\circ}$	$7,2.10^{3}$	6

<u>Таблица 4.</u> Образец: молибден, m=2,969 г

Радионуклид	Период	Энергия	Выход Удельная		Погрешность,
	полураспада,	ү-кванта,	ү-квантов,	активность,	±%
	сутки	кэВ	отн. единицы	Бк/г	
V-48	16,238	983,5	$1,00.10^{\circ}$	64	9
Mn-54	312,5	834,8	$1,00.10^{\circ}$	81	8
Co-56	78,76	846,8	9,99·10 ⁻¹	109	5
Co-58	70,8	810,8	9,94·10 ⁻¹	119	7
As-71	2,7	174,9	9,11·10 ⁻¹	1325	6
As-74	17,76	595,8	5,92.10-1	88	10
Se-75	119,8	264,7	5,94·10 ⁻¹	61	12
Rb-83	86,2	520,3	4,61.10-1	191	8
Rb-84	32,77	881,5	7,10.10-1	63	7
Sr-85	64,84	514,0	9,80 ⁻¹⁰⁻¹	407	11
Y-87	3,346	484,0	9,22·10 ⁻¹	8050	4

Y-88	106,64	898,0	9,34·10 ⁻¹	86	5
Zr-88	83,4	392,9	$1,00.10^{\circ}$	266	4
Zr-89	3,268	909,2	9,99·10 ⁻¹	9296	4
Nb-92m	10,15	934,5	9,92·10 ⁻¹	946	4
Nb-95m	3,61	234,7	2,59.10-1	903	13
Nb-95	35,15	765,8	$1,00.10^{\circ}$	428	4

<u>Таблица 5.</u> Образец: алюминий (АМГ), m=0,836 г

Радионуклид	Период	Энергия	Выход	Удельная	Погрешность,
	полураспада,	ү-кванта,	ү-квантов,	активность,	±%
	сутки	кэВ	отн. единицы	Бк/г	
Be-7	53,3	477,6	1,03.10-1	286	4
Na-22	949,73	1275,0	9,99·10 ⁻¹	29	4
Mn-54	312,5	834,8	$1,00.10^{\circ}$	5,4	5

<u>Таблица 6.</u> Образец: Ст.20, m=2,421 г

Радионуклид	Период	Энергия	Выход	Удельная	Погрешность,
	полураспада,	ү-кванта,	ү-квантов,	активность,	±%
	сутки	кэВ	отн. единицы	Бк/г	
Sc-44m	2,442	271,2	8,66 [.] 10 ⁻¹	2287	5
Sc-46	83,83	889,2	$1,00.10^{\circ}$	132	21
Sc-47	3,351	159,4	6,80·10 ⁻¹	836	8
V-48	16,238	983,5	$1,00.10^{\circ}$	1074	5
Cr-51	27,704	320,1	9,83·10 ⁻²	1475	16
Mn-52	5,591	744,2	9,00·10 ⁻¹	2111	5
Mn-54	312,5	834,8	$1,00.10^{\circ}$	250	11

<u>Таблица 7.</u> Образец: медь, m=2,394 г.

Радионуклид	Период	Энергия	Выход	Удельная	Погрешность,
	полураспада,	ү-кванта,	ү-квантов,	активность,	±%
	сутки	кэВ	отн. единицы	Бк/г	
Sc-44m	2,442	271,2	8,66.10-1	1266	9
Sc-46	83,83	889,2	$1,00.10^{\circ}$	51	8
Sc-47	3,351	159,4	6,80 [.] 10 ⁻¹	512	8
Sc-48	1,82	983,5	$1,00.10^{\circ}$	1943	22
V-48	16,238	983,5	$1,00.10^{\circ}$	401	4
Cr-51	27,704	320,1	9,83·10 ⁻²	535	7
Mn-52	5,591	744,2	9,00·10 ⁻¹	851	4
Mn-54	312,5	834,8	$1,00.10^{\circ}$	48	4
Fe-59	44,529	1099,0	5,61.10-1	47	13
Co-56	78,76	846,8	9,99·10 ⁻¹	83	5
Co-57	270,9	122,1	8,56·10 ⁻¹	69	19
Co-58	70,80	810,8	9,94·10 ⁻¹	444	4
Co-60	1923,92	1332,0	$1,00.10^{\circ}$	14	11

Радионуклид	Период	Энергия	Выход	Удельная	Погрешность,
	полураспада,	ү-кванта,	ү-квантов,	активность,	±%
	сутки	кэВ	отн. единицы	Бк/г	
Co-58	70,80	810,8	9,94·10 ⁻¹	8,0	13
Rb-83	86,2	520,3	4,61.10-1	11,0	13
Rb-84	32,77	881,5	7,10.10-1	22,0	14
Y-88	106,64	898,0	9,34.10-1	10,0	9
Zr-88	83,4	392,9	$1,00.10^{\circ}$	10,0	9
Nb-95	35,15	765,8	$1,00.10^{\circ}$	32,0	9
Ru-103	39,28	497,1	8,64.10-1	17,0	10
Rh-99	16,0	527,7	4,05.10-1	5014	25
Te-123m	119,7	159,0	8,42.10-1	6,0	9
Ce-139	137,66	165,9	7,91.10-1	5,0	13
Eu-147	24,0	197,3	2,58.10-1	200	9
Yb-169	32,01	177,2	2,23.10-1	48,0	11
Hf-175	70,0	343,4	8,69.10-1	47,0	4
Ta-182	115	1121,0	3,49.10-1	21,0	11
Os-185	94,0	646,1	8,11.10-1	51,0	4
Hg-203	46,6	279,2	8,15.10-1	41,0	6
T1-202	12,23	439,6	9,14·10 ⁻¹	1057	5

Таблица 8. Образец: свинец, т=3,530 г

<u>Таблица 9.</u> Образец: уран, m=5,637 г

Радионуклид	Период	Энергия	Выход	Удель	ная	Погрешно	сть,
-	полураспада,	ү-кванта,	ү-квантов,	активн	ость,	±%	
	сутки	кэВ	отн. единицы	Бк/	Г		
Rb-84	32,77	881,5	7,10.10-1	127	7	8	
Y-88	106,6	898,0	9,34·10 ⁻¹	18		7	
Zr-95	63,98	724,2	4,45.10-1	390)	4	
Nb-95	35,15	765,8	$1,00.10^{\circ}$	612	2	4	
Ru-103	39,28	497,1	8,64.10-1	577	7	4	
Sn-113	115,1	255,1	1,85.10-2	403	3	14	
Sb-124	60,2	602,7	9,58·10 ⁻¹	37		7	
Sb-126	12,4	414,8	8,57.10-1	190)	8	
Ba-140	12,74	537,3	2,44.10-1	124	2	12	
Ce-141	32,5	145,4	4,80.10-1	53		9	
Eu-156	15,19	811,8	1,02.10-1	826	5	11	
Ta-182	115,0	1121,0	3,49.10-1	20		12	
Os-185	94,0	646,1	8,11.10-1	14		13	
Pa-233	27,0	312,0	3,60.10-1	160)	9	
U-234	2,45·10 ⁵ лет	1001,03	8,42.10-3	11600*)	11405	5*)	5
U-235	7,04·10 ⁸ лет	185,7	5,40.10-1	96 *)	99	5*)	5

*) – данные для образца из урана до облучения.

Рис. 3. Продольные распределения скорости счета в образцах из АМГ.

Рис. 4. Продольные распределения скорости счета в образцах из ВНЖ.

Рис. 5. Продольные распределения скорости счета в образцах из меди М1.

Рис. 6. Продольные распределения скорости счета в образцах из меди нагартованной.

Рис. 7. Продольные распределения скорости счета в образцах из молибдена.

Рис. 8. Продольные распределения скорости счета в образцах из свинца.

Рис. 9. Продольные распределения скорости счета в образцах из стали 20.

Рис. 10. Продольные распределения скорости счета в образцах из титана.

Рис. 11. Продольные распределения скорости счета в образцах из обедненного урана.

Рис. 12. Зависимость изменения скорости счёта (кривые распада) в образцах из АМГ.

Рис. 13. Зависимость изменения скорости счёта (кривые распада) в образцах из ВНЖ.

Рис. 14. Зависимость изменения скорости счёта (кривые распада) в образцах из меди М1.

Рис. 15. Зависимость изменения скорости счёта (кривые распада) в образцах из меди нагартованной.

Рис. 16. Зависимость изменения скорости счёта (кривые распада) в образцах из молибдена.

Рис. 17. Зависимость изменения скорости счёта (кривые распада) в образцах из свинца.

Рис. 18. Зависимость изменения скорости счёта (кривые распада) в образцах из стали 20.

Рис. 19. Зависимость изменения скорости счёта (кривые распада) в образцах из титана.

Рис. 20. Зависимость изменения скорости счёта (кривые распада) в образцах из обедненного урана.

Рис. 21. Зависимость изменения скорости счёта (кривые распада) для образцов в сборке 3.

Рис. 22. Зависимость изменения скорости счёта (кривые распада) для образцов в сборке 3.

В.Е. Бородин и др. Наведённая радиоактивность конструкционных материалов при развитии межъядерного каскада, инициированного протонами энергией 50 ГэВ.

Редактор Л.Ф. Васильева.

Подписано к печат	и 06.07.2009.	Формат 60 × 84/8	 Офсетная печать. 	
Печ. л. 2,125. У	ч изд. л. 1,7. Ти	раж 80. Заказ	42. Индекс 3649.	

ГНЦ РФ Институт физики высоких энергий, 142281, Протвино Московской обл.

Индекс 3649

ПРЕПРИНТ 2009-12, ИФВЭ, 2009