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Abstract

V.A. Maisheev et al. Channeling radiation of positrons with energy in the region of 100 GeV in single
crystals,IHEP Preprint 2009 — 21. — Protvino, 2009. — p. 18, fig. 12, refs.: 15.

The process of radiation of 120-GeV positrons moving in a channeling regime in (011) plane of a
single crystal was considered. At the beginning on the basis of the theory of nonlinear oscillations the
trajectory of moving positrons at different initial conditions were derived. Then taking into account the
nonlinearity of motion the distribution function over oscillation amplitudes of channeling particles was
found. After this the intensity of radiation at different initial conditions was calculated with the help of
two various methods. These results may be useful for comparison with experimental data at positron
energies from 100 and more GeV.

AHHOTANHUA

MamuieeB B.A. u np. Msnydenre (HOTOHOB NMpPH KaHATUPOBAHWK TO3UTPOHOB B MOHOKpHCTAa/UIaX B
obnactu snepruii 100 I'3B, penpunt UOBS 2009 —21. — [IpoTeuno, 2009. —18 c., 12 puc., Gudauorp.:
15.

PaccmoTpen mpouece umznydenus 120 - 9B mosutpoHoB B pexxume kaHamupoBanus B (011)
TUIOCKOCTH MOHOKpHCTa/ula KpemHHs. CHavalla Ha OCHOBE TEOpPHHM HENMHEHWHBIX KojeOaHWi OblLin
paccunTaHbl TPACKTOPHUU ABUKYIHIUXCA MO3UTPOHOB IMPU pasHbIX HaAYAJIbHLIX YCJIOBHUAX. 3areMm [pyuHUMasn
BO BHUMAaHUE HEJIMHEHHOCTh ABM)KEeHHWS ObUTa HaliieHa QyHKIHs pacTpeesieHus] KaHATMPYIOLIUX YacTHUI
no wx ammumrynam. llocme »toro Obla paccuyWTaHa ¢ TIOMOIIBIO JBYX pa3iMYHBIX METOAOB
HUHTECHCHUBHOCTb M3JIYUCHHW IMPU Pa3HbIX HaYaJIbHBIX YCJIOBHAX. OTH pe3yJibTaTbl MOT'YT 6blTb ITOJIC3HbI
IUTSE CpPaBHEHHs C SKCIIEPUMEHTATbHBIMU NTaHHBIMU TIPH SHEPTUsX mo3uTpoHoB HauwHas ¢ 100 BB u
Oomnee.
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Introduction

By this time the considerable number of experimental and theoretical works is devoted
to researching the radiation at plane channeling of high energy positrons in monocrystals (see
[1, 2, 3] and the literature quoted there). This radiation arises during the motion of a charged
particle under a small angle in relation to a crystallographic plane and (in a case of
ultrarelativistic positrons with energies up to ~20 GeV) is monochromatic enough and is
characterized by high intensity. At energies of positrons more than ~20 GeV
monochromaticity of the radiation strongly degrades. The majority of experiments on study
the radiation during channeling of the relativistic positrons was executed at energies from
several hundreds of MeV to tens GeV where the distinct peak in intensity of radiation
dominates which is gradually smeared at energies more than ~20 GeV [3] due to increase of
the radiation intensity of high harmonics. Concrete theoretical consideration of the process is
also concentrated basically to the specified range of energies. A large number of interesting
data has been received during the experiment [4] where the radiation of leptons at energy of
150 GeV in the straight crystals was investigated.

In September, 2009 in CERN the experiment INSURAD devoted to research of
radiation at various orientations of bent monocrystals has been made at energy of positrons of
120 GeV. In particular, the big statistics has been received on radiation of positrons during
their motion in plane fields of bent silicon monocrystals which is processed now. Conti-
nuation of this experiment is planned in 2010, in particular, it is supposed to measure
radiating processes in straight (not bent) monocrystals for the purpose of correct comparison
of all received data. It is powerful argument in favour of theoretical research of the specified
processes (and in particular radiations during plane channeling in the straight and bent
monocrystals) at energies more than 100 GeV.

Thus, the given paper is devoted to theoretical consideration of radiation process of the
ultrarelativistic positrons with energy of an order of 100 GeV, channeling in straight crystals.

Radiation characteristics of relativistic particles with the set energy E are defined by its
motion in a monocrystal electric field. Therefore, first of all, it is necessary to describe this
motion. For this purpose it is necessary to know the electric field or the potential distribution
in crystallographic planes. Such field (potential) is found analytically on the basis of relations
for an atom field in the model of Moliere or, more precisely, on the basis of approximation of
the corresponding data received as a result of x-ray measurements. Instead of exact
representation of an electric field (or potential) their simplifications (so-called modeling
potentials) are often used by means of rather simple functions. The lack of such consideration
is that it is impossible to describe the plane fields well enough by some simple functions in
the consent with calculations using the Moliere model or any other realistic model of atom.
Another approach is used in paper [5] where the field was represented as Fourier series, and it
has been shown that plane potentials of a field of monocrystals can be described by
polynomials of rather high degree which practically (an error nearby 1 % for a polynomial of
14 degree) do not differ from initial exact representations.



It is obvious that a potential in the central part between crystal planes has the parabolic
form, but near to the planes it is strongly nonlinear, because it should provide a zero electric
field on the crystal planes due to similarity of plane cells and due to physical continuity.
Besides, it is difficult to find an exact solution of the motion equations with the help of
asymptotic methods of nonlinear oscillations [6] (and used in [5, 7]) for the case of channeled
particles making periodic motion in such nonlinear interplanar potential well with the big
amplitudes and closed phase trajectories which are close to a separatrix, separating the
channeled particles from the over-barrier ones. Moreover, even insignificant perturbations,
such as irregular displacement of planes, will lead to formation of the so-called homoclinic
structures on branches of the separatrix [9+13] and to formation of a stochastic layer nearby
the separatrix. In this case the extraordinary complexity of motion in the vicinity of separatrix
was known still to H. Poincaré [12+14]: ... Complexity of this picture of motion so amazes
that I do not try to represent it at all”. Till now it was not possible to receive a strict estimation
of width of the stochastic layer, and the results presented usually are based on approximate
description of motion in the vicinity of separatrix in presence of perturbations. Therefore in
this paper we have tried as much as possible to do without searching the exact solution of the
equations of motion in such nonlinear potential (without perturbations) for all channeled
particles, and limited ourselves by using of the Hamiltonian formalism for the description of
the motion and for finding the characteristic parameters (or, to be more exact, the functions)
of the motion. Among them such functions as dependence of frequency and multipole
parameter p from amplitude of periodic motion, amplitude distribution of the channeled
positrons. Use of such formalism has allowed to overcome some difficulties in determining
the radiation occurring at sufficiently large amplitudes (see [5, 7]).

The radiation type of a relativistic particle depends on the value of multipole parameter
p. When p<<l1 it corresponds to the interference type (dipole approximation) of the

radiation formed along sufficiently large length of the crystal. The case with p >>1 is close to
the synchrotron radiation. At p ~1 the intermediate case takes place. Analyzing some

radiation process it is necessary to consider the whole ensemble of the channeled particles in
the corresponding phase space because the motion parameters (amplitude of oscillations, for
example) in a not thick monocrystal are defined by the initial conditions on its input. And as it
will be shown, various types of radiation generated by particles with different initial
conditions can be realized in the considered process.

The parameter p becomes an order of 1 at planar channeling of positrons (at least for an
appreciable part of the particles) starting from energies of several GeV. At energies of tens
GeV a major portion of the positrons is characterized by parameter p from 1 to several units.
In this case the calculations should take into account the nondipole character of radiation. The
corresponding mathematical apparatus for the radiation during a periodic motion can be found
in the monograph [1] (quantum and classical cases in vacuum) and paper [8] for the
transparent medium (a classical case). At energies of positrons 100 GeV and more the
parameter p can exceed 20 units for a considerable part of the particles. In this case one can

expect the complication of the procedure of calculations given in [1] for planar motion as the



great number of harmonics starts to be radiated. On the other hand the authors of [1] declare
that in this case the radiation has practically a magnetic bremsstrahlung character and
recommend to use the corresponding formulae for the calculations.

In view of everything told above, in the given work we wish to receive the following
results:

1. on the basis of the Hamiltonian formalism to consider the motion of an
ultrarelativistic particle in the real plane potential of a monocrystal and to study
the influence of nonlinearities on an ensemble of particles captured in a mode of
channeling;

2. to investigate and compare various methods of calculation the intensity of positron
radiation with energies an order of 100 GeV at their different initial conditions on
an input in a monocrystal;

3. to give some predictions for the radiation intensity of the channeled positrons
which it will be possible to measure in the future experiment INSURAD.

The received results will be a basis for the further consideration of the radiation process in a
bent monocrystal.

§1. Interplanar one—dimensional motion of channeled positrons

The motion of a charged ultrarelativistic particle in the interplanar electric field D of a
monocrystal can be described by the following system of equations

Ed? a2y ds 11 [(dx)  (dy)
Zaz P 2Tt a Ty —Hﬂ %

Where: x,y,s - the Cartesian co-ordinates of a particle (the electric field D is directed
along the axis x); E,e,y- energy, charge and gamma factor of a particle, accordingly; ¢-

time, c - velocity of light. At certain initial conditions these equations describe the particle
motion in the mode of channeling. In this case the first equation describes periodic motion
along coordinate x, while the third equation reflects the influence of transverse motion of a
particle on longitudinal one. Despite of a relatively small value, this change of longitudinal
velocity of a particle is taken into account in calculations of radiation intensity. From the
above equations it is seen that the problem of finding the trajectory of a particle in three-
dimensional space is reduced to finding the function x(¢) .

In this paragraph we will consider periodic (generally nonharmonic) motion of positrons
with energy of £ =120GeV in the interplanar potential of a straight crystal Si with orientation
(011). We will define the basic characteristics of this motion which are the most essential to a
spectrum of radiation of positrons with the specified energy during their passage through a
crystal. These characteristics, first of all, are the dependence of frequency, multipole para-
meter pand density of distribution of positrons on the amplitude of motion.

The interplanar potential is calculated for silicon at a room temperature as it is described
in work [5]. At first the exact expression for planar electric field of a monocrystal (in this case



on the basis of x-ray measurements of atomic form-factors of silicon) in the form of a Fourier
series has been received. Then this field was expanded in a series of orthogonal Legendre
polynomials, which has allowed us to present it as a polynomial of interplanar coordinate x. It
is obvious that this method allows to receive the representation of electric potential of a field
as much as close to its exact value. We have limited ourselves by its description with an
accuracy nearby 1 % that corresponds to a polynomial of 14 degree. Thus, the interplanar
potential of interaction of a positron in a straight crystal is defined by expression

__d Ly o
U= X Spet ()
where: & :% -normalized interplanar coordinate, &e[-1,+1];

d=192A - interplanar distance in (011) channel;
a=(-3221 13.86 —443.78 234052 -5315.05 4811.79 —-1375.13) in [eV/A];
such values of &, provide dU/dS=0 at &==I.

The dependence U(¢) is shown in the following drawing, where Us=21.873¢eV - level of
potential barrier.
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Fig.1: Interplanar potential in straight crystal of Si
(aplane (011)).

In a Fig. 2 the dependence of normalized frequency Q(&,,) on the amplitude of periodic

motion is shown

Qem) = 0(Sm)/ @, »

where: @, =@ (0)=4/2|| c2/Ed =5.013 x10'3/sec - frequency of oscillations with small

(zero) amplitudes in the potential hole U($) shown above. The maximum displacement of
periodic motion is interpreted as amplitude &, . The technique of getting this dependence was
the standard one (see, for example, [9]). Namely, the motion of a positron in normalized
potential well U (&) defined by the relation
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U(&)= 52"

‘0‘1| k=
is described by the canonical equations
d§ _ dp __dU(&)

d £ -— 2
=p and Q- 2

where: T=w,t -the dimensionless time (phase);

>

H(,p)= —+ U ()=¢ - Hamiltonian. 3)

The Hamiltonian in this case is the integral of motion. To find the frequency (which is
reverse to the period) it is convenient to pass from canonical variables (£, p) to a new

Hamiltonian with canonical variables "angle-action" (#,J) with the help of canonical

transformation. Using of such new variables is a convenient way to get frequency of a
periodic motion, not demanding finding-out of details of the motion itself.

The action J in dependence on transverse "energy”" & of the motion in a well U(&) is

defined as the integral along a phase trajectory with fixed &

£(8) ——
JE) = fpEerde=s | 2Ae-0)-dt .
0

where £,(€) - maximum deviation (amplitude) which is defined from equation
ﬁ(é: m) =€. (4)
Owing to the biunique dependence J(&) for positrons caught in the interplanar channel, in
principle, we know (at least numerically) the inverse function
e=¢g(J) .
Particles with £ €]0, U o] are the channeled ones making a limited motion within the channel,

and with & > 170 are the over-barrier particles whose motion is not limited over . New
Hamiltonian where as a canonical momentum the action .J, which is also the adiabatic
invariant, is chosen, for the channeled particles is equal

H@O,H)=H(J))=¢(J)) .
From this we have:

dJ __0g(J)
dr 20

§IT1 ~ ~
gl@@:% [ dEn20E)-U(E)
0

~ do
=0 . G2=0()=2

2e(J)

T normalized frequency, i.e.

The dependence of normalized frequency Q on amplitude &, for the potential (1) is shown
in Fig. 2.
The multipole parameter p essentially defines the character of radiation of an

oscillating channeled positron and is expressed through parameters of plane periodic motion
of a particle as follows [1]:

p=272<(vx /c)2>,



where the averaging is taken over the motion period. For the channeled positron with the
given amplitude of motion &, we have

N =
PEn) =272 p?) = 2220 ) = P20 E [ V20 -0 (@) dé .
0

where x =dw,/2¢. For the potential (1) x=16.052-107% at the frequency @, defined

above. In Fig. 3 (the continuous line) the exact dependence of multipole parameter on
amplitude &, is shown. Thus, at the given potential both dipole and magnetic bremsstrahlung
radiation types can be realized.

Q¢ &)
14 25
L3 20|
12 15|

L1 10]

o
0 o1 62 03 04 05 06 07 08 09 1 LI 0 01 02 03 04 05 06 07 08 09 1 LI

Fig.2: The dependence of normalized fre- | Fig.3: The dependence of multipole para-
quency on amplitude &, of periodic motion | meter on amplitude &, of periodic motion of
of the channeled particle. the channeled particle: “—* — the exact one,
“...” —  harmonic approximation (see

further).

The received frequencies correspond to nonlinear (not harmonic) oscillations. The
closer &, to 1, the stronger difference of periodic motion from the harmonic one. Compa-

rison at given &, of the exact numerical decision of the equation of motion with approxi-
mating harmonic oscillation with the same &, and normalized frequency Q(&,,)

& =Emcos(Q(ém) ) (5)
is shown in the Fig. 4a and 4b. In these drawings dependences & from 7/27 are seen:
continuous lines correspond to the exact numerical decision of the equations of motion, and
dotted ones to harmonic approximation. Thus, practically in all range 0 <&, <0.980 we can

consider the motion of channeled positrons to be the harmonic one with the calculated values
of frequencies Q(&,,).
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Em =0.980. Em=0.995.

If periodic motion of a positron is considered in harmonic approximation (5) the
expression for multipole parameter simplifies to

P(Em) = 2y21<2<p2> = (K QEn)Em)? -

Fig. 3 shows the dependence of multipole parameter (dashed line) calculated under this
formula. It is seen that the harmonic approximation of periodic motion of positrons with
energy of £ =120 GeV is quite acceptable for calculation of the radiation spectrum of
channeled particles.

§2. Distribution of density of channeled particles on amplitudes of motion

Besides dependence of frequency on amplitude of periodic motion for determining the
full spectrum of radiation from all captured in the channeling positrons it is necessary to
know:

* N - arelative part of particles of the beam, captured into the channeling;

* f(&m) - density distribution of channeled positrons on amplitudes &, .

We suppose that at the entry to the straight crystal positrons are distributed uniformly along
the transverse coordinate x, and hence along &, and with the angular distribution g(%). In

normalized variables (&, p) according to (2) we have the following relation between 9

and p

_dé_ vy dx _ 203=£
P dr " wgdi)ds  wgd" K’

(6)

where s=uvg/=ct is the longitudinal coordinate along the channel and 1/x =6.230x10%.

From here the distribution of particles at the entry to the crystal on variable p becomes

g(p)=xg(xp).



Closed phase curve p= p(£,&,) in the plane {p.&} with a fixed &, for a channeled

particle (see Fig. 5) according to (3, 4) is given by expression

PEE)=E2T(E)-UE)  with Ee[-En.én] and 0<&y, <1 (7)

over-barrier particles
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channeling particles

Fig.5: Phase portrait of capture of particles in the channeling.

Separatrix is the phase curve, separating the channeled and over-barrier particles,
described by expression p (&)= p(&,1). The maximum value of p; corresponds to the

Lindhard angle 9; , achieved at £ =0 and equal to p; =|p.(0)]= \/217 (1) . At the considered
parameters of the straight crystal and the magnitude of the positrons energy we have
according to (6): p; =1.189 and 4 = 19.093x1075 . Thus, the portion of particles captured

in the channeling mode, i.e. moving inside the separatrix, is given by

1 e
N=[ds [ g(p)dp . (8)
0 pe(@)

We are going now to find the density function f(&,,) of particles distribution on the
amplitudes only for the particles occurring in channeling. Hereinafter we mean p(&,&,,) to be

a positive branch of the definition (7). The relative number of channeled particles N with
amplitude <&, is equal to

1 1 p(é:aé:ml
FE)=~1ds [ 8(pdp. ie FO)=1. ©)
0 -p(&.¢m)

Then for the density function we get the expression



~ é - N
FE=dECn) - 1 dUG) T 4z E(PESn )+ E(p(E.C)) (10)

1
dén N dim P(5:6m)

In the future, we confine ourselves to the simplest case of uniform and symmetric about zero

angle distribution of particles, i.e.

g9 = 1 : l.f =551 . Hence, by (6) in the plane of normalized variables we have
4 |0 if $e[-%.9]

1 {1 it pe[-n7n]

ED=010 it pelona]

a) For the case when the half-width of angular divergence more than the Lindhard angle, i.e.
9, > % and, consequently, 77 > p; , according to the preceding, we have:

1 1 1 1 P =
N=Lilp(&)dz =L [ de200)-0(0))
70 70

, here the boundary of the beam with variable p is n=9,/«.

1 é:m 1 Szm ~ ~
F(én) =77, 14 P& =37 TAEN20En)~UE))
0 0

1 dU(Ey) d¢ ,
N dem 0 \20(En)-U©)
Thus, at , > 9; the functions F(&,,) and f(&,,) do not depend on I .

Consider the approximation of a parabolic potential, where the above formulas are
integrated until the end in the analytical form. For this we will limit ourselves in the

fem)=

representation of the potential U (&) only by the first term of the expansion, i.e. U &)=¢ 2/2
. Then \/ 2U(EL)-U(E)) - \/ 2(£2 —£2) . Hence:
N=gp o Fém=& . fEw=2m .

b) For the case when the half-width of the angular spread of the beam is less than the
Lindhard angle, 9, <9 and, hence, 1 < p; (see Fig. 5), we introduce the amplitude &, , for

which the phase curve has a maximum p(0,&,) =7, i.e. it is determined from the equation

\/217 (£;) =7 . In addition, for every phase curve with the amplitude & <&, <1 we determine
the value &, which depends on &, . Dependence &,(&,,) is determined by the equation

\/2(17 (fm)—ﬁ (&) =n. Note that &,(£)=0. According to the formulas of general form

(8 = 10) for our case of the angular spread in the beam of positrons, we get:

1 — =
N=&MO+L [da200-T¢) (11
I10)]




| = = .
o 120G -0 if 0<gy <)

FEm =1, & ,
L Nae 2O -0 +&6@E it §<én<l
77 62(§m)
Em
3 IJ __de it 0<é, <4
0 _
S = N%y "Z?‘“) gj(U(cfm) 0)) | "
K [ — de — if & <é&n<1
£ \20 (Em) - U (E))

Thus, at 9, <$; in a parabolic approximation, we obtain & =7 and &,(&,,) = \/;ﬂ% - 772 , and
the above formula reduces to

N = %\/1 —772 +21—77arcsin(77)

1 { 7E2 )2 if 0<& <n

F(ézm) =

2Nn 77\/1—772+§§1arcsin(77/§m) if n<&, <1
/2 if 0<&,<n

fEm=sml T |
Nn|arcsin(n/&y) if p<éy <1

Calculated by the expression (11) dependence of the relative capture N in the
channeling regime on the value of the half-width of the angular spread 9, of the beam for the

potential (1) is shown in Fig. 6. Calculated according to (12) density functions f(&,,) for

some values ¢, x10° are shown in Fig. 7.
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Fig.6: Capture in the channel in depen- | Fig.7: Distribution functions of channeled par-
dence on the angular spread 4,/ urad . ticles on the amplitudes &, for ,/urad
(values above the curves).
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From the above analysis it follows the further important conclusion: in the potential (1),
where dU/ dé — 0 at £ — £l the density distribution f(&,)—>0 at &, —> 1. Thus, a small
(almost zero) density of the channeled particles is shown for oscillations with amplitudes

close to unity. This once again makes the approximation of the harmonic nature of the motion
of channeled positrons in a crystal true enough.

§3. The radiation of channeled positrons in quasiperiodicmotion

To find the radiation spectrum of channeled positrons, oscillating in the interplanar
potential (1), use the formula derived in [1] (p.303) for the quasiperiodic motion of a particle
at all values of multipole parameter p , taking into account the quantum recoil effect after the

emission of a photon. This formula is valid for calculations of systems in which the particle
performs sufficiently large (ten or more) number of oscillations along a straight line. In
deriving the formula the coupling of the transverse and longitudinal motions was taken into
account. The need to consider the radiation spectrum in such a very general way is due to the
fact that in the potential (1) multipole parameter (see Fig. 3) covers a wide range of values p,

providing different types of radiation (see Introduction). The radiation spectrum of one
positron per unit length of a short crystal is determined by the following expression:

d*E aE, = 77 o
dEyds:_c(zﬁ;)z Efb(ﬂ—é(lwﬂ))f [ doydo, JO{Zidw(go)\/g-(n§~(1+p/2))}x

-T-7

A(E,) ?
x| 1+ 2y Wcol)—u(rﬂz))z}XCOS{(n—?-p/2)(¢1—fﬂz)+§Idwz(fp)} (13)
)
where: a=1/137.04, E, is the energy of the emitted photon,

step function ®(y)=1at y>0 and =0 at y<0,
J, is the Bessel function, (@)= y(vs(p)—<vy >)/c (in the potential (1) for
the channeled positron <v, >=0),
E,E E?
272 (ha)y)(E ~E)’ o=, Aem). AE)=1+ 2E(E7— E,) "
According to the previous analysis the motion of a positron in the potential well (1) is
presented in the form of a harmonic oscillation (5) with the frequency depending on its

S (Ey.6m) =

amplitude &, . For such an approximation the spectral dependency (d2E/ dE,ds) on E, was

calculated by the previous formula and shown in Fig. 8 for a single channeled positron with
the following values of &,, = 0.3, 0.5, 0.7, 0.9.

In calculating the spectrum for each value of £, the summation over » in (13) ended at

(E,) , when the addition of the following term with n=n,,(E,)+1 in relation to the

nl]’laX

accumulated sum became less than 1%. Integration was carried out with precision 103 . Full
spectral emission of all positrons trapped in the channel is given by

11



CE | _ N ) PEyén)d 14

| =V Cn P E ) (14)
(3

where W(E,.&y,) is a function of spectral intensity of one positron with amplitude &, , i.e.

right-hand side of the expression (13). Calculated by formula (14) dependence
(d?E/ dE, ds), on E, for two cases of the initial half-width of the angular spread of the

beam of positrons %, x10°=4 and 9, x10°=19 is shown in Fig. 9. The maximum level of
the full spectrum of radiation and the corresponding value of the photon energy E, are

shown in the following table.

9, x10° n N max(d2E/dE, ds)y | E,/GeV
4 0.249 | 97.96 % ~42/cm ~(1.95+2.30)
19 1.184 | 80.79 % ~5.1/cm ~(2.27+2.96)

As noted above, formula (13) describes the radiation for any value of the multipole
parameter p , including the quantum domain when you need to take into account the recoil

after the emission of a photon. If we ignore this recoil, the functions ¢(E,,&y,) and A(E,) in

(13) take the form

2

E
AE)=1+—2 .
2E

S(Ey.Em)= W

For this case Fig. 12 shows the spectral dependence (pointed line b) for all channeled
positrons at 4%, x 10°=19.

§4. The calculation on the basis of relations for magnetic bremsstrahlung
radiation

Besides of calculating the radiation by use of method [1] (formula (1)), we consider the
process of radiation in the channeling of positrons by another method, based on the equations
of classical electrodynamics. This method is valid when the direction of motion of a particle
moving in a field is changing at an angle substantially higher than the characteristic angle of
radiation ~1/y . The essence of the method consists in the fact that we only consider the

transverse motion and neglect the interference from distant parts of the trajectory, as it is
realized in the case of magnetic bremsstrahlung radiation. Then according to [15] (see p.258)
the spectral radiation with frequency of photons @ (or energy E, =% ) per unit length s,

generated by ultrarelativistic channeled positron, performing harmonic transverse oscillations
with a frequency @ (&), is determined by the expression:

dPE _ e 280 ”/Z{Al(”%r jA1(S)ds}dgo, (15)
0

dEy ds (gm 7/2 ch

12



where: E,=hw, #h — Planck constant, M (& ):M - number of oscillations of a
’ m 2re
~ 0 3
particle passing a unit length of the crystal, n=—%__, Ai(u)= 1 [cos RAY y|dy - Airy
a)(é:m) o 3

cos(e) mfm—d

As before, the motion of a positron in a potential well (1) is represented as a harmonic

2
. § §
function, Ai'(u)z%Ai(u), uzu(fm#’):)((fm)‘( u J s Z(fm):y—lz( < 2 j .

oscillation (5) with frequency depending on amplitude &, . For such an approximation the
spectral dependences (d2E/ dE,ds) on E, were calculated by the previous formula (15) and

shown in Fig. 10 (similar to Fig. 8) for a single channeled positron with the following values
of the amplitudes &, =0.3, 0.5, 0.7, 0.9, 0.940, 0.995, 0.999. So now the total radiation of all

particles captured in the channel is given by the expression

d’E | !
{WL—Néf(fm)uEy,fm)dfm, (16)

where L(E,.Sy) is a function of the spectral intensity of a positron with amplitude &, , i.e.

right-hand side of expression (15). The dependence (d2E/ dE,ds)y on E, calculated by

formula (16) for two cases of the initial half-width of the angular spread of the positron beam
G,/ prad=4 and 9,/ rad=19 is shown in Fig. 11.
Fig. 12 shows the spectral curves obtained for the case of & /wad=19 using two

methods from [1] taking into account the recoil (curve a) and without it (curve b) and from
[15] using classical electrodynamics (curve ¢). Comparison of these dependences shows their
satisfactory agreement: the maximum of the radiation spectrum obtained by means of the
classical electrodynamics exceeds such a maximum taking into account the recoil less than
10%.

Discussion of results

The planar periodic motion of a positron channeled in straight crystal with orientation
(011) was discussed in the paper in some detail: dependences of the oscillation frequency and
of the multipole parameter on the amplitudes have been found. A wide range of values of the
multipole parameter in the considered potential points out the realization of various types of
radiation: interference — mostly by the particles with small amplitudes and magnetic
bremsstrahlung - with relatively large amplitudes. It is shown that in such a potential the
density distribution of channeled particles on the amplitude &, tends to zero at &, —>1.

These are the particles which, while moving, approach close to the crystallographic planes.
The portion of such particles is small and, furthermore, these particles are more likely to leave
the channeling regime, i.e. be dechanneled due to interaction with nuclei of the crystal lattice.
It is shown that for the main part of the channeled particles with amplitudes less than
~0.98, their motion is the harmonic oscillations with calculated frequencies, depending on
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their amplitudes. The calculation of the radiation spectrum of channeled particles in this
harmonic approximation is greatly simplified in two ways: the method used in [1] with and
without taking into account the quantum recoil and the method of classical electrodynamics
[15]. Comparison of the results shows their satisfactory agreement: the maximum of the
radiation spectrum received by means of the classical electrodynamics exceeds the maximum
received with taking into account the recoil by less than 10%.

Thus, because the method of [1] applies only to a straight crystal, the method of
classical electrodynamics [15] may serve as a basis for further consideration of the radiation
process in a bent monocrystal.

Conclusion

The calculations prove the prospects for the application of monocrystals to create
powerful sources of directed radiation at the accelerators and will be used for comparison
with experimental data INSURAD and when planning new studies at CERN and SRC IHEP.

Work was supported by the Direction SRC IHEP and RFFI grants NeNe 07-02-00022-a,
08-02-01453-a and also grant Ne 09-02-92431-K3 _a of the joint project RFFI — Consortium
EINSTEIN (Italy).
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Fig.8: Spectral dependence (d2E/ dE,ds) on E,/GeV, obtained by method of [1] taking

into account the recoil during the radiation for the values &, marked on each curve.
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Fig.9: Total spectral intensity depending on the energy of the emitted photons E,/GeV

obtained by the method of [1] taking into account the recoil during the radiation.
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Fig.10: Spectral dependence (d2E/dE ,ds) on E,/GeV, obtained by the method of classical

Electrodynamics [15] for the values &,, marked on each curve.
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Fig.11: Total spectral intensity depending on the energy of the emitted photons E, /GeV

obtained by the method of classical electrodynamics [15].

17




(d?E/dEy ds) o X cm

IS
5 R
4 /| r/ﬂ N
MR
,/// \\
| Lo \.
L omeee""]

Fig.12: The total spectral intensity depending on the energy of the emitted photons E, /GeV

at &4, =19 urad calculated by the method of [1] taking into account the recoil (curve a) and
without it (curve b), method of classical electrodynamics [15] (curve ¢).
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