

Государственный научный центр Российской Федерации – Институт физики высоких энергий Национального исследовательского центра «Курчатовский институт»

ИФВЭ 2014-2 ОЭФ

С.В. Донсков, В.Н. Колосов, А.А. Леднев, Ю.В. Михайлов, В.А. Поляков, В.Д. Самойленко, Г.В. Хаустов

ПОИСК РАСПАДА $\eta' \to 4\pi^0$ НА УСТАНОВКЕ ГАМС-4 π

Протвино 2014

Аннотация

С.В. Донсков, В.Н. Колосов, А.А. Леднев и др. Поиск распада $\eta' \to 4\pi^0$ на установке ГАМС-4 π : Препринт ИФВЭ 2014-2. – Протвино, 2014. – 7 с., 4 рис.

На установке ГАМС-4 π выполнен поиск редкого распада $\eta' \to 4\pi^0$. Новый верхний предел составляет $BR(\eta' \to 4\pi^0) < 3.2 \cdot 10^{-4}$ на 90% уровне достоверности. Источником $1.3 \cdot 10^6 \eta'$ -мезонов служила реакция $\pi^- p$ перезарядки при импульсе пучка 32.5 ГэВ/с. Измерения проведены на ускорителе У-70 ИФВЭ.

Abstract

Donskov S.V., Kolosov V.N., Lednev A.A. et al. A search for rare decay $\eta' \to 4\pi^0$ with GAMS- 4π Setup: IHEP Preprint 2014-2. – Protvino, 2014. – p. 7, figs. 4.

A new search for rare decay $\eta' \to 4\pi^0$ has been performed with GAMS- 4π Setup. The new upper limit for decay was established $BR(\eta' \to 4\pi^0) < 3.2 \cdot 10^{-4}$ at 90% confidence level. The $\pi^- p$ charge-exchange reaction at 32.5 GeV/c was used as a source of $1.3 \cdot 10^6 \eta'$ mesons. Experiment carried out at the IHEP U-70 accelerator.

 [©] Государственный научный центр Российской Федерации – Институт физики высоких энергий НИЦ «Курчатовский институт», 2014

Введение

Сильные взаимодействия сохраняют СР-четность, поэтому прямой распад

$$\eta' \to 4\pi^0 \tag{1}$$

(рис. 1а) запрещен. Но можно ввести процессы с P- и CP-нарушениями в сильные взаимодействия, если добавить в КХД лагранжиан дополнительный θ -член, необходимый для решения $U_A(1)$ проблемы [1]. С другой стороны, в этом распаде участвует нечетное число псевдоскаляров, что позволяет отнести его к классу аномальных распадов. В рамках низкоэнергетической КХД вероятность таких распадов определяется киральной аномалией (Wess-Zumino-Witten term [2]), и для нашего случая (1) не равна нулю. В работе [3] подробно рассмотрены CP-сохраняющие и CP-нарушающий механизмы, какими мог бы происходить этот распад. Кратко они изложены ниже.

Рис. 1. Диаграмма распада $\eta' \to 4\pi^0$: с прямым *CP*-нарушением (*a*); через $\pi^+\pi^- \to \pi^0\pi^0$ перерассеяние, включая промежуточный f_2 -мезон (*b*); через виртуальное состояние f_2f_2 в относительной *P*-волне (*b*).

Для сохраняющего комбинированную CP-четность варианта распад возможен через промежуточное $\rho\rho$ -состояние с последующим $\pi^+\pi^- \to \pi^0\pi^0$ перерассеянием

в *D*-волне (симметрия Бозе-Эйнштена запрещает двум нейтральным пионам находится в нечетной волне), диаграмма процесса показана на рис. 16, или через пару промежуточных f_2 -мезонов в относительной *P*-волне (рис. 1в). В обоих случаях из четырех псевдоскалярных мезонов образуется набор квантовых чисел 0^{-+} . Оценка вероятности такого механизма распада приводит к $BR(\eta' \to 4\pi^0) \approx 4 \cdot 10^{-8}$.

В той же работе было сделано предположение, что вероятность распада (1) может быть подавлена не так сильно, если учесть *CP*-нарушающий θ -член в КХД лагранжиане. Соответствующие вычисления, сделанные в таком подходе, очень приблизительны – $BR(\eta' \to 4\pi^0) \approx 0.1 \cdot \theta^2$. Но из современных измерений электрического дипольного момента (ЭДМ) нейтрона известно, что $\theta < 10^{-11}$, и это делает вероятность такого процесса пренебрежимо малой. Глубокая связь *CP*-нарушающих распадов η' -мезона с ЭДМ нейтрона подробно рассмотрена в статье [5].

Как видим, приведенные выше теоретические оценки говорят о возможном сильном подавлении данного процесса, что делает его экспериментальный поиск физически интересной, хотя и сложной задачей. В настоящей работе изложены результаты поиска редкого распада (1). Предыдущие экспериментальные результаты представлены единственной работой Сотрудничества ГАМС [6], которое при исследовании нейтральных мод распада η' -мезона поставило верхний предел $BR(\eta' \to 4\pi^0) < 5 \cdot 10^{-4}$ на 90% уровне достоверности [7].

1. Установка ГАМС- 4π и отбор событий

Данные были получены на установке ГАМС- 4π в сеансе 2002 г. на канале 4В ускорителя У-70 ИФВЭ. Установка ГАМС- 4π является модернизированной версией установки ГАМС и предназначена для исследования нейтральных конечных состояний, которые образуются в реакциях перезарядки.

Пучковые частицы выделяются совпадениями пяти сцинтилляционных счетчиков, а их тип (π^- или K^-) надежно определяется двумя пороговыми черенковскими счетчиками типа ПСС [8] с кварцевыми линзами. Трек пучковой частицы измеряется годоскопом на сцинтилляционных волокнах [9] с высокими пространственным (≈ 0.3 мм) и временным (≈ 1 нс) разрешениями. При измерениях использовалась жидководородная мишень длиной 40 см, в которой регистрировался черенковский свет от пучковой частицы для измерения продольной координаты точки взаимодействия.

Электромагнитный калориметр из свинцового стекла ГАМС-2000 [10] предназначен для регистрации γ -квантов. Центральная часть калориметра (160 × 160 мм²) заменена кристаллическим детектором на основе кристаллов РWO [11] с размером ячейки 20 × 20 мм². Это позволило улучшить энергетическое и пространственное разрешение в самой загруженной области детектора, а малый размер ячейки облегчает реконструкцию перекрывающихся электромагнитных ливней.

Широкоапертурный детектор ШАД проекционного типа с низким (≈ 50 МэВ) порогом регистрации служит для измерения γ -квантов, которые летят под большими углами к оси пучка. Охранная система окружает жидководородную мишень, и включает сцинтилляционные счетчики для регистрации заряженных частиц и счетчики из свинцового стекла для детектирования γ -квантов от распадов бариона отдачи. Специальные сцинтилляционные счетчики, расположенные после мишени, выделяют события с нейтральным конечным состоянием. Более подробно постановка эксперимента, детекторы и система обработки были описаны в наших предыдущих работах [12, 13].

Источником моноэнергетических
 η' мезонов служила реакция перезарядки при импульсе пучковой частицы 32.5 Гэ
B/с

$$\pi^- p \to \eta' \ n. \tag{2}$$

Подавление аппаратурного фона без существенной потери эффективности регистрации исследуемого процесса было достигнуто следующими стандартными отборами:

- расстояние между осями ливней в ГАМС больше 40 мм;
- расстояние точки попадания γ-кванта в ГАМС от оси пучка больше 40 мм (для подавления фона в наиболее загруженных центральных счетчиках ГАМС);
- энергия каждого γ -кванта превышает 0.5 ГэВ;
- суммарная энергия в ГАМС ограничена интервалом 28-36 ГэВ;
- в калориметре ШАД программа реконструкции не идентифицировала γ -квантов.

Рис. 2. Экспериментальный спектр масс 8γ -событий (*a*); спектр масс четвертой, нефитированной пары γ -квантов после 4С-фита, когда $M_{8\gamma} < 1.2$ ГэВ (*б*). Параметры π^0 -мезона, полученные при фитировании массого спектра гауссианом и полиномом второго порядка: масса $m_{\pi^0} = 0.134$ ГэВ, ширина $\sigma_{\pi^0} = 0.008$ ГэВ.

Для дальнейшего анализа были отобраны события, которые содержат восемь реконструированных γ -квантов в калориметре ГАМС-2000. Спектр масс 8γ -событий после кинематического 1С-фита (фиксирована масса нейтрона отдачи), которые имеют вероятность фита CL > 0.05, показан на рис. 2а.

Система $4\pi^0$ достаточна сложна для экспериментального исследования, и в реакции перезарядки ранее изучалась только в [14, 15]. Помимо чисто методических трудностей, возникающих при детектировании и реконструкции таких событий, проблемы возникают из-за большого комбинаторного фона (105 комбинаций), а также из-за конечного пространственного и энергетического разрешения калориметра. Для оценки фона в области малых масс $M_{8\gamma} < 1.2$ ГэВ был выполнен 4С-фит (фиксированы массы нейтрона отдачи и трех π^0 -мезонов), при этом спектр масс четвертой, нефитированной пары γ -квантов показан на рис. 26. Интегральное отношение сигнала π^0 -мезона к фону в интервале масс (0.11-0.16) ГэВ составляет ≈ 1.1 .

Рис. 3. Спектр масс $3\pi^0$ -подсистемы, 4 вх./соб. (*a*). Параметры η -мезона: масса $m_\eta = 0.547$ ГэВ, ширина $\sigma_\eta = 0.008$ ГэВ; спектр масс $2\pi^0$ -подсистемы, когда масса другой пары $\pi^0\pi^0$ находится в области (0.46 -0.52) ГэВ (*б*).

При массе 8γ -событий около 1 ГэВ начинает интенсивно образовываться система $\eta\pi^0$, которая при распаде $\eta \to 3\pi^0$ воспринимается как $4\pi^0$. Поэтому, после 5С-фита (фиксированы массы всех четырех пионов и нейтрона отдачи), была построена масса $3\pi^0$ -подсистемы, изображенная на рис. За. В ней отчетливо виден пик η -мезона, и для подавления $\eta\pi^0$ -системы были введены соответствующие обрезания по массе $3\pi^0$ в любой из четырех возможных комбинаций. Система K_sK_s также наблюдается в моде $4\pi^0$ (рис. 36), но её влияние в изучаемой области масс незначительно.

После всех отборов спектр масс $4\pi^0$ -системы приведен на рис. 4а. В нем виден широкий пик с массой около 0.9 ГэВ. Происхождение этого пика можно объяснить

цепочкой последующих распадов

$$\eta' \to \eta \pi^0 \pi^0, \ \eta \to 3\pi^0 \tag{3}$$

с двумя потерянными γ -квантами. При этом, по комбинаторным причинам, конечная комбинация вполне может составить $4\pi^0$. Моделирование процесса (3) подтвердило это предположение, результат показан на рис. 46. При потере двух γ -квантов сдвиг массы η' -мезона достигает 30 МэВ, и значительно, до $\sigma = 50$ МэВ, увеличивается ширина пика. Разрешение по массе для искомого распада (1) составляет $\sigma = 20$ МэВ.

Рис. 4. Экспериментальный спектр масс $4\pi^0$ -системы после отборов (а). Точками показан спектр Монте-Карло, полученный в результате цепочки распадов $\eta' \to \eta \pi^0 \pi^0$, $\eta \to 3\pi^0$ с двумя потерянными γ -квантами; Монте-Карло спектры: $\eta' \to \eta \pi^0 \pi^0 \to 5\pi^0$ с двумя потерянными γ -квантами (сплошная линия), $\eta' \to 4\pi^0$ (прерывистая линия) (б). Спектры фитировались гауссианом.

Для определения верхнего предела распада (1) использовался метод, изложенный в работе [16], который учитывает ограниченность статистики эксперимента, расчётов Монте-Карло и позволяет вычислить вес каждого источника событий в экспериментальный спектр масс¹. Предполагалось, что источниками $4\pi^0$ событий для экспериментального спектра в области масс до 1 ГэВ является искомый (1) и фоновый (3) распады. Верхний предел вычисляется как

$$BR(\eta' \to 4\pi^0) < \frac{N_{exp}(W(\eta' \to 4\pi^0) + dW(\eta' \to 4\pi^0))}{\epsilon(\eta' \to 4\pi^0)N_{\eta'}}$$
(4)

¹Подпрограмма HMCMLL [17].

где $W(\eta' \to 4\pi^0)$ – вес данного процесса в экспериментальной гистограмме, $dW(\eta' \to 4\pi^0)$ – ошибка, соответствующая 90% уровню достоверности при фитировании гистограммы функцией обобщенного максимального правдоподобия, N_{exp} – число событий в исследуемой области гистограммы и $N_{\eta'}$ – число образованных η' мезонов. В результате проведенного анализа вес искомого распада $W(\eta' \to 4\pi^0) = 0.000 \pm 0.013$, и при эффективности регистрации $\epsilon = 5.7\%$ верхний предел распада на 90% уровне достоверности составляет

$$BR(\eta' \to 4\pi^0) < 3.2 \cdot 10^{-4}.$$
 (5)

Возможные систематические ошибки были изучены при использовании двух способов нормировки с существенным различием по множественности γ -квантов – на распад по каналу $\eta' \to \eta \pi^0 \pi^0 \to 6\gamma$ и $\eta' \to 2\gamma$. Они оказались незначительными, и не влияют на полученный результат.

2. Заключение

В работе получено ограничение на редкий распад $BR(\eta' \rightarrow 4\pi^0) < 3.2 \cdot 10^{-4}$. Показано, что основной фон, который ограничивает поиск данного процесса, связан с цепочкой распадов η' -мезона в конечное состояние $5\pi^0$ с двумя потерянными γ -квантами. Этот фон затруднит планируемый поиск распада в новых экспериментах, в которых работают детекторы Crystal Ball [18], Crystal Barrel [19] и WASA [20]. Электромагнитые калориметры, используемые в этих установках, должны обладать низким порогом регистрации и реконструкции γ -квантов, надежно разделять перекрывающиеся электромагнитые ливни.

Авторы выражают признательность А.К. Лиходеду, А.В. Лучинскому, В.Ф. Образцову, Г.П. Пронько, В.В. Киселёву за обсуждение приведенных во Введении физических проблем, связанных с данным распадом.

Список литературы

- [1] A. Pich and E. de Rafael, Nucl. Phys. B **367**, 313 (1991).
- [2] J. Wess and B. Zumino, Phys. Lett. B 37, 95 (1971); E. Witten, Nucl. Phys. B 223, 422 (1983).
- [3] F-K. Guo, B. Kubis, A. Wirzba, arXiv:1111:5949.
- [4] K. Ottnad, B. Kubis, U.-G. Meiβner and F.-K. Guo, Phys. Lett. B 687, 42 (2010); arXiv:0911.3981.
- [5] M. Gorshtein, arXiv: 0803.2906.
- [6] D.Alde et al., Z.Phys. C **36**, 603 (1987).

- [7] J.Beringer et al., Phys.Rev. D 86 (2012).
- [8] Донсков С.В., Качанов В.А., Кутьин В.М. и др., Препринт ИФВЭ 68-46; ПТЭ Т.3 С.60 (1969).
- [9] A.M.Gorin et al. Proc. of SCIFI 97, Edited by Alan D. Bross et al. 627 (1998).
- [10] Бинон Ф. и др., В кн.: Черенковские детекторы и их применение в науке и технике. – М.: Наука, 1990, с. 149; Nucl. Instr. Methods. A 248, 86 (1986).
- [11] O.V. Buyanov et al., Nucl. Instr. Methods. A **349**, 62 (1994).
- [12] F. Binon et al., Nucl. Phys. B 162, 155 (2006); Ф.Бинон и др., Препринт ИФВЭ 2005-47.
- [13] D.Alde et al., Z. Phys. C **36**, 603 (1987); *H*Φ **47**, 385 (1988).
- [14] D. Alde et al., Phys.Lett. B **198**, 286 (1987).
- [15] S.A. Sadovsky, KEK-Proceedings-92-8 87 (1992).
- [16] R.Barlow, C.Beeston, Comp.Phys.Comm. V.77, 219 (1993).
- [17] CERN Program Library. Geneva, 1996.
- [18] Bloom E. D. and Peck C. Ann. Rev. Nucl. Part. Sci. **33** 143 (1983).
- [19] Aker E et al. (Crystal Barrel), Nucl. Instrum. Meth. A **321** 69 (1992).
- [20] Bargholtz C et al. (CELSIUS/WASA), arXiv:0803.2657.

Рукопись поступила 31 марта 2014 г.

Препринт отпечатан с оригинала-макета, подготовленного авторами.

С.В. Донсков и др. Поиск распада $\eta' \to 4\pi^0$ на установке ГАМС-4
 π .

Оригинал-макет подготовлен с помощью системы ИТЕХ.

Подписано к печати 06.06.2014 Формат 60 × 84/16. Цифровая печать. Печ.л. 0,75 Уч.-изд.л. 0,9 Тираж 80. Заказ 12. Индекс 3649.

ФГБУ ГНЦ ИФВЭ НИЦ «Курчатовский институт» 142281, Московская область, город Протвино, площадь Науки, дом 1

www.ihep.ru; библиотека http://web.ihep.su/library/pubs/all-w.htm

$\Pi \ P \ E \ \Pi \ P \ H \ H \ T \ 2014-2, \\ \Phi \Gamma F Y \ \Gamma H \ U \ \Phi B \ H \ H \ U \ «Курчатовский институт», 2014$

Индекс 3649