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Abstract 

 

V.A. Maisheev et al. Сhanneling radiation of positrons with energy in the region of 100 GeV in single 

crystals,IHEP Preprint 2009 – 21. – Protvino, 2009. – p. 18, fig. 12, refs.: 15. 

 

The process of radiation of 120-GeV positrons moving in a channeling regime in (011) plane of a 

single crystal was considered. At the beginning on the basis of the theory of nonlinear oscillations the 

trajectory of moving positrons at different initial conditions were derived. Then taking into account the 

nonlinearity of motion the distribution function over oscillation amplitudes of channeling particles was 

found. After this the intensity of radiation at different initial conditions was calculated with the help of 

two various methods. These results may be useful for comparison with experimental data at positron 

energies from 100 and more GeV.  

 

 

 

Аннотация 

 

Маишеев В.А. и др. Излучение фотонов при каналировании позитронов в монокристаллах в 

области энергий 100 ГэВ, Препринт ИФВЭ 2009 –21. – Протвино, 2009. –18 с., 12 рис., библиогр.: 

15. 

 

Рассмотрен процесс излучения 120 - ГэВ позитронов в режиме каналирования в (011) 

плоскости монокристалла кремния. Сначала на основе теории нелинейных колебаний были 

рассчитаны траектории движущихся позитронов при разных начальных условиях. Затем принимая 

во внимание нелинейность движения была найдена функция распределения каналирующих частиц 

по их амплитудам. После этого была рассчитана с помощью двух различных методов 

интенсивность излучения при разных начальных условиях. Эти результаты могут быть полезны 

для сравнения с экспериментальными данными при энергиях позитронов начиная с 100 ГэВ и 

более.  
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Introduction 
 

By this time the considerable number of experimental and theoretical works is devoted 

to researching the radiation at plane channeling of high energy positrons in monocrystals (see 

[1, 2, 3] and the literature quoted there). This radiation arises during the motion of a charged 

particle under a small angle in relation to a crystallographic plane and (in a case of 

ultrarelativistic positrons with energies up to ∼20 GeV) is monochromatic enough and is 

characterized by high intensity. At energies of positrons more than ~20 GeV 

monochromaticity of the radiation strongly degrades. The majority of experiments on study 

the radiation during channeling of the relativistic positrons was executed at energies from 

several hundreds of MeV to tens GeV where the distinct peak in intensity of radiation 

dominates which is gradually smeared at energies more than ~20 GeV [3] due to increase of 

the radiation intensity of high harmonics. Concrete theoretical consideration of the process is 

also concentrated basically to the specified range of energies. A large number of interesting 

data has been received during the experiment [4] where the radiation of leptons at energy of 

150 GeV in the straight crystals was investigated. 

In September, 2009 in CERN the experiment INSURAD devoted to research of 

radiation at various orientations of bent monocrystals has been made at energy of positrons of 

120 GeV. In particular, the big statistics has been received on radiation of positrons during 

their motion in plane fields of bent silicon monocrystals which is processed now. Conti-

nuation of this experiment is planned in 2010, in particular, it is supposed to measure 

radiating processes in straight (not bent) monocrystals for the purpose of correct comparison 

of all received data. It is powerful argument in favour of theoretical research of the specified 

processes (and in particular radiations during plane channeling in the straight and bent 

monocrystals) at energies more than 100 GeV. 

Thus, the given paper is devoted to theoretical consideration of radiation process of the 

ultrarelativistic positrons with energy of an order of 100 GeV, channeling in straight crystals.  

Radiation characteristics of relativistic particles with the set energy E  are defined by its 

motion in a monocrystal electric field. Therefore, first of all, it is necessary to describe this 

motion. For this purpose it is necessary to know the electric field or the potential distribution 

in crystallographic planes. Such field (potential) is found analytically on the basis of relations 

for an atom field in the model of Moliere or, more precisely, on the basis of approximation of 

the corresponding data received as a result of x-ray measurements. Instead of exact 

representation of an electric field (or potential) their simplifications (so-called modeling 

potentials) are often used by means of rather simple functions. The lack of such consideration 

is that it is impossible to describe the plane fields well enough by some simple functions in 

the consent with calculations using the Moliere model or any other realistic model of atom. 

Another approach is used in paper [5] where the field was represented as Fourier series, and it 

has been shown that plane potentials of a field of monocrystals can be described by 

polynomials of rather high degree which practically (an error nearby 1 % for a polynomial of 

14 degree) do not differ from initial exact representations.  
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It is obvious that a potential in the central part between crystal planes has the parabolic 

form, but near to the planes it is strongly nonlinear, because it should provide a zero electric 

field on the crystal planes due to similarity of plane cells and due to physical continuity. 

Besides, it is difficult to find an exact solution of the motion equations with the help of 

asymptotic methods of nonlinear oscillations [6] (and used in [5, 7]) for the case of channeled 

particles making periodic motion in such nonlinear interplanar potential well with the big 

amplitudes and closed phase trajectories which are close to a separatrix, separating the 

channeled particles from the over-barrier ones. Moreover, even insignificant perturbations, 

such as irregular displacement of planes, will lead to formation of the so-called homoclinic 

structures on branches of the separatrix [9÷13] and to formation of a stochastic layer nearby 

the separatrix. In this case the extraordinary complexity of motion in the vicinity of separatrix 

was known still to H. Poincaré [12÷14]:  “… Complexity of this picture of motion so amazes 

that I do not try to represent it at all”. Till now it was not possible to receive a strict estimation 

of width of the stochastic layer, and the results presented usually are based on approximate 

description of motion in the vicinity of separatrix in presence of perturbations. Therefore in 

this paper we have tried as much as possible to do without searching the exact solution of the 

equations of motion in such nonlinear potential (without perturbations) for all channeled 

particles, and limited ourselves by using of the Hamiltonian formalism for the description of 

the motion and for finding the characteristic parameters (or, to be more exact, the functions) 

of the motion. Among them such functions as dependence of frequency and multipole 

parameter ρ  from amplitude of periodic motion, amplitude distribution of the channeled 

positrons. Use of such formalism has allowed to overcome some difficulties in determining 

the radiation occurring at sufficiently large amplitudes (see [5, 7]). 

The radiation type of a relativistic particle depends on the value of multipole parameter

ρ . When 1<<ρ  it corresponds to the interference type (dipole approximation) of the 

radiation formed along sufficiently large length of the crystal. The case with 1>>ρ  is close to 

the synchrotron radiation. At ρ  ∼ 1 the intermediate case takes place. Analyzing some 

radiation process it is necessary to consider the whole ensemble of the channeled particles in 

the corresponding phase space because the motion parameters (amplitude of oscillations, for 

example) in a not thick monocrystal are defined by the initial conditions on its input. And as it 

will be shown, various types of radiation generated by particles with different initial 

conditions can be realized in the considered process. 

The parameter ρ  becomes an order of 1 at planar channeling of positrons (at least for an 

appreciable part of the particles) starting from energies of several GeV. At energies of tens 

GeV a major portion of the positrons is characterized by parameter ρ  from 1 to several units. 

In this case the calculations should take into account the nondipole character of radiation. The 

corresponding mathematical apparatus for the radiation during a periodic motion can be found 

in the monograph [1] (quantum and classical cases in vacuum) and paper [8] for the 

transparent medium (a classical case). At energies of positrons 100 GeV and more the 

parameter ρ  can exceed 20 units for a considerable part of the particles. In this case one can 

expect the complication of the procedure of calculations given in [1] for planar motion as the 
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great number of harmonics starts to be radiated. On the other hand the authors of [1] declare 

that in this case the radiation has practically a magnetic bremsstrahlung character and 

recommend to use the corresponding formulae for the calculations. 

In view of everything told above, in the given work we wish to receive the following 

results:  

1. on the basis of the Hamiltonian formalism to consider the motion of an 

ultrarelativistic particle in the  real plane potential of a monocrystal and to study 

the influence of nonlinearities on an ensemble of particles captured in a mode of 

channeling; 

2. to investigate and compare various methods of calculation the intensity of positron 

radiation with energies an order of 100 GeV at their different initial conditions on 

an input in a monocrystal; 

3. to give some predictions for the radiation intensity of the channeled positrons 

which it will be possible to measure in the future experiment INSURAD.  

The received results will be a basis for the further consideration of the radiation process in a 

bent monocrystal. 

 

 

§1.   Interplanar one–dimensional motion of channeled positrons 

 

The motion of a charged ultrarelativistic particle in the interplanar electric field D of a 

monocrystal can be described by the following system of equations 
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Where:  syx ,,  - the Cartesian co-ordinates of a particle (the electric field D is directed 

along the axis x ); γ,, eE - energy, charge and gamma factor of a particle, accordingly;  t - 

time,  c - velocity of light. At certain initial conditions these equations describe the particle 

motion in the mode of channeling. In this case the first equation describes periodic motion 

along coordinate x , while the third equation reflects the influence of transverse motion of a 

particle on longitudinal one. Despite of a relatively small value, this change of longitudinal 

velocity of a particle is taken into account in calculations of radiation intensity. From the 

above equations it is seen that the problem of finding the trajectory of a particle in three-

dimensional space is reduced to finding the function )(tx . 

In this paragraph we will consider periodic (generally nonharmonic) motion of positrons 

with energy of 120=E GeV in the interplanar potential of a straight crystal Si with orientation 

(011). We will define the basic characteristics of this motion which are the most essential to a 

spectrum of radiation of positrons with the specified energy during their passage through a 

crystal. These characteristics, first of all, are the dependence of frequency, multipole para-

meter ρ and density of distribution of positrons on the amplitude of motion.  

The interplanar potential is calculated for silicon at a room temperature as it is described 

in work [5]. At first the exact expression for planar electric field of a monocrystal (in this case 
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on the basis of x-ray measurements of atomic form-factors of silicon) in the form of a Fourier 

series has been received. Then this field was expanded in a series of orthogonal Legendre 

polynomials, which has allowed us to present it as a polynomial of interplanar coordinate x . It 

is obvious that this method allows to receive the representation of electric potential of a field 

as much as close to its exact value. We have limited ourselves by its description with an 

accuracy nearby 1 % that corresponds to a polynomial of 14 degree. Thus, the interplanar 

potential of interaction of a positron in a straight crystal is defined by expression 

∑−=
=

7

1

2

22
)(

k

kk

k

d
U ξ

α
ξ  ,                                                                       (1) 

where: 
2/d

x
=ξ   -normalized interplanar  coordinate,  ]1,1[ +−∈ξ ;   

 92.1=d Å - interplanar distance in (011) channel;  

 ( )13.137579.481105.531552.234078.44386.1321.32 −−−−=α

r

  in  [eV/ Å]; 

such values of 
k

α  provide 0/ =ξddU     at    1±=ξ .  

The dependence )(ξU  is shown in the following drawing, where 873.21o =U eV - level of 

potential barrier. 

 
eV/)(ξU  

 
Fig.1: Interplanar potential in straight crystal of Si 

(a plane (011)). 
 

In a Fig. 2 the dependence of normalized frequency )(
m

ξΩ  on the amplitude of periodic 

motion is shown 

omm
/)()( ωξωξ =Ω , 

where:  sec/10013.5/||2)0( 132

1o ×≅=≡ dEcαωω  - frequency of oscillations with small 

(zero) amplitudes in the potential hole )(ξU  shown above. The maximum displacement of 

periodic motion is interpreted as amplitude 
m

ξ . The technique of getting this dependence was 

the standard one (see, for example, [9]). Namely, the motion of a positron in normalized 

potential well )(
~
ξU  defined by the relation  
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is described by the canonical equations 

p
d

d
=

τ

ξ       and     
ξ

ξ

τ d

Ud

d

dp )(
~

−= ,                                                               (2) 

where:    t
o

ωτ =   - the dimensionless time (phase);    

    εξξ =+= )(
~

2
),(

2

U
p

pH      - Hamiltonian.                                          (3) 

The Hamiltonian in this case is the integral of motion. To find the frequency (which is 

reverse to the period) it is convenient to pass from canonical variables ),( pξ  to a new 

Hamiltonian with canonical variables "angle-action" ),( Jθ  with the help of canonical 

transformation. Using of such new variables is a convenient way to get frequency of a 

periodic motion, not demanding finding-out of details of the motion itself. 

The action J  in dependence on transverse "energy" ε  of the motion in a well  )(
~
ξU  is 

defined as the integral along a phase trajectory with fixed ε  

ξ
ε
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π
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π
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εεε dUdpJ ⋅∫ −=∫ ⋅=
)(

))(
~

(2
2

4
),(

2

1
)(

m

0

 ,  

where )(
m
εξ  - maximum deviation (amplitude) which is defined from equation 

εξ =)(
~

m
U .                                                                               (4) 

Owing to the biunique dependence )(εJ  for positrons caught in the interplanar channel, in 

principle, we know (at least numerically) the inverse function  

)(Jεε =   . 

Particles with ]
~

,0[
o

U∈ε  are the channeled ones making a limited motion within the channel, 

and with 
o

~

U>ε     are the over-barrier particles whose motion is not limited over ξ . New 

Hamiltonian where as a canonical momentum the action J , which is also the adiabatic 

invariant, is chosen, for the channeled particles is equal 

       )()(),( JJHJH εθ ==  . 

From this we have: 

           0
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∂

∂
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d
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J
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∂

∂
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θ   - normalized frequency, i.e. 

                     ∫ −=Ω−

m

0

mm ))(
~

)(
~

(2/
2

4
)(1

ξ

ξξξ
π

ξ UUd     

The dependence of normalized frequency Ω  on amplitude mξ   for the potential (1) is shown 

in Fig. 2.  

The multipole parameter ρ  essentially defines the character of radiation of an 

oscillating channeled positron and is expressed through parameters of plane periodic motion 

of a particle as follows [1]:  
22 )/(2

x
cυγρ = , 
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where the averaging is taken over the motion period. For the channeled positron with the 

given amplitude of motion  mξ  we have 

ξξξ
π

ξκγξξκγκγξρ
ξ

dUUJp ∫ −Ω=Ω==
m

0

mmmmm ))(
~

)(
~

(2
4

)()()(22)( 2222222 , 

where cd 2/
o

ωκ = .  For the potential (1)   6
10052.16

−

⋅≅κ   at the frequency 
o

ω  defined 

above. In Fig. 3 (the continuous line) the exact dependence of multipole parameter on 
amplitude mξ  is shown. Thus, at the given potential both dipole and magnetic bremsstrahlung 

radiation types can be realized. 
 

)(
m

ξΩ  )(
m

ξρ

 
 

Fig.2: The dependence of normalized fre-
quency on amplitude  mξ  of periodic motion 

of the channeled particle. 

Fig.3: The dependence of multipole para-
meter on amplitude mξ  of periodic motion of 

the channeled particle:  “––“ – the exact one, 
“····” – harmonic approximation (see 
further). 

 

The received frequencies correspond to nonlinear (not harmonic) oscillations. The 

closer mξ  to 1, the stronger difference of periodic motion from the harmonic one. Compa-

rison at given mξ  of the exact numerical decision of the equation of motion with approxi-

mating harmonic oscillation with the same mξ  and normalized frequency   )(
m

ξΩ  

   ( )τξξξ ⋅Ω= )(cos
mm

                                                                  (5) 

is shown in the Fig. 4a and 4b. In these drawings dependences ξ  from πτ 2/  are seen: 

continuous lines correspond to the exact numerical decision of the equations of motion, and 

dotted ones to harmonic approximation. Thus, practically in all range 980.00
m
≤≤ ξ   we can 

consider the motion of channeled positrons to be the harmonic one with the calculated values 

of frequencies  )(
m

ξΩ .  
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)2/( πτξ  )2/( πτξ

Fig.4a:  Comparison of solutions at 
980.0

m
=ξ . 

Fig.4b:  Comparison of solutions at 
995.0

m
=ξ . 

 

If periodic motion of a positron is considered in harmonic approximation (5) the 

expression for multipole parameter simplifies to 

  ( )2222
mmm

)(2)( ξξκγκγξρ Ω== p  .  

Fig. 3 shows the dependence of multipole parameter (dashed line) calculated under this 

formula. It is seen that the harmonic approximation of periodic motion of positrons with 

energy of 120=E  GeV is quite acceptable for calculation of the radiation spectrum of 

channeled particles. 

 

 

§2.   Distribution of density of channeled particles on amplitudes of motion 

 

Besides dependence of frequency on amplitude of periodic motion for determining the 

full spectrum of radiation from all captured in the channeling positrons it is necessary to 

know: 

• �  - a relative part of particles of the beam, captured into the channeling; 

• )( mξf  - density distribution of channeled positrons on amplitudes 
m

ξ . 

We suppose that at the entry to the straight crystal positrons are distributed uniformly along 

the transverse coordinate x , and hence along ξ , and with the angular distribution )(ϑg . In 

normalized variables ),( pξ  according to (2) we have the following relation between ϑ  

and p    

κ

ϑ
ϑ

ωω

υ

τ

ξ
=≅==

d

c

ds

dx

dd

d
p

oo

s
2

)2/(
 ,                                                           (6)  

where  tcts ≅=
s

υ  is the longitudinal coordinate along the channel and  4
10230.6/1 ×≅κ . 

From here the distribution of particles at the entry to the crystal on variable p  becomes 

)()(~ pgpg κκ= .  
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Closed phase curve ),(
m

ξξpp =  in the plane { }ξ,p  with a fixed mξ  for a channeled 

particle (see Fig. 5) according to (3, 4) is given by expression 

))(
~

)(
~

(2),(
mm

ξξξξ UUp −±=      with   ],[
mm

ξξξ −∈   and  10
m
≤≤ ξ .              (7) 

 

 

Fig.5: Phase portrait of capture of particles in the channeling. 
 

Separatrix is the phase curve, separating the channeled and over-barrier particles, 

described by expression )1,()(
c

ξξ pp = . The maximum value of 
L

p  corresponds to the 

Lindhard angle 
L

ϑ , achieved at 0=ξ  and equal to )1(
~

2|)0(| cL
Upp == . At the considered 

parameters of the straight crystal and the magnitude of the positrons energy we have 

according to (6): 189.1
L
≅p  and 6

10093.19
L

−

×≅ϑ . Thus, the portion of particles captured 

in the channeling mode, i.e. moving inside the separatrix, is given by 

 ∫∫=
−

||
)(~

)(

|)(

1

0

c

c
|

ξ

ξ

ξ
p

p

dppgd�   .                                                                         (8) 

We are going now to find the density function )(
m

ξf  of particles distribution on the 

amplitudes only for the particles occurring in channeling. Hereinafter we mean ),(
m

ξξp  to be 

a positive branch of the definition (7). The relative number of channeled particles �  with 

amplitude 
m

ξ≤  is equal to  

   ∫∫=
−

),(

),(

1

0
m

m

m

)(~
1

)(
ξξ

ξξ

ξξ
p

p

dppgd
�

F ,     i.e.    1)1( =F ,                                         (9) 

Then for the density function we get the expression  
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In the future, we confine ourselves to the simplest case of uniform and symmetric about zero 

angle distribution of particles, i.e. 

⎪⎩
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o
= . 

a)  For the case when the half-width of angular divergence more than the Lindhard angle, i.e. 

Lo ϑϑ >  and, consequently, 
L

p>η , according to the preceding, we have: 
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Thus, at 
Lo ϑϑ >  the functions )( mξF  and )(

m
ξf  do not depend on 

o
ϑ .    

Consider the approximation of a parabolic potential, where the above formulas are 

integrated until the end in the analytical form. For this we will limit ourselves in the 

representation of the potential )(
~
ξU  only by the first term of the expansion, i.e. 2/)(

~ 2ξξ =U

.   Then )(2))(
~

)(
~

(2 22
mm

ξξξξ −→−UU .  Hence:  

η

π

4
=�   ,       2

mm
)( ξξ =F   ,       

mm
2)( ξξ =f   . 

b)  For the case when the half-width of the angular spread of the beam is less than the 

Lindhard angle, 
Lo ϑϑ <  and, hence, 

L
p<η  (see Fig. 5), we introduce the amplitude

1
ξ , for 

which the phase curve has a maximum ηξ =),0(
1

p , i.e. it is determined from the equation 

ηξ =)(
~

2
1

U . In addition, for every phase curve with the amplitude 1m1
≤< ξξ   we determine 

the value  
2

ξ   which depends on 
m

ξ . Dependence )( m2
ξξ  is determined by the equation 

ηξξ =− ))(
~

)(
~

(2
2m UU . Note that 0)(

12
=ξξ . According to the formulas of general form 

(8 ÷ 10) for our case of the angular spread in the beam of positrons, we get:   
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~

)1(
~
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1

)1(
2
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η

ξ
ξ

UUd� −∫+=   ;                                                                      (11) 
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Thus, at 
Lo ϑϑ <  in a parabolic approximation, we obtain ηξ =

1
 and 22

mm2
)( ηξξξ −= , and 

the above formula reduces to 

     )arcsin(
2

1
1

2

1 2
η

η
η +−=�     

      
⎪⎩

⎪
⎨

⎧

≤≤+−

≤≤
=

1if)/arcsin(1

0if2/

2

1
)(

mmm

mm

m
22

2

ξηξηξηη

ηξξπ

η
ξ

�
F    

         
⎪⎩

⎪
⎨
⎧

≤≤

≤≤
=

1if)/arcsin(

0if2/
)(

mm

m
m

m

ξηξη

ηξπ

η

ξ
ξ

�
f   . 

Calculated by the expression (11) dependence of the relative capture �  in the 
channeling regime on the value of the half-width of the angular spread 

o
ϑ  of the beam for the 

potential (1) is shown in Fig. 6. Calculated according to (12) density functions )(
m

ξf  for 

some values 6
10

o
×ϑ  are shown in Fig. 7.  

 
)(

o
ϑ�  )(

m
ξf

Fig.6: Capture in the channel in depen-
dence on the angular spread rad/

o
μϑ  . 

Fig.7: Distribution functions of channeled par-
ticles on the amplitudes 

m
ξ  for rad/

o
μϑ  

(values above the curves). 
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From the above analysis it follows the further important conclusion: in the potential (1), 

where 0/
~

→ξdUd  at 1±→ξ  the density distribution  0)(
m

→ξf  at 1
m
→ξ . Thus, a small 

(almost zero) density of the channeled particles is shown for oscillations with amplitudes 

close to unity. This once again makes the approximation of the harmonic nature of the motion 

of channeled positrons in a crystal true enough.  

 

§3.   The radiation of channeled positrons in quasiperiodicmotion 

 

To find the radiation spectrum  of channeled positrons, oscillating in the interplanar 

potential (1), use the formula derived in [1] (p.303) for the quasiperiodic motion of a particle 

at all values of multipole parameter ρ , taking into account the quantum recoil effect after the 

emission of a photon. This formula is valid for calculations of systems in which the particle 

performs sufficiently large (ten or more) number of oscillations along a straight line. In 

deriving the formula the coupling of the transverse and longitudinal motions was taken into 

account. The need to consider the radiation spectrum in such a very general way is due to the 

fact that in the potential (1) multipole parameter (see Fig. 3) covers a wide range of values ρ , 

providing different types of radiation (see Introduction). The radiation spectrum of one 

positron per unit length of a short crystal is determined by the following expression:  

( ) ( )∫ ∫ ×∫ +⋅−⋅∑ +⋅−Φ−=
− −

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
∞

=

π

π

π

π

ϕ

ϕ

ρζζϕμϕϕϕρζ
γπ

α 1

2

)2/1()(2)2/1(
)2( o21

1
2

2

ndJddn
c

E

dsdE

Ed

n

γ

γ

     ( )
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∫+−⋅−×−+×
1

2

)()()2/(cos)()(
2

)(
1 22

2121

ϕ

ϕ

ϕμϕζϕϕρζϕμϕμ dn
EA γ

       (13) 

where:  04.137/1=α ,    γE  is the energy of the emitted photon,  

step function  1)( =Φ y  at 0≥y  and 0=  at 0<y ,   

o
J  is the Bessel function,  c/))(()(

xx
><−= υϕυγϕμ   (in the potential (1) for 

the channeled positron  0
x

=><υ ),    

)()(2
),(

2m

γ

γ

γ

EE

EE
E

−

=

ωγ
ξζ

h

,     )(
mo

ξωω Ω⋅= ,     
)(2

1)(
2

γ

γ
EEE

E
EA

−
+=

γ  .    

According to the previous analysis the motion of a positron in the potential well (1) is 

presented in the form of a harmonic oscillation (5) with the frequency depending on its 

amplitude 
m

ξ . For such an approximation the spectral dependency  )/( 2
dsdEEd γ  on γE  was 

calculated by the previous formula and shown in Fig. 8 for a single channeled positron with 

the following values of =
m

ξ   0.3, 0.5, 0.7, 0.9.  

In calculating the spectrum for each value of γE  the summation over n  in (13) ended at 

)(
max γEn , when the addition of the following term with 1)(

max
+= γEnn   in relation to the 

accumulated sum became less than 1%. Integration was carried out with precision 3
10

− . Full 

spectral emission of all positrons trapped in the channel is given by  
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mm

1

0

m

tot

),()(
2

ξξξ dEf�
dsdE

Ed
γ

γ

∫ Ψ=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
  ,                                        (14) 

where ),(
m

ξγEΨ  is a function of spectral intensity of one positron with amplitude 
m

ξ  , i.e. 

right-hand side of the expression (13). Calculated by formula (14) dependence 

tot)/( 2
dsdEEd γ  on γE   for two cases of the initial half-width of the angular spread of the 

beam of positrons 410
6

o
=×ϑ  and 1910

6
o =×ϑ  is shown in Fig. 9. The maximum level of 

the full spectrum of radiation and the corresponding value of the photon energy γE   are 

shown in the following table.  
6

10
o
×ϑ  η  N tot)/max( 2

dsdEEd γ γE /GeV 

4 0.249 97.96 % ≈4.2/см ≈(1.95÷2.30) 

19 1.184 80.79 % ≈5.1/см ≈(2.27÷2.96) 

As noted above, formula (13) describes the radiation for any value of the multipole 

parameter ρ , including the quantum domain when you need to take into account the recoil 

after the emission of a photon. If we ignore this recoil, the functions ),(
m

ξζ γE  and  )( γEA  in 

(13) take the form  

)(2
),(

2m

ωγ
ξζ

h

γ

γ

E
E =  ,         

2

2

2
1)(

E

E
EA γ

γ
+=  . 

For this case Fig. 12 shows the spectral dependence (pointed line b) for all channeled 

positrons at 1910
6

o
=×ϑ .  

 

 

§4.   The calculation on the basis of relations for magnetic bremsstrahlung 

radiation 

 

Besides of calculating the radiation by use of method [1] (formula (1)), we consider the 

process of radiation in the channeling of positrons by another method, based on the equations 

of classical electrodynamics. This method is valid when the direction of motion of a particle 

moving in a field is changing at an angle substantially higher than the characteristic angle of 

radiation ∼ γ/1 . The essence of the method consists in the fact that we only consider the 

transverse motion and neglect the interference from distant parts of the trajectory, as it is 

realized in the case of magnetic bremsstrahlung radiation. Then according to [15] (see p.258) 

the spectral radiation with frequency of photons ω~  (or energy ωγ

~

h=E  ) per unit length s , 

generated by ultrarelativistic channeled positron, performing harmonic transverse oscillations  

with a frequency )(
m

ξω , is determined by the expression: 

∫ ∫+−=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ ∞2/

0
m )Ai(

2

1)(Ai'
4

2
)(

2

22 π

ϕ
γ

ξ ddss
u

u
n

c

e
M

dsdE

Ed

uγ h

 ,                             (15) 
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where:  ω
~

h=γE ,  h  – Planck constant,  
c2

)(
)( m

m π

ξω
ξ =M  - number of oscillations of a 

particle passing a unit length of the crystal,  
)(

~

m
ξω

ω
=n ,  ∫ +=

∞

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

0 3
cos

1
)Ai(

3

dyyu
y

u
π

 - Airy 

function,  )Ai()(Ai' u
du

d
u = ,  

3

2

)cos(
)(),(

mm ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅==

ϕ
ξχϕξ

n
uu ,  

3

2

2
mm

m

2

)(

1
)( ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

d

c

ξξωγ
ξχ .   

As before, the motion of a positron in a potential well (1) is represented as a harmonic 

oscillation (5) with frequency depending on amplitude 
m

ξ . For such an approximation the 

spectral dependences )/( 2
dsdEEd γ  on γE  were calculated by the previous formula (15) and 

shown in Fig. 10 (similar to Fig. 8)  for a single channeled positron with the following values 

of the amplitudes =
m

ξ 0.3, 0.5, 0.7, 0.9, 0.940, 0.995, 0.999.  So now the total radiation of all 

particles captured in the channel is given by the expression 

mm

1

0

m ),()(

tot

2

ξξξ dELf�
dsdE

Ed
γ

γ

∫=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
,                                                          (16) 

where ),(
m

ξγEL  is a function of the spectral intensity of a positron with amplitude 
m

ξ , i.e. 

right-hand side of expression (15). The dependence 
tot)/( 2

dsdEEd γ  on γE  calculated by 

formula (16) for two cases of the initial half-width of the angular spread of the positron beam 

4/
o

=radμϑ  and 19/
o

=radμϑ  is shown in Fig. 11. 

Fig. 12 shows the spectral curves obtained for the case of 19/
o

=radμϑ  using two 

methods from [1] taking into account the recoil (curve a) and without it (curve b) and from 

[15] using classical electrodynamics (curve c). Comparison of these dependences shows their 

satisfactory agreement: the maximum of the radiation spectrum obtained by means of the 

classical electrodynamics exceeds such a maximum taking into account the recoil less than 

10%. 

 

Discussion of results 

 

The planar periodic motion of a positron channeled in straight crystal with orientation 

(011) was discussed in the paper in some detail: dependences of the oscillation frequency and 

of the multipole parameter on the amplitudes have been found. A wide range of values of the 

multipole parameter in the considered potential points out the realization of various types of 

radiation: interference – mostly by the particles with small amplitudes and magnetic 

bremsstrahlung - with relatively large amplitudes. It is shown that in such a potential the 

density distribution of channeled particles on the amplitude 
m

ξ  tends to zero at 1
m
→ξ . 

These are the particles which, while moving,  approach close to the crystallographic planes. 

The portion of such particles is small and, furthermore, these particles are more likely to leave 

the channeling regime, i.e. be dechanneled due to interaction with nuclei of the crystal lattice.  

It is shown that for the main part of the channeled particles with amplitudes less than 

≈0.98, their motion is the harmonic oscillations with calculated frequencies, depending on 
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their amplitudes. The calculation of the radiation spectrum of channeled particles in this 

harmonic approximation is greatly simplified in two ways: the method used in [1] with and 

without taking into account the quantum recoil and the method of classical electrodynamics 

[15]. Comparison of the results shows their satisfactory agreement: the maximum of the 

radiation spectrum received by means of the classical electrodynamics exceeds the maximum 

received with taking into account the recoil by less than 10%.   

Thus, because the method of [1] applies only to a straight crystal, the method of 

classical electrodynamics [15] may serve as a basis for further consideration of the radiation 

process in a bent monocrystal.  

 

 

Conclusion 

 

The calculations prove the prospects for the application of monocrystals to create  

powerful sources of directed radiation at the accelerators and will be used for comparison 

with experimental data INSURAD and when planning new studies at CERN and SRC IHEP. 
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 )/( 2
dsdEEd γ  × cm  

Fig.8:  Spectral dependence )/( 2
dsdEEd γ  on γE /GeV, obtained by method of [1] taking 

into account the recoil during the radiation for the values 
m

ξ  marked on each curve. 

 

 

 

 

 

  

tot)/( 2
dsdEEd γ × cm      

Fig.9: Total spectral intensity depending on the energy of the emitted photons  γE /GeV 

obtained by the method of [1] taking into account the recoil during the radiation. 
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  )/( 2
dsdEEd γ × cm  

Fig.10: Spectral dependence )/( 2
dsdEEd γ   on γE /GeV, obtained by the method of classical 

              Electrodynamics [15] for the values 
m

ξ  marked on each curve. 

 

 

 

 

 

  

tot)/( 2
dsdEEd γ × cm      

Fig.11: Total spectral intensity depending on the energy of the emitted photons γE  /GeV 

                   obtained by the method of classical electrodynamics [15]. 
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tot)/( 2 dsγdEEd × cm      

Fig.12: The total spectral intensity depending on the energy of the emitted photons γE  /GeV 

at rad19
o

µ=ϑ  calculated by the method of [1] taking into account the recoil (curve a) and 

without it (curve b), method of classical electrodynamics [15] (curve c). 
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