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[Tpetaraercs mMeToj yckopenns cxoammocTn MonTe-Kap/io MHTerpupoBanus TpPW BBIYUC-
JIEHUM UHTErPAJIOB 110 (ha30BOMYy O0bEMY, B KOTOPBIE BXOJIUT AKCENTAHC YCTAHOBKU. TOYHOCTD
onerikn naTerpana [ g(x)e(z)dx meromom Monre-Kapsio, riae g(x) — nponssosbHas dyHKIWs,
a e(x)  aKCenTaHC yCTAHOBKU, MOXKET ObIThb yJlydllIeHa, eCju JOCTYIIHA XOPOIIasi OEHKA WHTe-
rpana [ g(x)dzx.

Abstract

Kachaev I.A. Method to Obtain Better Monte-Carlo Accuracy for Phase Space Integration with
Acceptance: THEP Preprint 2010-7. — Protvino, 2010. — p. 3, refs.: 4.

Method is suggested to obtain better Monte-Carlo accuracy for phase space integration with
acceptance. Better Monte-Carlo estimate can be obtained for the integral [ g(z)e(z)dx where
g(zx) is arbitrary function and e(x) is setup acceptance if good estimate for the integral [ g(x) dz
is available.
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1. Subtraction of the largest part in numerical integration

Often in high energy physics one need to describe a situation where particles born
in reaction with given kinematics an matrix element pass through an experimental setup
with given acceptance. In this situation integrals of the form

I:/g(x) dz | laz/g(x)s(:v) dz (1)

are common say for partial wave analysis method. Here integration variable z includes
both kinematical variables and variables which describes experimental setup, starting
from interaction vertex up to hits in detectors. After proper coordinate transformation
one can assume that integration here is over unit cube of significant dimension. Function
g(x) includes matrix element and kinematic factors, function e(x) describes acceptance of
the setup.

Due to huge complexity such integrals are generally calculated by Monte-Carlo
method, namely by generation of events with proper probability density and simulation
of the passage of them through experimental setup. Convergence rate for Monte-Carlo
integration is slow. This article suggests a method to obtain better convergence for the
integrals like 7. in (1).

It is known that Monte-Carlo mean square integration error is governed by the disper-
sion of integrated function. Let us introduce for clarity standard operators of mean value
and dispersion for given function f(x)

E()=T= [fw)de, D)= E((f~E()?) =T~ () (2)

Mean square integration error for integration of f(z) over N points (generated events) is

o(l) =/ D(f(x))/N (3)



One can see that integration error decreases when dispersion of the function to be inte-
grated decreases. There are a lot of methods to decrease dispersion in the general case,
they can be found in |1, 2]|.

Next idea is known as subtraction of the largest part. Let us find a function which is
near to the function given but has a property that this new function can be integrated
faster and/or with better accuracy than given one. In this case Monte-Carlo method can
be used to integrate only a small difference between these functions. In our situation in
most cases integral I is much simple to calculate that I. due to the fact that g(z) does not
depend on setup, has smaller dimension and I can often be calculated (semi)analytically.

In the case when a good estimate for I is available one can use a function € g(z) as a
function near to g(x)e(x) to calculate I.. Here ¢ is a number which can be selected later
to minimize dispersion of the difference between functions described above. For arbitrary

€ one can write
[e@@)de= [g(ayde+ [[e@) - elg(x) da (4)

We will calculate first term in the right part of (4) by some exact method, second term by
the Monte-Carlo method. Since first term is assumed exact, calculation error will be from
the second term only. Let I and I. be integrals estimate from pure Monte-Carlo. Let
Iy be exact value of integral without acceptance and I be improved estimate of integral
with acceptance given by this method. In this notation we have from (4)

I'=c(ly—I)+ 1 (5)

One should stress that according to (4) estimates of integrals I and I. here are not
independent but obtained from the same set of integration points (generated events). To
find optimal e let us write dispersion of integrated function for the second term in the
right part of (4)

D(e) = ([e(2)—€lg())” = ([e(x)—e]y(x))’
One can find minimum of this value from condition dD(g)/de = 0 using the fact that
calculation of mean value and differentiation commutates. We use here the same symbol
for dispersion D(f(x)) as functional and as a function of shift D(e), meaning is clean from
the context. Optimal shift is

e(@)g?(x) —e(x)g(x) g(x) (6)
g*(x) — g(x) g(x)

where denominator is D(g(z)). To estimate a gain in dispersion and so in integration

error one can note that D(e) is quadratic in €, namely

Eo =

—b b?
D(e) =ac® +be+c, a=D(g(x)), eo= 5o D(0) — D(gg) = ”
We have a gain in dispersion which is always positive:
D(0) — D(eo) = €5 D(g()) (7)



Albeit £y means some “mean acceptance” this value need not be positive. Example:
integration domain is one dimensional, 0 < x < 1,

e(x)=1, g(x)=05 ifzx<05
e(x)=0, gz)=1 if £ >0.5

In this example ¢g = —1 and D(gy) = 0 so integration with this method becomes exact.
One should note that usage of any € > 0 selected in advance gives in this example worse
integration error than naive integration. Just this not absolutely correct method was used
in [3].

2. Conclusions

This method has some advantages. First, with this method calculation error for I.
depends only on nonuniformity of £(z) over phase space but not on its value. Next, due
to the fact that D(e) is quadratic around gy and integration error mildly depends on &g
estimate, value of ¢y can be calculated with moderate degree of accuracy. Next, g9 can
be calculated “from data” in parallel with calculation of integrals. To estimate I and I
with their errors via Monte-Carlo one need to keep sums of

To estimate in addition &y one need to add to this list a sum of e(z)g*(z) so additional
calculations are minimal. After the loop over Monte-Carlo events one can calculate g
from (6), integrals from (5) and finally error estimates from (7), (3).

Another advantage of this method is that it is “transparent” and can be combined
with any other Monte-Carlo optimization: importance sampling, symmetrization, quasi
Monte-Carlo, etc. The only requirement is that one need a good estimate of the integral
of given function over phase space without acceptance.

This method was used in the investigation of the 7t7~ 7~ system with partial wave
analysis method [4].
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