

Р В Э институт физики высоких энергий

ИФВЭ 2012-1 ΟЭΦ

В.С. Буртовой

Когерентное образование пар $(K^+\pi^{o})$ -мезонов на ядрах в пучке заряженных каонов

Направлено в ЯФ

Протвино 2012

Аннотация

Буртовой В.С. Когерентное образование пар $(K^+\pi^{\circ})$ -мезонов на ядрах в пучке заряженных каонов: Препринт ИФВЭ 2012–1. – Протвино, 2012. – 16 с., 9 рис., библиогр.: 8.

Для кулоновского взаимодействия K^+ -мезонов с ядром вычисляются амплитуды и сечения когерентного образования пар $(K^+\pi^{\,o})$ -мезонов от киральной аномалии и диаграмм с промежуточными $K^*(892)$ и $\phi(1020)$ -мезонами. Приводится ожидаемое число таких событий на установке «ОКА».

Abstract

Burtovoy V.S. Coherent Production of $(K^+\pi^{\circ})$ -Pairs by Charged Kaons on Nuclei: IHEP Preprint 2012–1. – Protvino, 2012. – p. 16, figs. 9, refs.: 8.

The calculation of coherent amplitudes and cross sections was made for $(K^+\pi^{o})$ -pairs production by chiral anomaly and propagated vector mesons in interactions of charged kaons with nuclei. The expected numbers of such events for "OKA" detector are presented.

Введение

Когерентные кулоновские взаимодействия заряженных мезонов с ядром характеризуются малыми значениями квадрата переданного импульса ядру t, а сечение пропорционально квадрату электрического заряда ядра. Такие процессы с образованием $\pi^-\gamma$ и $\pi^-\pi^{\circ}$ изучались ранее на установке «СИГМА» [1] в пучке π^- -мезонов на ядрах углерода, алюминия и железа, а в другом эксперименте на установке «ВЕС» [2] изучалось кулоновское образование системы $\eta \pi^-$ на ядрах бериллия.

Целью настоящей работы является вычисление сечения когерентного образования пар $(K^+\pi^{\circ})$ -мезонов заряженными каонами в кулоновском поле ядра меди и оценка возможности обнаружения нарушения киральной симметрии [3-6] в эксперименте на установке «ОКА».

Вычисление амплитуды

В пучке каонов происходит когерентное образования пар $(K\pi)$ -мезонов в различных подпроцессах. Основные из них показаны на Рис. 1. Диаграмма d) отвечает киральной аномалии и описывается следующим выражением в эффективном действии Весса-Зумино-Виттена [5]:

$$L_{WZW} = \frac{ie}{4\pi^2 F^3} \epsilon^{\mu\nu\alpha\beta} A_{\beta} \partial_{\mu} K^+ \partial_{\nu} K^- \partial_{\alpha} \pi^{\circ}$$
(1)

где $e = \sqrt{4\pi \alpha}$, $\alpha \simeq \frac{1}{137}$ – постоянная тонкой структуры, F = 93 MeV, A_{β} –

4-вектор электромагнитного поля ядра, K^+ , K^- – поля каонов, π° – поле пиона.

В этом действии нет члена с множителем $\epsilon^{\mu\nu\alpha\beta} A_{\beta} \partial_{\mu} K^{+} \partial_{\nu} K^{\circ} \partial_{\alpha} \pi^{-}$ и это означает, что в когерентных событиях $K^{+}Z \rightarrow K^{\circ}\pi^{+}Z$ нет вклада от киральной аномалии. Этим свойством можно воспользоваться при выделении аномальных событий в эксперименте. Амплитуда вероятности верхней части диаграммы Рис. 1d (без линий ядра) имеет следующий вид:

$$M_o = \frac{e}{4\pi^2 F^3} \epsilon^{\mu\nu\alpha\beta} q_{\mu} b_{\nu} h_{\alpha} \epsilon_{\beta}$$

где q_{μ} , ϵ_{β} – 4-импульс и поляризация фотона, b_{ν} – 4-импульс пучкового каона, h_{α} – 4-импульс образовавшегося пиона.

Метод возмущений выполняется при $|M_o|^2 < 1$. Вычислив $|M_o|^2$, получаем условие на f_t^2 :

$$|M_o|^2 = \frac{\alpha f_t^2}{32\pi^3 F^6} ((w + m_K^2)^2 - 4w m_K^2) < 1 ,$$

где f_t^2 – квадрат поперечного импульса образовавшегося каона по отношению к направлению пучкового каона в системе центра масс ($K\pi$) -пары, w – квадрат массы этой пары, m_K^2 – квадрат массы пучкового каона.

С другой стороны, можно вычислить квадрат модуля импульса образовавшегося каона:

$$f^{2} = \frac{(w + m_{K}^{2} - m_{\pi}^{2})^{2}}{4w} - m_{K}^{2}$$

где m_K^2 – квадрат массы образовавшегося каона, m_π^2 – квадрат массы образовавшегося пиона. Поскольку $f_t^2 \leq f^2$, то получаем, что условие $|M_o|^2 < 1$ будет выполняться при любых возможных значениях f_t^2 , если $w < 1.04 \ GeV^2$.

Минимальное значение w составляет $w_{min} = (m_K + m_\pi)^2 \approx 0.395 \, GeV^2$, таким образом $0.395 < w < 1.04 (GeV^2)$.

Рис. 1. Когерентное образование пар $(K\pi)$ -мезонов в кулоновском поле ядра: а) в s- канале через $K^*(892)$ -мезон, b) в t- канале через $\phi(1020)$ -мезон, с) в u- канале через $K^*(892)$ -мезон, d) по киральной аномалии.

Амплитуду вероятности диаграммы на Рис. 1d для нулевого спиа ядра можно выписать в виде:

$$M_{d} = \frac{-eZ}{q^{2}} (p_{1} + p_{2})_{\beta} \frac{e}{4\pi^{2}F^{3}} \epsilon^{\mu\nu\alpha\beta} q_{\mu} b_{\nu} h_{\alpha} ,$$

где p_1, p_2 – 4-импульсы ядра до и после взаимодействия, соответственно. Если воспользоваться законом сохранения энергии-импульса $(p_1+b=p_2+f+h)$, то амплитуда M_d приобретает вид:

$$M_d = \frac{2\alpha Z}{\pi F^3 q^2} \epsilon^{\mu\nu\alpha\beta} p_{2\mu} b_{\nu} f_{\alpha} p_{1\beta} .$$

Диаграмма процесса образования $(K\pi)$ -пары через $K^*(892)$ -мезон показана на Рис. 1а. Его амплитуда вероятности может быть представлена как произведение $M_a = M_1 M_2$, где M_1 – амплитуда вероятности образования стабильного $K^*(892)$ -мезона, а M_2 – амплитуда вероятности последующего его распада на $(K\pi)$ – пару:

$$\begin{split} M_1 &= \frac{-eZ}{q^2} g_{K\gamma} (p_1 + p_2)_{\mu} \varepsilon^{\mu \nu \alpha \beta} q_{\nu} \lambda_{\alpha}^* k_{\beta} , \\ M_2 &= g_{K\pi} \lambda_{\mu} (f^{\mu} - h^{\mu}) , \end{split}$$

где k_{β} , λ_{α} — 4-вектора импульса и поляризации $K^*(892)$ -мезона, соответственно, $g_{K\gamma}$ — постоянная перехода $K^+ \rightarrow K^*(892)\gamma$, $g_{K\pi}$ — постоянная распада $K^*(892) \rightarrow K\pi$. В произведении амплитуд M_1M_2 заменим поляризации $\lambda_{\mu}\lambda_{\alpha}^*$ на пропагатор векторного мезона:

$$\lambda_{\mu} \lambda_{\alpha}^{*} \rightarrow \frac{-g_{\mu\alpha} + k_{\mu} k_{\alpha} / m^{2}}{k^{2} - m^{2} + im \Gamma}$$

Тогда, после применения закона сохранения энергии-импульса и упрощения, получаем:

$$M_{a} = -4 e Z \frac{g_{K\pi} g_{K\gamma}}{q^{2}} \frac{\epsilon^{\mu \nu \alpha \beta} p_{2\mu} b_{\nu} f_{\alpha} p_{1\beta}}{(f+h)^{2} - m_{K^{*}}^{2} + i m_{K^{*}} \Gamma_{K^{*}}},$$

где $m_{K^*}\Gamma_{K^*}$ – масса и ширина $K^{*+}(892)$ -мезона, соответственно. Аналогично вычисляются амплитуды M_b с промежуточным $\Phi(1020)$ -мезоном и M_c с про-

межуточным $K^{*+}(892)$ -мезоном, если образуется $(K^{+}\pi^{o})$ -пара, или с $K^{*o}(892)$ -мезоном, если образуется $(K^{o}\pi^{+})$ -пара:

$$M_{b} = 2 e Z \frac{g_{KK}g_{\pi\gamma}}{q^{2}} \frac{\epsilon^{\mu\nu\alpha\beta}p_{2\mu}b_{\nu}f_{\alpha}p_{1\beta}}{(b-f)^{2}-m_{\Phi}^{2}+im_{\Phi}\Gamma_{\Phi}}$$
$$M_{c} = 2 e Z \frac{g_{K\pi}g_{K\gamma}}{q^{2}} \frac{\epsilon^{\mu\nu\alpha\beta}p_{2\mu}b_{\nu}f_{\alpha}p_{1\beta}}{(b-h)^{2}-m_{K}^{2}+im_{K}\Gamma_{K}}$$

где g_{KK} – постоянная распада $\Phi(1020) \rightarrow K^+ K^-$, $g_{\pi\gamma}$ – постоянная распада $\Phi(1020) \rightarrow \pi^o \gamma$, $m_{\Phi} \Gamma_{\Phi}$ – масса и ширина $\Phi(1020)$ -мезона, соответственно. Заметим, что все четыре амплитуды имеют одинаковую свёртку $\epsilon^{\mu\nu\alpha\beta} p_{2\mu} b_{\nu} f_{\alpha} p_{1\beta}$ и их сумму можно представить в виде:

$$M = A \left(\frac{2\alpha}{\pi F^3} - \frac{4e g_{K\pi} g_{K\gamma}}{w - m_{K^*}^2 + i m_{K^*} \Gamma_{K^*}} + \frac{2e g_{K\pi} g_{K\gamma}}{u - m_{K^*}^2 + i m_{K^*} \Gamma_{K^*}} + \frac{2e g_{KK} g_{\pi\gamma}}{v - m_{\Phi}^2 + i m_{\Phi} \Gamma_{\Phi}} \right) \quad , \qquad (2)$$

где
$$A = Z \frac{\varepsilon^{\mu \nu \alpha \beta}}{q^2} p_{2\mu} b_{\nu} f_{\alpha} p_{1\beta}$$
, $w = (f+h)^2$, $u = (b-h)^2$, $v = (b-f)^2$

Сумма этих инвариантов равна:

$$w + u + v = 2m_K^2 + m_\pi^2 + q^2.$$

Постоянные величины $g_{K\pi}, g_{K\gamma}, g_{KK}$ и $g_{\pi\gamma}$ можно вычислить из экспериментальных значений парциальных ширин соответствующих распадов $K^*(892)$ и $\Phi(1020)$ - мезонов. Они будут вычислены с точностью до фазы, поскольку ширины выражаются через квадраты модуля от этих величин. В результате вычислений получаем:

$$g_{K\pi} = \frac{\sqrt{48 \pi m_{K^*}^5 \Gamma_{K^*} B_{K\pi}}}{((m_{K^*}^2 + m_{K^*}^2 - m_{\pi^o}^2)^2 - 4m_{K^*}^2 m_{K^*}^2)^{3/4}} \simeq 3.23 ,$$

где $B_{K\pi} = 1/3$ – относительная вероятность распада $K^*(892)$ -мезона на $(K^+\pi^o)$ - пару,

$$g_{K_{Y}} = \frac{\sqrt{96 \pi m_{K^{*}}^{3} \Gamma_{K^{*}} B_{K_{Y}}}}{(m_{K^{*}}^{2} - m_{K^{+}}^{2})^{3/2}} \simeq 0.25 \, GeV^{-1} \quad ,$$

где $B_{K_Y} = 9.9 \ 10^{-4}$ – относительная вероятность распада $K^*(892) \rightarrow K^+ \gamma$,

$$g_{KK} = \frac{m_{\Phi} \sqrt{48\pi \Gamma_{\Phi} B_{KK}}}{(m_{\Phi}^2 - 4m_{K^*}^2)^{3/4}} \simeq 4.47$$

где $B_{KK} = 0.489$ – относительная вероятность распада $\Phi(1020) \rightarrow K^+ K^-$,

$$g_{\pi \gamma} = \frac{\sqrt{96\pi} m_{\Phi}^3 \Gamma_{\Phi} B_{\pi \gamma}}{(m_{\Phi}^2 - m_{\pi^\circ}^2)^{3/2}} \simeq 0.04 \ GeV^{-1}$$

где $B_{\pi\gamma} = 1.27 \ 10^{-3}$ — относительная вероятность распада $\Phi(1020) \rightarrow \pi^{\,o} \gamma$.

Подставляя эти значения в формулу (2) и вынося из скобок множитель $\frac{2\alpha}{\pi F^3}$, для амплитуды *M* получаем выражение:

$$M = D\left(1 - \frac{0.22 \ m_{K^*}^2}{w - m_{K^*}^2 + i m_{K^*} \Gamma_{K^*}} + \frac{0.11 \ m_{K^*}^2}{u - m_{K^*}^2 + i m_{K^*} \Gamma_{K^*}} + \frac{0.018 \ m_{\Phi}^2}{v - m_{\Phi}^2 + i m_{\Phi} \Gamma_{\Phi}}\right)$$
(2a)
$$D = 2 \alpha Z \frac{\varepsilon^{\mu \nu \alpha \beta}}{\pi \ F^3 \ q^2} p_{2\mu} \ b_{\nu} f_{\alpha} \ p_{1\beta} \quad .$$

Из этой формулы видно, как соотносятся между собой четыре амплитуды. Вклады резонансных амплитуд будут минимальными, если инварианты w, u и v будут принимать значения вдали от значений квадратов масс соответствующих резонансов, например, при $w \approx w_{min} = (m_K + m_{\pi})^2$.

Вычисление сечения процесса $K^+ Z \rightarrow K^+ \pi^{\circ} Z$

Имея амплитуду М (2), мы можем вычислить сечение [7]:

$$d\sigma = \frac{\delta^{(4)}(f+h+p_2-p_1-b)}{16(2\pi)^5 E_f E_h E_N} |M|^2 \frac{df_x df_y df_z dh_x dh_y dh_z dP_{Nx} dP_{Ny} dP_{Nz}}{\sqrt{(s-(m_N+m_{K^+})^2)(s-(m_N-m_{K^+})^2)}}$$

,

где E_f, E_h – энергии образовавшихся каона и пиона, соответственно, E_N, P_N – энергия и импульс ядра после взаимодействия $(p_2 = \{E_N, \vec{P_N}\})$, m_N – масса ядра, $s = (b+p_1)^2$. Для упрощения вычислений предполагалось, что $|v| \ll m_{\Phi}^2$. Тогда

 $u \simeq 2m_K^2 + m_\pi^2 + t - w$, где $t = q^2$. После интегрирования этого выражения с амплитудой для 4 диаграмм на Рис. 1 получаем зависимость сечения от t и w, состоящее из 4 квадратов модулей амплитуд и 6 интерференционных членов. Полученные выражения имеют следующий вид:

$$\begin{split} \frac{d\,\sigma_{\,o}}{dw\,dt} &= \frac{d\,\sigma_{\,ol}}{dw\,dt} + \frac{d\,\sigma_{\,o2}}{dw\,dt} + \frac{d\,\sigma_{\,o3}}{dw\,dt} + \frac{d\,\sigma_{\,o4}}{dw\,dt} \ , \\ \frac{d\,\sigma_{\,ol}}{dw\,dt} &= V_o \left(\frac{4\,\pi\,g_{kK}^2 g_{\pi\gamma}^2}{m_{\Phi}^2 (m_{\Phi}^2 + \Gamma_{\Phi}^2)} + \frac{4\,\pi\,g_{k\pi}^2 g_{K\gamma}^2}{Y^2 + \eta^2} + \frac{8\,\pi\,g_4(\eta\,\Gamma_{\Phi} - Y\,m_{\Phi})}{m_{\Phi}(m_{\Phi}^2 + \Gamma_{\Phi}^2)(Y^2 + \eta^2)} \right) \ , \\ \frac{d\,\sigma_{\,o2}}{dw\,dt} &= V_o \left(\frac{4}{F^3} \sqrt{\frac{\alpha}{\pi}} \left(Y \frac{g_{K\pi} g_{K\gamma}}{Y^2 + \eta^2} - \frac{g_{KK} g_{\pi\gamma}}{m_{\Phi}^2 + \Gamma_{\Phi}^2} \right) \right) \ , \\ \frac{d\,\sigma_{\,o3}}{dw\,dt} &= V_o \left(-\frac{16\,\pi\,g_4(\eta\,\Gamma_{\Phi} - X\,m_{\Phi})}{m_{\Phi}(m_{\Phi}^2 + \Gamma_{\Phi}^2)(X^2 + \eta^2)} - \frac{16\,\pi\,g_{K\pi}^2 g_{K\gamma}^2 (XY + \eta^2)}{(X^2 + \eta^2)(Y^2 + \eta^2)} \right) \ , \\ \frac{d\,\sigma_{\,o4}}{dw\,dt} &= V_o \left(-\frac{\alpha}{\pi^2 F^6} - \frac{8\,X}{F^3} \sqrt{\frac{\alpha}{\pi}} \frac{g_{K\pi} g_{K\gamma}}{X^2 + \eta^2} + \frac{16\,\pi\,g_{K\pi}^2 g_{K\gamma}^2}{X^2 + \eta^2} \right) \ , \\ V_o &= \frac{-\alpha\,Z^2}{3072\pi^3 w^2} \left(\frac{U_o}{t} + \frac{t_{mo}}{t^2} + G_o \right) \left(w - (m_K + m_\pi)^2 \right)^{\frac{3}{2}} \left(w - (m_K - m_\pi)^2 \right)^{\frac{3}{2}} \ , \\ U_o &= 1 - \left(1 + \frac{E_K}{m_N} \right) \frac{w - m_{K^*}^2}{2P_K^2} \ , \ t_{mo} = \frac{(w - m_K^2 \cdot)^2}{4P_K^2} \ , \ G_o = \frac{1}{4P_K^2} (1 + 2\frac{E_K}{m_N} + \frac{m_K^2 \cdot}{m_N^2}) \ , \\ \eta &= m_{K^*} \Gamma_{K^*} \ , \ g_4 &= g_{KK} g_{\pi\gamma} g_{K\pi} g_{K\gamma} \ , \ X &= w - m_{K^*}^2 \ , \ Y = t - w + 2m_{K^*}^2 - m_{\pi}^2 - m_{K^*}^2 \ , \end{split}$$

где E_K , P_K – энергия и импульс пучкового каона в лабораторной системе отсчёта. Из этой формулы следует, что зависимость сечения от w и t имеет пороговый характер с минимальными значениями $w_{min} = (m_K + m_\pi)^2$ и $t_{min} \approx t_{mo}$. При $|t| \approx 2 t_{mo}$ сечение имеет пик, который тем уже, чем меньше w. Переменная |t| имеет максимальное значение t_{max} , которое тоже зависят от w. Например, для ядра меди и для импульса пучкового каона $P_K = 17.7 \ GeV$ при $w = w_{min}$ имеем $t_{min} = 1.8 \ 10^{-5} \ GeV^2$ и $t_{max} = 783.4 \ GeV^2$. При вычислении сечения когерентного взаимодействия каона с ядром неявно предполагалось, что ядро имеет малые размеры или взаимодействия происходят при малых |t|. Вклад больших |t| в сечение можно ограничить, если умножить его на форм-

фактор ядра $e^{\frac{t}{a^2}}$, где $a^2 = \frac{3}{0.94^2 A^{2/3} 10^{-26} cm^2}$, А – атомный номер ядра [8]. Например, для ядра свинца – $a^2 \approx 3.8 \ 10^{-3} GeV^2$, для ядра меди – $8.3 \ 10^{-3} GeV^2$, для ядра алюминия – $14.7 \ 10^{-3} GeV^2$ и для ядра бериллия – $30.5 \ 10^{-3} GeV^2$. Зависимость

полученного сечения $\frac{d\sigma_o}{dt\,dw}e^{\frac{t}{a^2}}$ от t и w показана на Рис. 2. Из рисунка видно, как с ростом w увеличивается пороговое значение t_{min} . При $w \sim 0.8 \, GeV^2$ наблюдается пик от $K^*(892)$ -мезона.

Если ограничиться только вкладом диаграммы киральной аномалии (Рис. 1d) и зафиксировать величину w, (например значениями $w = 1.2 w_{min}$ или $w = 2 w_{min}$), то получим зависимости сечения от t, которые показаны на Рис. 3. Эти графики

были вычислены только для одного из десяти слагаемых $V_o \frac{\alpha}{\pi^2 F^6}$ в выражении для

 $\frac{d \,\sigma_{o4}}{dw \, dt}$. После интегрирования произведения $\frac{d \,\sigma_{o}}{dt \, dw} e^{\frac{t}{a^2}}$ по t получаем сечение в зависимости от w. Наименьшие значения сечения (в пределах $0.08 \,\mu \, bn/GeV^2$) дают квадраты модуля амплитуд для диаграмм с промежуточным $\Phi(1020)$ -мезоном (Рис. 1b), с промежуточным $K^*(892)$ -мезоном в и-канале (Рис. 1c) и выражение для их интерференции. Эти три зависимости показаны на Рис. 4. Они соответствуют трём

слагаемым в выражении для
$$\frac{d \sigma_{ol}}{dw dt}$$
. На Рис. 5 показаны четыре зависимости от w ,

полученные после интегрирования по t выражения $\left(\frac{d\sigma_{o2}}{dt\,dw} + \frac{d\sigma_{o3}}{dt\,dw}\right)e^{\frac{t}{a^2}}$ для вкладов интерференции между диаграммами на Рис. 1. Эти кривые ограничены в пределах $\pm 4\mu bn/GeV^2$.

Рис. 2. Сечение для всех диаграмм Рис. 1 при импульсе пучкового каона 17.7 GeV на ядре меди в зависимости от квадрата переданного импульса ядру |t| и от квадрата эффективной массы образовавшейся ($K\pi$) -пары w с учётом формфактора.

Рис. 3. Сечение диаграммы киральной аномалии (Рис. 1d) в зависимости от квадрата переданного импульса ядру |t|. Сплошная линия – при $w = 1.2 w_{min}$, пунктирная – при $w = 2 w_{min}$.

Рис. 4. Зависимость сечения от w. Сплошная тонкая линия – для диаграммы с промежуточным $K^*(892)$ -мезоном в и-канале (Рис. 1с), сплошная толстая линия – для диаграммы с промежуточным $\Phi(1020)$ -мезоном (Рис. 1b), пунктирная линия – вклад их интерференции.

Рис. 5. Зависимость сечения от w. Тонкая линия – вклад интерференции $\Phi(1020)$ -мезона и $K^*(892)$ -мезона в s-канале, толстая линия – вклад интерференции киральной аномалии и $\Phi(1020)$ -мезона, пунктирная линия – вклад интерференции киральной аномалии и $K^*(892)$ -мезона в u-канале, точечная линия – вклад интерференции $K^*(892)$ -мезона в u-канале, точечная линия – вклад интерференции $K^*(892)$ -мезона в s и u-канале,

На Рис. 6 и 7 показаны три зависимости от w, полученные после интегрирова-

ния по t выражения $\frac{d \, \sigma_{od}}{dt \, dw} e^{\frac{t}{a^2}}$ для диаграммы киральной аномалии (Рис. 1d), диаграммы с промежуточным $K^*(892)$ -мезоном в s-канале (Рис. 1a) и интерференции между ними. Из этих рисунков видно, что у порога ($w \simeq 0.4 (GeV^2)$) вклады от киральной аномалии и интерференции приблизительно одинаковы, а сечение для диаграммы с промежуточным $K^*(892)$ -мезоном в s-канале меньше. Если знак произведения величин $g_{K\pi} g_{Ky}$ окажется отрицательным, то при $0.395 < w < 0.5 (GeV^2)$ вклад диаграммы киральной аномалии практически вычтется вкладом интерференции. Соотношение между этими сечениями значительно меняется при $w \simeq 0.8 (GeV^2)$, где сечение от $K^*(892)$ -мезона самое большое, а вклад от интерференции меняет знак. Для сравнения, на этих же рисунках толстой линией показано суммарное значение остальных семи вкладов в сечении.

Из Рис. 8 видно, что разность между суммарным сечением для всех десяти вкладов и сечением, вычисленным только для диаграммы с промежуточным $K^*(892)$ -мезоном в s-канале, в основном, определяется вкладом интерференции между диаграммами киральной аномалии и с $K^*(892)$ -мезоном в s-канале. Таким образом, в эксперименте можно попытаться выделить сигнал от киральной аномалии по форме и положению пика в распределении по эффективной массе $(K^+\pi^{\circ})$ -пары m.

Зависимости сечения образования $(K^+\pi^{\circ})$ -пары от импульса пучкового каона Pk при двух значениях w показаны на Puc. 9. Наблюдается медленный рост с увеличением Pk и сечение при $w = 0.8(GeV^2)$ значительно больше, чем при

 $w = 0.5(GeV^2)$ потому, что $V_o \sim ((w - m_K^2 - m_\pi^2)^2 - 4m_K^2 m_\pi^2)^{\frac{3}{2}}/w^2$ есть возрастающая функция от w и значение $w = 0.8(GeV^2)$ практически совпадает с квадратом массы $K^*(892)$ -мезона.

Рис. 6, 7. Зависимость сечения от w. Тонкая линия – вклад киральной аномалии (Рис. 1d), точечная линия – вклад диаграммы с промежуточным $K^*(892)$ -мезоном в s-канале (Рис. 1a), пунктирная линия – вклад интерференции между ними, толстая линия – суммарное з начение остальных семи вкладов в сечении.

Рис. 8. Зависимость сечения от $m = \sqrt{w}$. Тонкая линия – суммарное значение всех десяти вкладов в сечение, пунктирная линия – вклад диаграммы с промежуточным $K^*(892)$ -мезоном в s-канале (Рис. 1а), толстая линия – разница между ними.

Рис. 9. Сечение в зависимости от импульса пучкового каона в лабораторной системе отсчёта. Сплошная линия – при $w = 0.5 \ GeV^2$, пунктирная – при $w = 0.8 \ GeV^2$.

Если вычислять сечение взаимодействия каона с ядром, спин которого равен $\hbar/2$, то нужно во всех амплитудах величину $(p_1 + p_2)^{\mu}$ заменить на $\bar{u}_2 \gamma^{\mu} u_1$, где – $\bar{u}_2, u_1, \gamma^{\mu}$ спиноры ядра и матрица Дирака. В результате, по сравнению с сечением для ядра со спином 0, изменится только зависимость выражения V_o от t:

$$\tilde{V}_{o} = \frac{-\alpha Z^{2}}{6144 \pi^{3} w^{2} P_{K}^{2}} \left(\frac{t}{4m_{N}^{2}} + G_{1/2} + U_{1/2} \frac{t + t_{min}}{t^{2}}\right) (w - (m_{K} + m_{\pi})^{2})^{\frac{3}{2}} (w - (m_{K} - m_{\pi})^{2})^{\frac{3}{2}},$$

$$t_{min} = \frac{1}{2} \frac{(w - m_K^2)^2}{U_{1/2}} , \qquad U_{1/2} = \left(E_K - \frac{w - m_K^2}{2m_N}\right)^2 + P_K^2 - w , \quad G_{1/2} = \frac{1}{2}\left(1 + 2\frac{E_K}{m_N} - \frac{w}{m_N^2}\right)^2 + \frac{1}{2}\left(1 + 2\frac{E_K}{m_N} - \frac{w}{m_N^2}\right)^2$$

Как видно из формулы для \tilde{V}_o , в скобках появилось слагаемое с линейной зависимостью по $t \quad (t/(4m_N^2))$. Однако, если импульс пучкового каона $P_K \gg \sqrt{w}$, то формулы для V_o и \tilde{V}_o приводятся к одному виду:

$$V_o = \tilde{V}_o = \frac{-\alpha Z^2}{3072\pi^3 w^2} \left(\frac{t+t_{mo}}{t^2}\right) (w - (m_K + m_\pi)^2)^{\frac{3}{2}} (w - (m_K - m_\pi)^2)^{\frac{3}{2}} .$$

Это означает, что при больших импульсах пучка каонов когерентное образование пар $(K^+\pi^{\,o})$ -мезонов не зависит от спина ядра.

Оценка числа событий на установке «ОКА»

Если проинтегрировать сечение киральной аномалии для ядра меди при импульсе пучка каонов 17.7 GeV/c в диапазоне $0.395 < w < 0.6 (GeV^2)$, то получим 0.64 µ bn . Это позволяет ожидать одно событие в час, если мишенью будет медная пластина толщиной 2 мм при интенсивности пучка каонов 2.4 10^5 за сброс и длительности цикла ускорителя 9 сек. В том же диапазоне по w и при тех же условиях ожидается одно событие за два часа с промежуточным $K^*(892)$ -мезоном (с сечением 0.3 µ bn для моды распада на $(K^+\pi^{\,0})$ -пару) и 1.4 событий в час от их интерференции (с сечением 0.86 µ bn). Аналогично, проинтегрировав сечение диаграммы с виртуальным $K^*(892)$ -мезоном в диапазоне 0.7 < $w < 0.9 (GeV^2)$, получим 19.5 µ bn для моды распада на $(K^+\pi^{\,0})$ -пару. Это соответствует 32 событиям в час при той же

мишени и интенсивности пучка. Эффективность установки здесь не учитывалась, однако её вычисления уже проведены и результаты подробно будут представлены в следующей работе.

Заключение

- Из эффективного действия Весса-Зумино-Виттена была получена амплитуда для киральной аномалии при когерентном образовании (K⁺π^o) -пар в кулоновских взаимодействиях K⁺ -мезонов с ядром.
- Из экспериментальных парциальных ширин распадов были вычислены амплитуды сопутствующих процессов с промежуточными $K^*(892)$ и $\Phi(1020)$ мезонами.
- Когерентное образование (K⁺π[°]) -пар при кулоновском взаимодействии K⁺ -мезонов с ядром характеризуются пиком в распределении по квадрату переданного импульса t. Этот пик тем выше и шире, чем больше квадрат эффективной массы образовавшейся (Kπ) -пары w .
- Зависимость сечения от w имеет пороговый характер для всех 4 диаграмм и $d \sigma \sim (w (m_K + m_\pi)^2)^{3/2} dw$.
- При импульсе каонов 17.7 GeV/c на ядре меди сечение процесса киральной аномалии в диапазоне 0.395 <w <0.6 (GeV²) составляет 0.64 µ bn , что в ≃2 раза больше сечения образования K^{*}(892) -мезона и в ≃1.4 раза меньше вклада интерференции между ними.
- При большом импульсе каонного пучка различия между сечениями когерентного образования (K⁺π[°]) -пар на скалярном ядре или на ядре со спином ħ/2 незначительны.

Работа выполнена при поддержке гранта РФФИ 11-02-00870-а.

Выражаю большую благодарность В.Ф. Образцову, А.К. Лиходеду и А.В. Лучинскому за полезные обсуждения.

Список литературы

- [1] Antipov Yu. et al, Phys. Rev D (1987), 36, p. 21.
- [2] Amelin D. et al, Phys.Atom.Nucl.,62, p. 454-458, (1999),
 - Yad.Fiz., 62, p. 496-500, (1999), Preprint IHEP 98-62, hep-ex/9810032
- [3] J. Bijnens, Int. J. Mod. Phys. A 8, 3045 (1993).
- [4] T. Fujiwara et al., Prog. Theor. Phys. 73, 926 (1985).
- [5] Р. Рогалёв, ЯФ, 64, 72, (2001).
- [6] Bando M., Kugo T. and Yamawaki K., Phys. Rep. (1988), 164, p. 217.
- [7] Л.Ландау, Е.Лифшиц, Теоретическая физика, том IV, Квантовая электродинамика, 1989, с. 289.
- [8] Л. Ландсберг, ЯФ, 59, 2161, (1996).

Рукопись поступила 8 февраля 2012 г.

В.С. Буртовой

Когерентное образование пар $(K^+\pi^{\circ})$ -мезонов на ядрах в пучке заряженных каонов.

Препринт отпечатан с оригинала-макета, подготовленного автором.

Подписано к печати	01.03.2012.	Формат 60) × 84/16.	Офсетная печать.
Печ. л. 1,25. Уч	- изд. л. 1,73.	Тираж 80.	Заказ 30.	Индекс 3649.

ГНЦ РФ Институт физики высоких энергий 142281, Протвино Московской обл.

Индекс 3649

ПРЕПРИНТ 2012-1, ИФВЭ, 2012