

ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ ФЕДЕРАЦИИ ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

ИФВЭ 2011–19 ОЭА

С.И. Букреева, Н.А. Шаланда, В.А. Сенько, А.Н. Исаев

Источник питания электронной аппаратуры физических установок ИФВЭ

621.31

Аннотация

Букреева С.И. и др. Источник питания электронной аппаратуры физических установок ИФВЭ: Препринт ИФВЭ 2011–19. – Протвино, 2011. – 9 с., 3 рис., 2 табл., библиогр.: 4.

Описан источник питания (ЕвроНИП), предназначенный для питания электронной аппаратуры физических установок ИФВЭ низковольтными напряжениями. Основой источника являются 3 модуля питания с выходными напряжениями +5 В, -5,2 В и +3,3 В и токами до 60 А. Внутри источника располагается управляющая электроника, которая позволяет управлять источниками по САN-шине, отправлять информацию о состоянии источника в компьютер и осуществляет защиту в случае перенапряжений.

Abstract

Bukreeva S.I. et al. The Power Source of Electronic Apparatus at Physical Setups of IHEP: IHEP Preprint 2011–19. – Protvino, 2011. – p. 9, figs. 3, tables 2, refs.: 4.

The power source designed for providing power supplies of the electronic apparatus at physical setups of IHEP. The basis of the power source is 3 AC/DC power modules with output voltages +5V, -5.2V and +3.3V and output currents up to the 60 A. Inside the source there is a control electronics that allows to remotely control the power supply by the CAN-bus, to send information about the source in the PC and to protect against the over voltages.

© Государственный научный центр Российской Федерации Институт физики высоких энергий, 2011

Введение

В настоящее время электроника физических установок ускорительных комплексов стремительно развивается. Проведение новых научных экспериментов требует всё более быстродействующих электронных систем, осуществляющих функции регистрации информации с физических установок и сбора данных для передачи в компьютер. В ИФВЭ для решения этих задач разрабатывается новая модульная система сбора данных под названием ЕвроМИСС, разработка которой повлекла за собой модернизацию существующего блока питания электронной аппаратуры, а именно изменение требуемых напряжений и токов, конструкции источника питания, расширение функциональных возможностей. Для разрабатываемых электронных модулей, размещаемых в блочном каркасе, необходимо иметь источник питания с тремя номиналами напряжений -5,2 В, +5 В и +3,3 В и выходными токами до 60 А. Исходя из этого был разработан новый источник питания, устройство и принцип работы которого рассматриваются в данной статье.

Конструкция и управление источниками питания ЕвроНИП

Источник питания ЕвроНИП представляет собой закрытый корпус с габаритными размерами 428х344х132 мм. В корпусе располагаются 3 промышленных модуля питания, плата управления, 4 вспомогательные платы и 6 вентиляторов. Вентиляторы производительностью до 140 м³/час крепятся под верхней крышкой корпуса и обеспечивают охлаждение блочного каркаса системы ЕвроМИСС. Задняя панель корпуса имеет вентиляционные отверстия, разъем для подключения к однофазной сети 220 В, 50 Гц и связку кабелей для подключения к каркасу. Источник питания управляется вручную по передней панели или удаленно по шине САN от компьютера.

На рис. 1 представлен внешний вид источника питания ЕвроНИП.

Рис. 1. Внешний вид ЕвроНИП.

На передней панели располагаются:

- тумблер включения/выключения питания сети 220 В;
- кнопка включения источника ON/OFF;
- двухцветный светодиод состояния источника;
- два разъема DB9F, DB9M;
- ЖК-дисплей;
- 6 светодиодов;
- вентиляционные отверстия.

При включении тумблера питания сетевое напряжение 220 В подается на блок питания платы управления. На дисплее появляется надпись «Hello» и номер источника, который является идентификатором данного источника в сети CAN. Светодиод состояния загорается красным цветом, показывая, что источник не включен. При нажатии на кнопку ON/OFF происходит подключение модулей питания к сети 220 В, начинает работать вентиляционный блок. При этом светодиод состояния и 3 светодиода напряжений загораются зеленым цветом, показывая, что источник включен и на выходе присутствуют напряжения +5 В, -5,2 В и +3,3 В. На ЖК-дисплее выводятся значения выходных напряжений и токов, а также значение температуры внутри корпуса источника. При повторном нажатии на кнопку ON/OFF происходит отключение модулей питания от сети и вентиляционного блока. Светодиод состояния и светодиоды напряжений загораются красным цветом, показывая, что источник выключен. На дисплее высвечиваются нулевые значения токов, напряжений и реальное значение температуры. Кроме того, на передней панели корпуса ЕвроНИП располагаются 2 разъема DB9 для подключения источников к САN-шине, что обеспечивает возможность управлять ими удаленно от персонального компьютера (ПК). На рис. 2 представлена блок-схема подключения источников к ПК.

Все источники последовательно соединяются шлейфом в CAN-шину. К последнему разъему «CAN-bus» должен быть подключен терминальный резистор 120 Ом для обеспечения согласования CAN-шины на длинных линиях. Первый в цепи источник подключается к ПК через адаптер связи, который выполняет функцию интерфейса между CAN-шиной и ПК. С помощью программного обеспечения осуществляется удаленное включение и выключение источников, мониторинг уровней напряжений, токов и температуры.

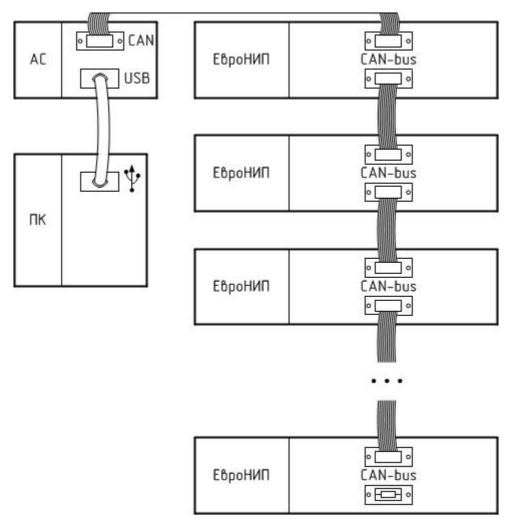


Рис. 2. Блок-схема подключения ЕвроНИП к ПК: АС – адаптер связи; ПК – персональный компьютер.

Устройство и принцип работы ЕвроНИП

Основой для построения источников ЕвроНИП являются модули вторичного электропитания, на вход которых поступает напряжение сети переменного тока 220 В и выходные параметры которых удовлетворяют требованиям по питанию модулей каркаса ЕвроМИСС. Для использования в ЕвроНИП выбраны 2 типа модулей питания фирмы Mean Well с выходными номиналами напряжения 5 В и 3,3 В. Данные модули имеют защиту от короткого замыкания, перегрузки, перенапряжения и перегрева и автоматически возвращаются в рабочее состояние после устранения перечисленных факторов. В табл. 1 приведены краткие характеристики модулей Mean Well [1].

Таблица 1. Характеристики модулей питания Mean Well

Название	Выходное	Диапазон токов	Мощность, Вт	Стабильность,
модуля	напряжение, В	нагрузки, А	мющность, вт	%
HRP-300-3.3	3,3	0 60	198	±2,5
HRP-300-5	5,0	060	300	±2,0

Выходные напряжения модулей регулируются для HRP-300-3,3 в пределах от 2,8 до 3,8 В, для HRP-300-5 – в пределах от 4,3 до 5,8 В. Входное напряжение для модулей 220 В, 50 Гц. В ЕвроНИП три модуля HRP-300 включены так, чтобы обеспечивать три номинала напряжения +5 В, -5,2 В и +3,3 В с выходными токами до 60 А на каждом питающем канале. Диапазон рабочих температур от -30 до +70 °C.

Структурная схема электроники источника питания представлена на рис. 3. Управление и контроль за его работой осуществляет электроника, расположенная на плате управления, основными функциями которой являются:

- включение и выключение модулей питания и вентиляционного блока;
- организация связи по САХ-шине;
- сбор и обработка данных о значениях напряжений и токов на выходе источника;
- измерение температуры внутри корпуса источника.

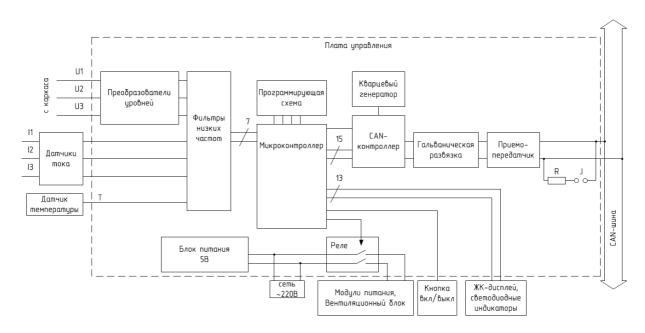


Рис. 3. Структурная схема ЕвроНИП.

Основой платы управления является микроконтроллер Atmega8535 семейства AVR. Аtmega8535 является восьмиразрядным микроконтроллером с широким набором встроенных функций, имеющий 8 КБайт flash-памяти программ, 512 байт ЭСПЗУ и 512 байт ОЗУ [2]. Обладает функцией внутрисхемного программирования, что позволяет отлаживать работу источника питания, не извлекая микроконтроллер из платы управления. Один из портов ввода/вывода выполняет альтернативную функцию 8-канального 10-разрядного АЦП, которая используется в источнике для обработки сигналов с датчиков и измерения напряжений. Микроконтроллер имеет выход для внешнего прерывания, что позволяет обрабатывать приходящие по САN-шине сообщения. Один из внутренних 8-битных таймеров/счетчиков используется для задания частоты обработки измерений АЦП. Микроконтроллер обладает высокой производительностью (16MIPS при работе на 16 МГц), 4 портами ввода/вывода и внутренним RC-осциллятором.

С помощью реле, которое управляется микроконтроллером, осуществляется подача питания от сети 220 В к модулям питания. Вентиляционный блок также подключен к реле, поэтому вентиляторы начинают работу одновременно с модулями питания источника. К однофазной сети переменного тока вентиляторы подключаются посредством набора конденсаторов, что позволяет снизить шум от их работы. Конденсаторы установлены на плате под верхней крышкой корпуса источника.

Микроконтроллер АТтеда8535 осуществляет сбор и обработку данных о значениях напряжений, токов и температуры. Опорное напряжение встроенного АЦП АТтеда8535 равно ~2,5 В. Информация о напряжениях и токах поступает на каналы АЦП через RC-фильтры высоких частот. При выходе напряжений, поступающих с обратных связей, за допустимые пределы +5 В ±10%, -5,2 В ±15% и +3,3 В ±6,5%, микроконтроллер подает и удерживает сигнал на реле для отключения всех модулей питания от сети 220 В. Для слежения за уровнями токов, потребляемых модулями каркаса, в выходных цепях источника установлены датчики, позволяющие измерять токи в пределах от 0 до 50 А. Чувствительность датчиков равна 40 мВ/А. В программе микроконтроллера заложено отключение модулей питания от сети 220 В при токах, превышающих значение 45 А. Измерение температуры внутри корпуса источника питания производится с помощью датчика температуры ТМР37. Выходной сигнал

датчика является аналоговым и подается на один из каналов АЦП микроконтроллера. Чувствительность датчика равна 20 мВ/°С [3], что позволяет фиксировать температуру в пределах от +5 до +100 °C с шагом 1 °C.

Вся информация о напряжениях, токах на выходах источника питания и о температуре внутри его корпуса передается по запросу в CAN-сеть, а также выводится на ЖК-дисплей и обновляется раз в секунду.

Организация управления по САМ-шине

Для организации связи по CAN-шине на плате управления установлены CAN-контроллер SJA1000 и приемопередатчик PCA82C250. При появлении сообщения на шине SJA1000 создает внешнее прерывание для микроконтроллера [4]. Начинается выполнение подпрограммы обработки прерывания, в которой в первую очередь проверяется, по адресу ли пришло сообщение. Адресом является номер источника, высвечивающийся на дисплее при включении и указанный на передней панели корпуса источника. Далее микроконтроллер выполняет команду, которая содержится в пришедшем сообщении. По CAN-шине также можно осуществлять одновременный доступ ко всем источникам, подключенным к шине (широковещательный режим).

САN-контроллер SJA1000 программно настроен на BasicCAN mode. В 11-битном идентификаторе сообщений 7 младших бит являются адресом источника, а старшие 4 бита принимают значение 9h в случае, если сообщение – команда, и 8h, если сообщение – ответ. В широковещательном режиме 7 младших бит идентификатора принимают значение 7Fh. Передача осуществляется сообщениями максимальной длиной 8 байт данных. С входящим сообщением в SJA1000 также приходит информация о количестве байт данных, которые должны быть приняты источником в случае команды от ПК и компьютером в случае ответа источника. Передача по CAN-шине осуществляется только при наличии команды от ПК, источник питания не может самостоятельно начать передачу информации по шине.

В табл. 2 сведены коды команд и ответы источника. Числовое значение, заключенное в круглые скобки, показывает один байт данных. Передача должна начинаться с младшего байта. В таблице порядок байтов от младшего к старшему – слева направо.

<u>Таблица 2</u>. Коды команд и ответов в CAN-сообщениях

Команда	Ответ					
Запрос о статусе источника						
(1)	$(01)(00)(S)^*$ источник выключен					
	(01)(01)(S) источник включен					
Включение/выкл	ючение источника					
(02)(01) – включить источник	(02)(01) – источник принял команду на					
	включение					
(02)(00) – выключить источник	(02)(00) – источник принял команду на					
	выключение					
Запрос информации						
(03)(N)*	(03)(N)(F1)(F2)(F3)(F4)*					
	М микроконтроллера					
(4)(0)(1)(N) – запись номера источника	нет ответа					
(4)(1)(1) – чтение номера источника	(4)(1)(1)(N)					
(4)(0)(2)(F1)(F2)(F3)(F4) — запись значе-	нет ответа					
ния опорного напряжения АЦП						
(4)(1)(2) – чтение значения опорного	(4)(1)(2)(F1)(F2)(F3)(F4)					
напряжения АЦП						
(4)(1)(A)(F1)(F2)(F3)(F4) — запись значе-	нет ответа					
ний опорного напряжения АЦП, либо ка-						
либровочных коэффициентов по напря-						
жениям и токам:						
A = 6, 10, 14 - запись калибровочных ко-						
эффициентов по напряжению +5В,						
-5,2B, +3,3B;						
A = 18, 22, 26 - запись калибровочных						
коэффициентов по току +5В, -5,2В,						
+3,3B.						
(4)(1)(А) – чтение значений опорного	(4)(1)(A)(F1)(F2)(F3)(F4)					
напряжения АЦП, либо калибровочных						
коэффициентов по напряжениям и токам:						
A = 6, 10, 14 - чтение калибровочных ко-						
эффициентов по напряжению;						
А = 18, 22, 26 – чтение калибровочных						
коэффициентов по току.						
Запрос значения температуры						
(5) $(5)(T)^*$						

^{*}S — байт статуса состояний напряжений и токов; $0 \le N < 3$ — запрос информации о напряжении; $3 \le N < 6$ — запрос информации о токе; F1...F4 — значение тока или напряжения;

A – адрес в EEPROM, с которого начнется запись или чтение; Т – значение температуры.

В источнике питания заложена возможность изменения скорости передачи CANсообщений в пределах от 10 Кбит/с до 1 Мбит/с. По умолчанию скорость передачи в программе микроконтроллера ATmega выставлена на уровне 20 Кбит/с.

Заключение

Источники питания ЕвроНИП начали выпускаться в лаборатории электроники ОЭА в 2011 году. В настоящий момент собраны и запущены 6 источников. Разработка ЕвроНИП проводилась с учетом опыта разработок и использования предыдущих систем питания в ИФВЭ. Среди достоинств источников ЕвроНИП стоит отметить большую мощность, низкий коэффициент пульсаций, а также малый вес и удобство в эксплуатации.

Авторы пользуются случаем выразить благодарность Д.А. Васильеву и В.Н. Федорченко за помощь в реализации связи по CAN.

Список литературы

- [1] http://www.meanwell.com/ сайт фирмы-производителя модулей питания Mean Well.
- [2] http://www.atmel.ru/ сайт корпорации Atmel.
- [3] http://www.gaw.ru/ информационный портал электроники.
- [4] http://www.nxp.com/ сайт фирмы-производителя электроники Philip Semiconductors.

Рукопись поступила 3 октября 2011 г.

Источник питания электронной аппаратуры физических установок ИФВЭ.

Редактор Л.Ф. Васильева.

Подписано к по	ечати 05.10.2011.	Формат	$60 \times 84/16$.	Офсетная печать.
Печ.л. 0, 75.	Уч изд.л. 1,06.	Тираж 80.	Заказ 74.	Индекс 3649.

ГНЦ РФ Институт физики высоких энергий 142281, Протвино Московской обл.

ПРЕПРИНТ 2011-19, ИФВЭ, 2011