

ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ ФЕДЕРАЦИИ

ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

ИФВЭ 2013–9 ЛДС

Сотрудничество СВД-2

Е.Н. Ардашев, А.Г. Афонин, М.Ю. Боголюбский, А.П. Воробьев, С.Н. Головня, С.А. Горохов, В.Ф. Головкин, В.Н. Запольский, А.А. Киряков, Л.Л. Курчанинов, Г.Я. Митрофанов, В.С. Петров, А.В. Плескач, В.М. Роньжин, В.Н. Рядовиков, В.А. Сенько, Н.А. Шаланда, М.М. Солдатов, А.Г. Холоденко, Ю.П. Цюпа, В.И. Якимчук

ГНЦ РФ Институт физики высоких энергий, Протвино

С.Г. Басиладзе, С.Ф. Бережнев, Г.А. Богданова, А.М. Вишневская, В.Ю. Волков, А.Г. Воронин, Г.Г. Ермаков, <u>П.Ф. Ермолов</u>, Н.И. Гришин, Я.В. Гришкевич, Е.Г. Зверев, Д.Е. Карманов, В.Н. Крамаренко, А.В. Кубаровский, А.К. Лефлат, С.И. Лютов, М.М. Меркин, В.В. Попов, Л.А. Тихонова

Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына МГУ, Москва

А.Н. Алеев, В.П. Баландин, В.И. Киреев, Н.А. Кузьмин, Г.И. Ланщиков, Ю.П. Петухов, Н.Ф. Фурманец, А.И. Юкаев

Объединенный институт ядерных исследований, Дубна

Регистрация заряженных очарованных D[±]-мезонов в рА-взаимодействиях при 70 ГэВ на установке СВД-2

Направлено в ЯФ

Протвино 2013

Аннотация

Ардашев Е.Н. и др. Регистрация заряженных очарованных D[±]-мезонов в рА-взаимодействиях при 70 ГэВ на установке СВД-2: Препринт ИФВЭ 2013-9. – Протвино, 2013. – 18 с., 16 рис., библиогр.: 14.

Приведены результаты обработки данных эксперимента SERP-E-184 «Изучение механизмов образования очарованных частиц в рА-взаимодействиях при 70 ГэВ и их распадов» [1], полученные при облучении активной мишени установки СВД-2, состоящей из пластинок углерода, кремния и свинца, пучком протонов 70 ГэВ. В результате детального моделирования с помощью программ FRITIOF7.02 и GEANT3.21 были оптимизированы критерии отбора событий и вычислены эффективности регистрации D[±]-мезонов. После выделения сигнала от трехчастичного распада заряженных очарованных D[±]-мезонов измерены инклюзивные сечения их образования при околопороговой энергии, времена жизни и параметры А-зависимости сечений. Приведена таблица выходов и их отношений для D-мезонов в сравнении с данными других экспериментов и теоретическими предсказаниями.

Abstract

Ardashev E.N. et al. Detection of charged D^{\pm} -mesons production in pA-interactions at 70 GeV with SVD-2 setup: IHEP Preprint 2013-9. – Protvino, 2013. – p. 18, figs. 16, refs.: 14.

The results of analysis for E-184 experiment data obtained with 70 GeV proton beam irradiation of active target with carbon, silicon and lead plates are presented. For three-prongs charged charmed mesons decays, event selection criteria were developed and detection efficiency was calculated with detailed modeling using FRITIOF7.02 μ GEANT3.21 programs. Signal of decays was obtained and charm production inclusive cross sections were estimated at near threshold energy. The lifetimes and A-dependence of cross section were measured. Yields of D-mesons and their ratios in comparison with data of other experiments and theoretical predictions are presented.

© Государственный научный центр Российской Федерации Институт физики высоких энергий, 2013

Введение

В работах по исследованию характеристик рождения нейтральных очарованных мезонов в рА-взаимодействиях при 70 ГэВ на установке СВД-2 (эксперимент SERP-E-184 [1]) дана оценка сечения образования очарованных частиц $\sigma(c\hat{c})$ при околопороговой энергии [2, 3, 4]. Было показано, что сложившаяся экспериментальная ситуация в этой области энергий противоречива, а теоретические оценки сечений весьма чувствительны к параметрам моделей КХД. Поэтому дальнейшие измерения выходов различных очарованных частиц в настоящее время актуальны. В настоящей работе приведены результаты обработки данных по выделению событий с распадами $D^+ \rightarrow K^- \pi^+ \pi^- \mu \ D^- \rightarrow K^+ \pi^- \pi^-$ в рА-взаимодействиях при 70 ГэВ. Дана оценка сечения образования заряженных очарованных мезонов и их выходов, измерены некоторые свойства D^{\pm} -мезонов.

Предварительные критерии отбора событий

В анализе использовано 52 миллиона неупругих событий, зарегистрированных на трёх ядерных мишенях из углерода, кремния и свинца. Подробное описание установки СВД-2 в эксперименте по исследованию рождения очарованных частиц в рАвзаимодействиях при 70 ГэВ можно найти в работе [5]. Из-за небольшого сечения образования очарованных частиц при околопороговой энергии, малой длины их пробега и уменьшения эффективности реконструкции всех треков в вершине для многочастичной моды распада жесткие критерии при первичном отборе событий в кандидаты с рождением очарованных частиц не использовались. Выделение нужного класса событий состояло из следующих процедур:

- Реконструкция треков и первичной вершины на проекциях по данным вершинного детектора (ВД).
- Поиск вторичных двухлучевых вершин в пространстве параметров треков {a,b}
 [2]. Данная процедура является «быстрым фильтром» для отбора событий с возможным образованием очарованных частиц.
- Пространственная реконструкция треков заряженных частиц в магнитном спектрометре (МС) и определение их импульсов.
- Поиск вторичных трехлучевых вершин с помощью дальнейшего анализа треков в пространстве {a,b} с учетом их заряда и кинематического соответствия первичной вершине взаимодействия.
- Определение импульса распадной частицы и применение критерия Р >7 ГэВ (см. текст ниже).

После выполнения вышеперечисленных процедур для анализа остается 16320 событий с вершиной распада по гипотезе ($K^-\pi^+\pi^+$) и 8439 событий с вершиной распада по гипотезе ($K^+\pi^-\pi^-$). На рис. 1 представлены спектры эффективных масс систем ($K^-\pi^+\pi^+$) и ($K^+\pi^-\pi^-$) для этих событий, фитированные суммой функции Гаусса и полинома 6-й степени. Сигналы в области D-мезонов видны, но имеют значительную фоновую подложку.

2

Рис. 1. Спектры эффективных масс систем (К⁻π⁺π⁺) (а) и (К⁺π⁻π⁻) (б) после отбора событий с трёхлучевыми вторичными вершинами.

Моделирование и оптимизация критериев отбора событий с рождением очарованных частиц

Для моделирования событий и оптимизации критериев отбора событий с рождением очарованных частиц в данном эксперименте использовалась программа GEANT3.21 [6] с геометрическим описанием всех элементов установки СВД-2. В качестве генератора pA-взаимодействий использовалась программа FRITIOF7.02 [7]. Для моделирования фоновых условий по программе GEANT было разыграно 10 млн. Монте-Карло (МК) событий с запретом на формирование очарованных частиц, которые были пропущены через систему обработки данных. При этом в некоторых событиях изза наложенных шумовых условий и несовершенства алгоритма реконструкции событий с трёхчастичными распадами были найдены трехлучевые вершины распада, которые моделируют фон. Распределения по параметрам трехчастичной системы ($K^-\pi^+\pi^+$) в этих событиях сравнивались с экспериментальным фоном. В экспериментальный фон отбирались события, в которых эффективная масса системы ($K^-\pi^+\pi^+$) находилась в интервале, полученном из распределения на рис. 1, т.е. M=1.858±3*0.018 (ГэВ). Те же требования применялись для МК-событий. На рис. 2 представлены распределения по приведенной длине пробега (L_{пр}=L*M/P), импульсу (P) и переменной Фейнмана (X_f) системы ($K^-\pi^+\pi^+$). Все распределения нормировались по площади на 1. Видно, что имеется хорошее согласие между МК-событиями и экспериментальными данными. Таким образом, моделированные события хорошо воспроизводят фоновые условия эксперимента.

Рис. 2. Распределения по параметрам системы (К⁻π⁺π⁺) для фоновых событий: а) приведенная длина пробега (см. текст), б) импульс и в) переменная Фейнмана.

Для оптимизации системы критериев отбора событий с рождением очарованных частиц с помощью программы GEANT было получено два файла, содержащих по 500 тыс. МК-событий в каждом с распадами $D^+ \rightarrow K^- \pi^+ \pi^+$ и $D^- \rightarrow K^+ \pi^- \pi^-$, соответственно. Моделирование показывает, что из-за аксептанса установки реконструкция всех треков в распадной вершине возможна только при условии, что импульс распадной частицы больше 7 ГэВ. На первом этапе был выполнен анализ диаграммы Далитца для распада $D^+ \rightarrow K^- \pi^+ \pi^+$, при этом можно определить границы фазового объёма характерные для рассматриваемого трёхчастичного распада. Анализировался двумерный плот массовых гипотез систем: $m_{12}(K^-_2\pi^+_1)$ и $m_{23}(K^-_2\pi^+_3)$ (рис. 3а).

Рис. 3. Схема обозначений и диаграмма Далитца для МК-событий.

Из кинематики трёхчастичного распада для Далитц-плота имеются следующие граничные условия:

$$m_{12max} = m_{23max} = m_D - m_\pi \approx 1.73$$
(1)
$$m_{12min} = m_{23min} = m_K + m_\pi \approx 0.63$$

На рис. Зб представлена аппроксимация фазового объема эллипсом для МК-событий:

$$X = (m_{12} - \Delta m_{12}) \cdot \cos\theta + (m_{23} - \Delta m_{23}) \cdot \sin\theta$$

$$Y = (m_{23} - \Delta m_{23}) \cdot \cos\theta - (m_{12} - \Delta m_{12}) \cdot \sin\theta$$

$$X^2/R_{\rm Y}^2 + Y^2/R_{\rm Y}^2 = 1, \text{ гле}$$

$$(2)$$

 $\Delta m_{12}=1.18$, $\Delta m_{23}=1.17$, $\theta=44.78$ град. – параметры перехода в координатную систему эллипса (X, Y), (R_x, R_y) – оси эллипса.

На рис. 4а приведена диаграмма Далитца системы ($K^-\pi^+\pi^+$) для экспериментальных событий с наложением данного эллипса и учётом граничных условий (1), а на рис. 4б представлены плотности распределения событий, при данных условиях, относительно координатной системы эллипса.

Рис. 4. a) Расчетный кинематический эллипс на экспериментальном Далитц-плоте системы (K⁻π⁺π⁺); б) плотность экспериментальных и МК-событий в зависимости от φ.

Из распределения по углу φ видно, что основной фон под сигналом от D⁺ (рис. 1a) группируется в области углов 270[°] ± 70[°]. Для уменьшения фоновой подложки события отбирались из областей: $\varphi < 200^{°}$, $\varphi > 340^{°}$ и R_{ell} < 1. В области φ от 30[°] до 170[°]

плотности событий с возможным распадом D⁺ и фоновых событий сравнимы (рис. 4б), поэтому эта область не исключалась из дальнейшего анализа.

Значительная часть фона формируется из-за наложения трека заряженной частицы, выходящего из вершины взаимодействия, на вершину распада K^0 -мезона. Спектр эффективных масс для двух гипотез K^0 из экспериментальной выборки для D^+ с учётом вышеприведённых критериев отбора представлен на рис. 5.

Рис. 5. Спектр эффективных масс для двух гипотез K⁰ из экспериментальной выборки для D⁺.

Для исключения этого фона рассмотрим еще один двумерный плот, когда гипотеза K^- для отрицательного трека в трехчастичной вершине заменена на гипотезу π^- , в этом случае имеется две гипотезы распада K^0 -мезона (рис. 6а). Как видно из рисунка, вклад от K^0 группируется в нижней области плота, ограниченной линией:

$$M(\pi^{+}\pi^{-})_{G1} + M(\pi^{+}\pi^{-})_{G2} < C.$$
(3)

Отношение числа событий под прямой (3) к полному числу событий (W=N_{cut}/N_{tot}) зависит от значения параметра С. Значение C=1.2 получено из анализа зависимостей W(C) для экспериментальных и МК-событий, показанных на рис. 6б.

Рис. 6. а) Диаграмма Далитца для системы (πππ). Линия показывает область для исключения фона от К⁰-мезона. б) Зависимость величины W (см. текст) от параметра обрезаний C.

На рис. 7 приведён спектр эффективных масс для двух гипотез K⁰ из экспериментальной выборки для D⁺ после исключения области, показанной на рис. 6.

Рис. 7. Спектр эффективных масс для двух гипотез К⁰ из экспериментальной выборки для D⁺ после исключения области, показанной на рис. 6.

Еще одно граничное условие связано с отражением D⁺ в массовый спектр D⁺_s, т.е. системы (K⁻K⁺ π^+). Для этого в МК-событиях с D⁺-мезоном трекам трехчастичной распадной системы приписывались массы K⁻, K⁺ и π^+ (две гипотезы на событие, соответственно). Полученные эффективные массы приведены на рис. 8. Для уменьшения этого фона в экспериментальных событиях применялось условие M(K⁻K⁺ π^+) > 1.93 ГэВ для обеих гипотез.

Рис. 8. Массовый спектр системы $M(K^-K^+\pi^+)$ для МК-событий с D⁺-мезоном.

На рис. 9 показаны распределения для МК-событий с трехлучевой вторичной вершиной по приведенной длине пробега L_{пр} системы (K⁻π⁺π⁺). Из анализа распределений на рис. 9 вводилось условие: L_{пр} > 0.12 мм.

Рис. 9. Распределения по приведенной длине пробега системы (К⁻π⁺π⁺) для МК-событий. Линией указана граница отбора событий.

Такой же анализ критериев отбора был проведён для событий с возможным распадом D⁻-мезонов.

Анализ экспериментальных событий после применения критериев отбора

В результате вышеописанного моделирования были выбраны критерии отбора событий с минимальным фоном. Для системы (К⁻π⁺π⁺) эти критерии следующие:

- $\phi(K^-\pi^+) < 200^\circ$, $\phi(K^-\pi^+) > 340^\circ$ и $R_{ell} < 1$ (рис. 4);
- $M(\pi^+\pi^-)_{G1} + M(\pi^+\pi^-)_{G2} < 1.2$ (рис. 6);
- М(К⁻К⁺π⁺) > 1.93 ГэВ для обеих гипотез (рис. 8);
- $L_{np}(K^-\pi^+\pi^+) > 0.12$ MM (рис. 9).

На рис. 10 показан спектр эффективных масс системы (К⁻ $\pi^+\pi^+$) для экспериментальных событий после использования всех критериев их отбора.

Рис. 10. Спектр эффективных масс системы (К⁻π⁺π⁺) для экспериментальных событий после использования всех критериев отбора.

После параметризации спектра на рис. 10 суммой функции Гаусса и полинома 6-й степени ($\chi^2/NDF = 7.4 / 12$, prob = 0.8) получаем 15.4 событий в сигнале от D⁺-мезона и

16.6 событий в фоновой подложке. Измеренная масса D⁺-мезона равна 1873±5 МэВ (табличное значение – 1869.6 МэВ), стандартное отклонение – 12 МэВ. В области масс D⁺-мезона в спектре эффективных масс гипотез $\pi^-\pi^+$ нет сигнала от примеси K⁰-мезона. Эффективность выделения сигнала от D⁺-мезона, полученная из моделирования и определяемая как отношение числа событий в сигнале после всех обрезаний к полному числу МК-событий с распадом D⁺ \rightarrow K⁻ $\pi^+\pi^+$, равна ϵ (D⁺) = 0.014. При этом выполнялось условие полного соответствия процедур обработки экспериментальных и моделированных событий.

Рис. 11. Спектр эффективных масс системы (К⁺π[−]π[−]) для экспериментальных событий после использования всех критериев отбора.

Аналогичные процедуры были выполнены для выделения сигнала от D⁻-мезона (рис. 11) в спектре масс системы ($K^+\pi^-\pi^-$) с теми же критериями отбора событий. Спектр эффективных масс системы ($K^+\pi^-\pi^-$) на рис. 11 также был параметризован суммой функции Гаусса и полинома 6-й степени (χ^2 /NDF = 2.7 / 11, prob = 0.99). Число событий в сигнале – 15.3, фон под сигналом – 8.7 событий. Масса D⁻-мезона равна

1863 \pm 8 МэВ, стандартное отклонение – 22 МэВ. Эффективность выделения сигнала от D⁻-мезона, полученная из моделирования, равна ϵ (D⁻) = 0.008.

Время жизни D[±]-мезонов

В спектре эффективных масс системы (К⁻ $\pi^+\pi^+$) (рис. 10) была выделена полоса сигнала M(D⁺) ± 2.5* σ согласно параметрам фита и для этих событий построено распределение по приведенной длине L_{пр}. Учет фоновой подложки проводился по распределению для MK-событий.

Рис. 12. Восстановленная экспериментальная длина пробега D⁺-мезона с учетом эффективности регистрации.

Далее экспериментальное распределение по L_{np} восстанавливалось с учетом эффективности (є) регистрации событий с D⁺ в данном интервале L_{np} (рис. 12), полученной из моделирования, и фитировалось экспонентой. Из полученного значения показателя экспоненты вычислено время жизни D⁺-мезона с $\tau = 291 \pm 75$ мкм (табличное значение: с τ (D⁺) = 311.8 мкм). Аналогичным образом вычислялось время жизни D⁻-мезона (рис. 13), с $\tau = 341 \pm 88$ мкм. Ошибки в значениях с τ – статистические. Тот факт, что измеренные времена жизни D[±]-мезонов близки к табличному значению, подтверждает регистрацию очарованных частиц в нашем эксперименте. Оценки величины ст для областей вне сигнала значительно отличаются от этих значений.

Рис. 13. Восстановленная экспериментальная длина пробега D⁻-мезона с учетом эффективности регистрации.

Сечения образования D[±]-мезонов и их А-зависимость

Для расчета сечений на ядрах мишени использовалась формула:

$$N_{s} = [N_{0}(\sigma_{D}A^{\alpha})/(\sigma_{pp}A^{0.7})] \cdot [(B\epsilon)/K_{tr}],$$
 где

- N_s число событий в сигнале, полученное из анализа массовых спектров для каждого вида ядер мишени (см. табл. 1);
- N₀ число событий с рА-взаимодействиями в мишени (см. табл. 1);
- σ_D сечение образования очарованных частиц;
- А атомный вес материала мишени (С, Si, Pb);
- α показатель степени А-зависимости для очарованных частиц (для всех неупругих событий он принимается равным 0.7);
- σ_{pp} сечение неупругих pp-взаимодействий при энергии 70 ГэВ (= 31440 мкбн);
- В бренчинг распада $D^{\pm} \rightarrow K\pi\pi$ (= 0.094);
- ϵ эффективность регистрации D-мезонов: ϵ (D⁺) = 0.014, ϵ (D⁻) = 0.008;
- K_{tr} = 0.57 (коэффициент триггирования [3], уточненный);

Таблица 1. Значения параметров для вычисления сечений.

Параметр	С	Si	Pb					
Α	12	28	207					
N ₀	$11.37 \cdot 10^{6}$	$27.44 \cdot 10^{6}$	13.19·10 ⁶					
D^+								
Ns	2	8	6					
D								
N _s	2	7	6					

Вводя замену $C_D = [N_0/(\sigma_{pp}A^{0.7})] \cdot [(B\epsilon)/K_{tr}]$, получаем

$$N_s = C_D \cdot \sigma_D A^{\alpha}$$
 или $\ln(N_s / C_D) = \alpha \cdot \ln(A) + \ln(\sigma_D).$

На рис. 14 представлены А-зависимости сечений образования очарованных частиц в материале мишени. По результатам параметризации этой зависимости прямой линией параметр α имеет значение 1.02 ± 0.26 для событий с рождением D⁺ и 1.04 ± 0.27 для событий с рождением D⁻. Ошибки в значениях параметра α являются статистическими.

Рис. 14. А-зависимость сечения образования $D^+(a)$ и $D^-(6)$.

Полученная параметризация А-зависимости приводит к следующим взвешенным по ядрам мишени средним значениям полных инклюзивных сечений:

 σ (D⁺) = 1.2 ± 0.4(стат.) ± 0.2(сист.) (мкбн/нуклон)

 σ (D⁻) = 1.9 ± 0.6(стат.) ± 0.4(сист.) (мкбн/нуклон).

Относительные ошибки полученных сечений обусловлены статистикой сигналов (≈30%) и неопределенностями в вычислениях эффективностей и коэффициента триггирования (≈15%).

Отношения выходов очарованных частиц

Ранее в работе [3] по результатам регистрации нейтральных D-мезонов была получена оценка полного сечения образования очарованных частиц в рАвзаимодействиях при 70 ГэВ:

 $\sigma(c\hat{c}) = 7.1 \pm 2.4$ (стат.) ± 1.4 (сист.) (мкбн/нуклон).

На основе этих данных оценки выходов заряженных очарованных D-мезонов равны: D⁺-мезона – 17% и D⁻-мезона – 27%.

По результатам работы [3] оценены полные инклюзивные сечения образования нейтральных очарованных мезонов:

$$\sigma$$
(D⁰) = 2.5 ± 0.8(стат.) ± 0.5(сист.) (мкбн/нуклон)

$$\sigma$$
(\dot{D}^0) = 4.6 ± 1.6(стат.) ± 0.9(сист.) (мкбн/нуклон).

Отношение выхода заряженных и нейтральных D-мезонов: $(D^+ + D^-)/(D^0 + D^0) = 44\%$. Измеренные в этом эксперименте выходы D-мезонов и их отношения в сравнении с данными двух других наиболее статистически значимых экспериментов и теоретическими предсказаниями для пучка протонов с энергией 70 ГэВ, приведены в табл. 2 и на рис. 15.

Отношение	PYTHIA	FRITIOF		СВД-2	Другие эксперименты ^{*)}		
выходов	рр-вз.	рА-вз.		рА-вз.	рА-взаимодействия		
		С	Si	Pb		NA-27 [8]	HERA-B [9]
D^0	0.28	0.48	0.51	0.55	0.35±0.16	0.57±0.08	0.44±0.18
$\check{\mathrm{D}}^{0}$	0.74	0.60	0.59	0.58	0.65±0.31	0.43 ±0.09	0.54±0.23
D^+	0.13	0.28	0.29	0.29	0.16 ± 0.07	0.31±0.06	0.19±0.08
D-	0.24	0.28	0.27	0.28	0.27±0.17	0.34±0.06	0.25±0.11
D^{0} / $\mathrm{\check{D}}^{0}$	0.38	0.80	0.86	0.95	0.54±0.25	1.33±0.25	0.81±0.23
D^{+} / D^{-}	0.54	1.0	1.1	1.0	0.59±0.20	0.92±0.21	0.76±0.22
D^{\pm} / (D^{0} + $\check{\mathrm{D}}^{0}$)	0.36	0.51	0.51	0.5	0.44 ± 0.24	0.65±0.21	0.46±0.18
D^+ / D^0	0.18	0.56	0.56	0.52	0.46±0.21	0.54±0.11	0.44±0.12
D^-/\check{D}^0	0.32	0.47	0.46	0.48	0.42±0.26	0.78±0.19	0.47±0.14

Таблица 2. Отношения выходов очарованных частиц.

^{*)}выходы частиц и их отношения взяты из работ [8], [9], либо вычислены по приведённым в них данным.

Как видно из табл. 2 и рис. 15, вклады заряженных и нейтральных D-мезонов в полные сечения образования открытого чарма в pA-взаимодействиях меняются с изменением энергии взаимодействия. Так, вклады D⁰- и D⁺-мезонов проявляют тенденцию к снижению с уменьшением энергии взаимодействия до 70 ГэВ, а вклады Ď⁰- и D⁻-мезонов растут. Кроме того, растёт разница во вкладах частиц и античастиц в сечения образования открытого чарма в pA-взаимодействиях с уменьшением энергии взаимодействия.

Рис. 15. Отношения выходов очарованных мезонов. Экспериментальные точки взяты из таблицы 2, а теоретические кривые - из работы [11].

Экспериментально большая разница в выходах очарованных частиц и античастиц впервые наблюдалась в нейтрон-ядерных взаимодействиях при средней энергии пучка нейтронов 43 ГэВ в эксперименте БИС-2. Были зарегистрированы распады античастиц $(\check{D}^0 - u \, D^-$ мезонов) [10], но не были обнаружены распады частиц $(D^0 - u \, D^+$ мезонов). Сечения рождения частиц оказались ниже порога чувствительности этого эксперимента. Такое поведение вкладов D-мезонов находит свое объяснение в возможном влиянии ядерной материи на образование этих частиц. В настоящее время имеется несколько теоретических работ [12], в которых рассматриваются различные механизмы влияния ядерной материи на изменение выходов частиц с энергией. Полученные нами результаты по выходам D-мезонов (рис. 15) сравниваются с предсказаниями модели статистической адронизации [11, 13].

На рис. 16 представлены отношения сечений выхода заряженных и нейтральных D-мезонов из работы [14] с добавлением результата, полученного в настоящей работе. Данные также сравниваются с вычислениями по статистической модели [13].

Рис. 16. Отношения сечений выхода заряженных и нейтральных D-мезонов.

Заключение

В эксперименте SERP-E-184 по изучению образования очарованных частиц и их характеристик в рА-взаимодействиях при 70 ГэВ на установке СВД-2 выделены сигналы заряженных D^{\pm} -мезонов в спектрах эффективных масс трехчастичных систем (К $\pi\pi$). В результате детального моделирования с помощью программ FRITIOF7.02 и GEANT3.21 оптимизированы критерии отбора событий и вычислены эффективности регистрации D^{\pm} -мезонов. Полученные при этом инклюзивные сечения образования D^{\pm} -мезонов при околопороговой энергии равны:

 σ (D⁺) = 1.2 ± 0.4(стат.) ± 0.2(сист.) (мкбн/нуклон) σ (D⁻) = 1.9 ± 0.6(стат.) ± 0.4(сист.) (мкбн/нуклон). Наличие в активной мишени установки СВД-2 набора пластинок из разных материалов (C, Si, Pb) позволяет измерить параметры А-зависимости сечений для D[±]-мезонов:

$$lpha$$
 = 1.02 ± 0.26 для D⁺
 $lpha$ = 1.04 ± 0.27 для D⁻

С использованием ранее полученной оценки полного сечения образования очарованных частиц [3] и сечений нейтральных D⁰(Ď⁰)-мезонов измерены значения выходов заряженных D[±]-мезонов и их отношения в сравнении с данными других экспериментов и теоретическими предсказаниями. Экспериментальные данные указывают на изменение соотношений выходов очарованных частиц в околопороговой области энергий рА-взаимодействий и близки к предсказаниям модели статистической адронизации.

Список литературы

- [1] Е. Н. Ардашев и др. Препринт ИФВЭ 96-98, Протвино, 1996.
 <u>http://web.ihep.su/library/pubs/prep1996/ps/96-98.pdf</u>
- [2] А. П. Воробьев и др. Препринт ИФВЭ 2008-17, Протвино, 2008.
 <u>http://web.ihep.su/library/pubs/prep2008/ps/2008-17.pdf</u>
- [3] Е. Н. Ардашев и др. ЯФ 2010, т.73, №9, с.1585-1596. <u>http://web.ihep.su/library/pubs/prep2009/ps/2009-09.pdf</u> <u>http://arxiv.org/abs/1004.3676</u>
- [4] Рядовиков В.Н (от имени Сотрудничества СВД-2). ЯФ, 2011, т. 74, №2, с. 342–349.
 <u>http://web.ihep.su/library/pubs/prep2010/ps/2010-2.pdf</u>

http://arxiv.org/abs/1106.1563

- [5] В. В. Авдейчиков и др, ПТЭ, 2013, № 1, с. 14–37.
- [6] GEANT 3.21, CERN Program Library Long Writeup W5013.
- [7] B. Pi, Computer Phys. Comm. 71,173 (1992).
- [8] LEBC-EHS Collaboration, Phys. Lett. B, v. 189, nu. 4, 1987, p. 476-482.

[9] I. Abt et al. Measurement of D^0 , D^+ , D^+_s and D^{*+} production in fixed target 920 GeV proton-nucleus collisions. Eur. Phys. J. 2007, C 52, 531-542.

http://arxiv.org/abs/0708.1443

[10] A.N. Aleev et al, BIS-2 Collaboration, Production \check{D}^0 and D^- mesons in neutroncarbon interactions at 40-70 GeV, Z.Phys. C -Particles and Fields, **37**, 243-249 (1988).

- [11] A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Phys. Lett. B 659 (2008)
 <u>http://arxiv.org/abs/0708.1488</u>
- [12]L. Tolos, J. Schaffner-Bielich, H. Stocker, Phys. Lett. B 635 (2006) 85 [nuclth/0509054].
 - K. Tsushima, D.H. Lu, A.W. Thomas, K. Saito, R.H. Landau, Phys. Rev. C **59** (1999) 2824 [nucl-th/9810016].

A. Sibirtsev, K. Tsushima, A.W. Thomas, Eur. Phys. J. A 6 (1999) 351 [nucl-th/9904016].

A. Sibirtsev, K. Tsushima, K. Saito, A.W. Thomas, Phys. Lett. B **484** (2000) 23 [nucl-th/9904015].

A. Hayashigaki, Phys. Lett. B 487 (2000) 96 [nucl-th/0001051].

W. Cassing, E.L. Bratkovskaya, A. Sibirtsev, Nucl. Phys. A **691** (2001) 753 [nucl-th/0010071].

B. Friman, S.H. Lee, T. Song, Phys. Lett. B 548 (2002) 153 [nucl-th/0207006].

M.F.M. Lutz, C.L. Korpa, Phys. Lett. B 633 (2006) 43 [nucl-th/0510006].

K. Morita, S.H. Lee, arXiv:0704.2021.

- [13] A. Andronic, F. Beutler, P. Braun-Munzinger, K. Redlich, J. Stachel, Statistical hadronization of heavy flavor quarks in elementary collisions: successes and failures. [hep-ph/0904.1368v2].
- [14] C. Lourenco, H.K. Wohri, Phys.Rep. 433 (2006) 202 [hep-ph/0609101].

Рукопись поступила 31 мая 2013 г.

Е. Н. Ардашев и др.

Регистрация заряженных очарованных D^{\pm} -мезонов в р А-взаимодействиях при 70 ГэВ на установке CBД-2.

Препринт отпечатан с оригинала-макета, подготовленного авторами.

Подписано к печати 04.0	6.2013.	Формат 60 × 84/	16. Ци	ровая печать.
Печ.л. 1,25. Уч.– изд.л.	1,92. Тирах	к 100. Зака	з 27.	Индекс 3649.
ФГБУ ГНЦ ИФВЭ				

142281, Протвино Московской обл.

Индекс 3649

ПРЕПРИНТ 2013-9, ИФВЭ, 2013