

ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ ФЕДЕРАЦИИ ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

> ИФВЭ 2010–2 ЛДС

Сотрудничество СВД-2

Е.Н. Ардашев, А.Г. Афонин, М.Ю. Боголюбский, А.П. Воробьев, С.Н. Головня, С.А. Горохов, В.Ф. Головкин, В.Н. Запольский, А.А. Киряков, Л.Л. Курчанинов, Г.Я. Митрофанов, В.С. Петров, А.В. Плескач, В.М. Роньжин, В.Н. Рядовиков, В.А. Сенько, Н.А. Шаланда, М.М. Солдатов, А.Г. Холоденко, Ю.П. Цюпа, В.И. Якимчук

ГНЦ РФ Институт физики высоких энергий, Протвино

С.Г. Басиладзе, С.Ф. Бережнев, Г.А. Богданова, А.М. Вишневская, В.Ю. Волков, А.Г. Воронин, Г.Г. Ермаков, <u>П.Ф. Ермолов</u>, Н.И. Гришин, Я.В. Гришкевич, Е.Г. Зверев, С.А. Зоткин, Д.С. Зоткин, Д.Е. Карманов, В.Н. Крамаренко, А.В. Кубаровский, А.К. Лефлат, С.И. Лютов, М.М. Меркин, В.В. Попов, Д.В. Саврина, Л.А. Тихонова

Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына МГУ, Москва

А.Н. Алеев, В.П. Баландин, В.И. Киреев, Н.А. Кузьмин, Г.И. Ланщиков, Ю.П. Петухов, Н.Ф. Фурманец, А.И. Юкаев

Объединенный институт ядерных исследований, Дубна

СВОЙСТВА НЕЙТРАЛЬНЫХ ОЧАРОВАННЫХ МЕЗОНОВ В рА-ВЗАИМОДЕЙСТВИЯХ ПРИ 70 ГэВ

Представлено на сессии физического отделения РАН, Москва, ноябрь 2009 г.

Протвино 2010

Аннотация

Ардашев Е.Н. и др. Свойства нейтральных очарованных мезонов в рА-взаимодействиях при 70 ГэВ: Препринт ИФВЭ 2010–2. – Протвино, 2010. – 11 с., 9 рис., 3 табл., библиогр.: 11.

Приведены результаты обработки данных эксперимента SERP-E-184 «Изучение механизмов образования очарованных частиц в рА-взаимодействиях при 70 ГэВ и их распадов» [1], полученные при облучении активной мишени установки СВД-2, состоящей из пластинок углерода, кремния и свинца, пучком протонов 70 ГэВ. После выделения сигнала от двухчастичного распада нейтральных очарованных мезонов и оценки сечения образования чарма при околопороговой энергии ($\sigma(c\hat{c})=7.1 \pm 2.4$ (стат.) ± 1.4 (сист.) (мкбн/нуклон)) [2] исследованы некоторые свойства D⁰ и Ď⁰, а именно: зависимость сечения от атомного веса ядра мишени (А-зависимость), поведение дифференциальных сечений $d\sigma/dp_t^2$ и $d\sigma/dx_f$, зависимость параметра α от кинематических переменных x_f , p_t^2 и $p_{лаб}$. Экспериментальные результаты сравниваются с предсказаниями, полученными с помощью программы FRITIOF7.02.

Abstract

Ardashev E.N. et al. Properties of neutral charmed mesons in pA-interactions at 70 GeV: IHEP Preprint 2010–2. – Protvino, 2010. – p. 11, figs. 9, tables 3, refs.: 11.

The results of data handling for E-184 experiment are presented received with 70 GeV proton beam irradiation of active target with carbon, silicon and lead plates. When two-prongs neutral charmed mesons decays signal has been obtained and charm production cross section estimated at near threshold energy ($\sigma(c\hat{c}) = 7.1 \pm 2.4 \text{ (stat.)} \pm 1.4 \text{ (syst.)}$ (mkb/nucleon)), some properties of D⁰ and \check{D}^0 were studied, in particular: A-dependence of cross section, kinematical distributions $d\sigma/dp_t^2$ and $d\sigma/dx_f$, the dependence of α parameter versus x_f , p_t^2 and p_{lab} . Experimental results are compared to the predictions of FRITIOF7.02 program.

Государственный научный центр
 Российской Федерации
 Институт физики высоких энергий, 2010

Введение

Эксперимент SERP-E-184 «Изучение механизмов образования очарованных частиц в рА-взаимодействиях при 70 ГэВ и их распадов» [1] выполняется на установке СВД-2. Активная мишень, состоящая из пластинок углерода, кремния и свинца, облучается пучком протонов 70 ГэВ. В работе [2] после выделения сигнала в спектре эффективных масс системы (К π) была дана оценка сечения образования очарованных мезонов в рА-взаимодействиях при околопороговой энергии. Измеренное значение сечения образования чарма составило

 $(\sigma(c\hat{c})=7.1 \pm 2.4 \text{ (стат.)} \pm 1.4 \text{ (сист.)} (мкбн/нуклон).$

Полученная величина сечения превышает предсказания жесткой КХД ($\sigma(c\hat{c}) \sim 1$ мкбн). Вместе с тем, с учетом изменения параметров модели и получаемого поля ошибок [3], это сечение не кажется чересчур большим (рис. 1а). Попытки оценить сечение образования чарма при околопороговой энергии были предприняты более двадцати лет назад в эксперименте на установке БИС-2 ИФВЭ при облучении углеродной мишени нейтронами с энергией 40-70 ГэВ [4]. В кинематической области x_f > 0.5 измеренное образования **D**⁰-мезонов сечение оказалось гораздо больше теоретических предсказаний, а именно $\sigma(D^0)=28\pm14$ мкбн/ядро. В пересчете на всю кинематическую область сечение образования чарма составило ~5 мкбн/нуклон. Примерно такую же теоретическую оценку этой величины получила группа А.Б. Кайдалова при вычислении сечения образования чарма в модели кварк-глюонных струн [5]. На рис. 16 представлен график из этой работы с добавлением нашей точки.

Рис. 1. Экспериментальные сечения образования чарма в рА-взаимодействиях и теоретические предсказания: а) пертурбативная КХД [3], б) модель кварк-глюонных струн [5].

Подробное описание установки СВД-2 можно найти в работе [1]. Наличие в эксперименте Е-184 мишени, содержащей пластинки углерода, кремния и свинца, позволяет измерить зависимость сечения образования чарма от атомного веса ядер мишени. В работе [2] было показано, что параметр α в А-зависимости ($\sigma \sim A^{\alpha}$) в этом эксперименте равен 1.08±0.12, что согласуется с результатами других экспериментов [6, 7, 8].

Выполненное детальное моделирование процессов регистрации распадов очарованных частиц в установке СВД-2 с помощью программ FRITIOF7.02 и GEANT3.21 позволяет определить эффективности всех процедур системы обработки данных и их зависимость от кинематических параметров p_t^2 и x_f , что, в свою очередь, дает возможность оценить инклюзивные спектры для нейтральных D-мезонов.

1. Время жизни нейтральных D-мезонов

Для проверки того, что выделенные распады (К π) являются распадами очарованных мезонов, измерялось время их жизни из зависимости сечения от длины пробега (К π) системы. Видимая длина пробега поправлялась на фактор (р/М), т.е. L=L_{вид}/(р/М), где р – импульс и М – измеренная масса системы. Диапазон длин пробега делился на интервалы, в каждом интервале строился спектр эффективных масс системы

(К π) и вычислялось сечение по количеству событий в сигнале от распада D⁰-мезона. Из-за небольшой статистики сигналы от D⁰- и анти-D⁰-мезонов объединялись в один спектр. Описание зависимости сечения от длины пробега (рис. 2) функцией d σ /dL ~ exp(-L/c τ) дает значение с τ = 0.123 ± 0.024 мм, что совпадает с табличной величиной 0,124 мм в пределах ошибки.

Рис. 2. Зависимость сечения образования нейтральных D-мезонов от длины их пробега.

2. Дифференциальное сечение $d\sigma/dp_t^2$

Аксептанс установки СВД-2 позволяет измерять поперечный импульс (p_t) и переменную Фейнмана ($x_f=2p_L/\sqrt{s}$) очарованных мезонов в широкой области: p_t^2 от 0 до 4 (ГэВ/с)² и x_f от -0.2 до 0.6. Моделирование показывает, что при этом в апертуру спектрометра попадает 54% D⁰-мезонов и 23% анти-D⁰-мезонов.

Для получения спектра по p_t^2 строились спектры эффективных масс системы (К π) в четырех интервалах по p_t^2 . В каждом спектре выделялся сигнал N_{per} от распада нейтральных D-мезонов и вычислялось инклюзивное парциальное сечение для данного интервала по p_t^2 по формуле

$$\sigma(D^0)_{\scriptscriptstyle \rm HZ} = K_{\rm aff} * N_{\rm per} * A^{0.7} / (Br * \epsilon * L_{\rm uht})$$

с использованием определенных ранее значений эффективностей и других величин (бренчинга, интегральной светимости и аппаратного коэффициента) [2]. В табл. 1 приведены значения сечений с их статистической ошибкой для четырёх интервалов pt². Для вычисления среднего по ядрам сечения использовалась величина суммарного сигнала и усредненное значение атомного веса ядер, как описано в [2]. Измеренное

$< p_t^2 >$	ε _{per}	Углерод	Кремний	Свинец	Среднее по
$(\Gamma \Im B/c)^2$	%				ядрам
		dσ	dσ	dσ	dσ
		(мкбн/яд)	(мкбн/яд)	(мкбн/яд)	(мкбн/яд)
0.5	3.7	13±13	83±28	945±285	218 ±45
1.5	3.8	26±18	63±24	669±237	157±38
2.5	3.4	15±15	30±17	281±162	72±27
3.5	3.5	14±14	10±10	91±91	20±14

<u>Таблица 1.</u> Дифференциальные сечения образования D^0 -мезонов для четырёх интервалов p_t^2 ($\Delta p_t^2 = 1.0 \ (\Gamma \Im B/c)^2$).

Описывая зависимость экспериментального сечения для всех ядер выражением $d\sigma/dp_t^2 \sim exp(-bp_t^2)$, находим значение показателя степени b=0.79±0.15 (ГэВ/с)⁻² (рис. 3).

Рис. 3. Дифференциальное сечение $d\sigma/dp_t^2$ образования нейтральных D-мезонов.

Рис. 4. а) Зависимость дифференциального сечения от атомного веса ядер мишени для четырёх интервалов p_t^2 . б) Зависимость параметра А-зависимости α от p_t^2 .

В протон-ядерных столкновениях исследуется поведение параметра А-зависимости α от кинематических переменных. Несмотря на небольшую статистику сигнала и, вследствие этого, большие ошибки, была предпринята попытка посмотреть зависимость α от p_t^2 . На рис. 4а приведена зависимость дифференциальных сечений для четырёх интервалов по p_t^2 от атомного веса ядер мишени. Видно, что наклоны прямых линий отличаются для разных значений p_t^2 . Экспериментальные данные указывают на уменьшение параметра α с ростом p_t^2 по экспоненте (рис. 4б).

3. Дифференциальное сечение do/dxf

Исследовано поведение сечения от переменной Фейнмана (x_f). Способ вычисления сечений для разных интервалов по x_f аналогичен случаю с поперечным импульсом, т.е. с построением спектров эффективных масс системы (К π) в четырех интервалах по x_f и определением количества событий в сигнале для каждого интервала (табл. 2).

	ε _{per}	Углерод	Кремний	Свинец	Среднее по
<x<sub>f></x<sub>	%				ядрам
		dσ	dσ	dσ	dσ
		(мкбн/яд)	(мкбн/яд)	(мкбн/яд)	(мкбн/яд)
-0.1	2.6	10±10	13±13	245±173	40±23
0.1	9.4	16±9	55±14	541±135	123±21
0.3	13.5	7±5	15±6	118±52	39±10
0.5	12.5	2±2	6±4	25±25	6±4

<u>Таблица 2.</u> Дифференциальные сечения образования D^0 -мезонов для разных интервалов по $x_f (\Delta x_f = 0.2)$.

На рис. 5 приведены экспериментальные значения сечений образования нейтральных очарованных мезонов от переменной x_f . Для описания зависимости использовалась стандартная параметризация вида $d\sigma/dx_f \sim (1 - |x_f|)^n$. Параметр n получился равным 6.8 ±0.8, а среднее значение $\langle x_f \rangle = 0.12$.

Рис. 5. Дифференциальное сечение образование нейтральных D-мезонов do/dx_f.

Аналогично зависимости параметра α от p_t^2 была исследована зависимость этого параметра от переменной x_f . Для этого оценивались сигналы от D⁰-мезонов и соответствующие сечения их образования в интервалах по x_f для трех материалов активной мишени (рис. 6а). Из рис. 6б видно, что значения параметра α уменьшаются с увеличением x_f . Если использовать описание данных экспонентой, то при $x_f \rightarrow 1$ параметр α уменьшается до значения 0.55. Это согласуется с теоретическим предсказанием, сделанным в [5].

Рис. 6. а) Зависимость dσ/dx_f от атомного веса ядер мишени для четырёх интервалов x_f. б) Зависимость параметра А-зависимости α от переменной Фейнмана (x_f).

Следует отметить, что систематические неоднозначности в полученных величинах сечений мы оцениваем на уровне 20% их статистической ошибки.

4. FRITIOF и А-зависимость сечения

В программе моделирования адрон-адрон и адрон-ядерных взаимодействий FRITIOF применена Лундская струнная модель. Предполагается, что после обмена 4импульсом адроны становятся двумя возбужденными струнными состояниями, которые далее излучают глюоны в приближении цветных диполей КХД. Конечная адронизация выполняется с использованием Лундской модели фрагментации струн. Столкновение с ядром рассматривается как независимые столкновения налетающего нуклона с конституентными нуклонами ядра. Учитываются фермиевское движение нуклонов, деформация ядра и многократное перерассеяние. Плотность распределения нуклонов в ядре описывается потенциалом Вудса-Саксона. Мы использовали эту программу для проведения модельного исследования зависимости параметра α от кинематических параметров D⁰-мезонов и сравнения полученных результатов с экспериментальными данными. Имеющиеся числа моделированных (МК) событий с D⁰-мезонами для трех значений атомного веса ядер мишени (C, Si, Pb) взвешивались таким образом, чтобы в среднем по всем событиям выполнялась А-зависимость с параметром α=1. Затем из трех распределений по данной кинематической переменной $(x_{f}, p_{t}^{2} \mu p_{nab})$ для D^{0} -мезонов вычислялась зависимость параметра α от этой величины.

В работе [9] показано, что зависимость α от x_f должна отражать вклад в сечение разных ядерных подпроцессов, таких как поглощение в конечном состоянии, взаимодействия с близко летящими адронами (interactions with comovers), затенение распределений партонов, потери энергии партонов в среде и компоненты с внутренним очарованием. Это приводит к росту или падению параметра α с увеличением x_f .

На рис. 7 (слева) показаны исходные моделированные распределения событий в трех мишенях (C, Si, Pb) по переменной Фейнмана x_f для D⁰- и анти-D⁰-мезонов, из которых вычисляется параметр α . График зависимости его от переменной x_f приведен справа (сплошная и пунктирная кривые). Там же приведены экспериментальные значения α для четырех интервалов по x_f .

7

Рис. 7. Распределения по $x_{\rm f}$ для нейтральных D-мезонов и зависимость параметра α от $x_{\rm f}$

Рис. 8. Распределения по p_t^2 для нейтральных D-мезонов и зависимость параметра α от p_t^2 .

Рис. 9. Распределения по $p_{\text{лаб}}$ для нейтральных D-мезонов и зависимость параметра α от $p_{\text{лаб}}$.

Нужно отметить, что имеются «нефизические» значения переменной x_f для МКсобытий, выходящие за пределы области [-1,1] как следствие того, что при вычислении переменной Фейнмана $x_f=2p_1/\sqrt{s}$ энергия в с.ц.м. \sqrt{s} оказывается заниженной, если не учитывать взаимодействие налетающего нуклона с несколькими нуклонами ядра мишени. В работе [10] было показано, что при учете всех взаимодействующих нуклонов ядра (при моделировании программой FRITIOF это число известно) распределение по переменной x_f заключено в интервале [-1,1], как и должно быть. К сожалению, в эксперименте число взаимодействующих нуклонов ядра неизвестно, поэтому энергия в с.ц.м. вычисляется для двух нуклонов (налетающего и мишени) и приходится использовать «нефизические» значения переменной x_f для МК-событий. При этом α уменьшается с увеличением x_f во всей области изменения x_f . Эксперимент это качественно подтверждает.

На рис. 8 (слева) показаны распределения по p_t^2 для моделированных D⁰- и анти-D⁰-мезонов и зависимость параметра α от p_t^2 (справа). При сравнении моделированных по FRITIOF зависимостей и экспериментальных точек видно, что нет даже качественного согласия между моделью и экспериментом (хотя экспериментальные ошибки значительны по причине небольшой статистики).

На рис. 9 мы приводим аналогичные распределения от р_{лаб} для нейтральных D-мезонов. В этом случае нет проблемы представления данных, как в случае с переменной Фейнмана x_f, когда неизвестно число взаимодействующих нуклонов ядра. Такая же зависимость параметра α приводится в работе [11]. Здесь мы видим качественное согласие эксперимента и модели, т.е. α уменьшается с увеличением р_{лаб} для нейтральных D-мезонов.

Заключение

В заключение приведём таблицу, в которой представлены результаты некоторых экспериментов по исследованию образования чарма в рА-взаимодействиях. Видно, что наши результаты в пределах ошибок не противоречат этим данным. Однако необходимы дальнейшие исследования по уточнению свойств очарованных частиц, образующихся в рА-взаимодействиях при околопороговой энергии.

Эксперимент	Пучок	$\sigma(D^0)$	$\sigma \sim \! A^{\alpha}$	$d\sigma/dx_{\rm f} \sim$	$d\sigma/dp_t^2 \sim$
	(ГэВ)	(мкбн/нук.)		$(1 - \mathbf{x}_{f})^{n}$,	$exp(-b p_t^2)$
			α	n	b
SVD-2	70	7.1±3.8	1.08±0.12	6.8±0.8	0.79±0.15
E769 [6]	250	12.0±3.8	0.92 ± 0.08	4.1±0.6	0.95±0.09
NA16 [6]	360	20.4±16.	-	-	-
NA27 [6]	400	18.3±2.5	-	4.9±0.5	1.0±0.1
E-789 [7]	800	17.7 ±4.2	1.02 ± 0.05	-	0.91±0.12
E743 [6]	800	22. ±14.	-	8.6±2.0	0.8±0.2
E653 [6]	800	39. ±15.	-	11.0±2.0	1.1±0.2
HERA-B [8]	920	48.7±10.6	0.97 ± 0.07	7.5±3.2	0.84±0.1

<u>Таблица 3.</u> Данные по образованию нейтральных D-мезонов и их свойствам в рА-взаимодействиях.

При сравнении поведения параметра А-зависимости сечения α от кинематических переменных для смоделированных по FRITIOF событий и эксперимента наблюдается качественное согласие для случая переменной Фейнмана x_f и $p_{na\delta}$ нейтральных D-мезонов. В случае переменной p_t^2 наблюдается значительное различие: в модели α практически не зависит от p_t^2 , в то время как экспериментальные точки указывают на уменьшение α с ростом p_t^2 .

Работа выполнена при поддержке грантов РФФИ 09-02-00445 и НШ-1456-2008-2.

Список литературы

- [1] М. Ю. Боголюбский и др. Препринт ИФВЭ 96-98, Протвино, 1996. http://web.ihep.su/library/pubs/prep1996/ps/96-98.pdf
- [2] Ардашев Е.Н. и др. Препринт ИФВЭ 2009-9, Протвино, 2009.
 <u>http://web.ihep.su/library/pubs/prep2009/ps/2009-09.pdf</u>
- [3] Shabetai A. et al. // J. Phys. G: Nucl. Part. Phys. 35 104112 (2008).
- [4] BIS-2 collaboration. // Zeit. fur Physik C37, 243-249 (1988).
- [5] Кайдалов А.Б. и др. // ЯФ, т. 43, вып. 6, 1986.
- [6] Appel J. A. X Int. Conference on Physics in Collision, Durham, North California, June 21-23, 1990.
- [7] Daniel M. Kaplan. <u>http://arxiv.org/PS_cache/hep-ex/pdf/9610/9610003v1.pdf</u>

- [8] S. Kupper. Doctoral Thesis, University of Ljubljana, 2007.
- [9] R. Vogt. http://arxiv.org/PS_cache/hep-ph/pdf/9907/9907317v1.pdf
- [10] А. П. Воробьев и др. Препринт ИФВЭ 2008-17, Протвино, 2008. <u>http://web.ihep.su/library/pubs/prep2008/ps/2008-17.pdf</u>
- [11] M.J. Leitch. http://arxiv.org/PS_cache/nucl-ex/pdf/9909/9909007v3.pdf

Рукопись поступила 12 марта 2010 г.

Е.Н. Ардашев и др. Свойства нейтральных очарованных мезонов в рА-взаимодействиях при 70 ГэВ.

Редактор Л.Ф. Васильева.

Подписано к печати	17.03.2010.	Формат 60	$\times 84/16.$	O	фсетная печать.	
Печ. л. 0,81. Уч	изд. л. 1,25.	Тираж 100	. Заказ	21.	Индекс 3649.	

ГНЦ РФ Институт физики высоких энергий, 142281, Протвино Московской обл.

Индекс 3649

ПРЕПРИНТ 2010-2, ИФВЭ, 2010