

национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ» ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ

ИФВЭ 2016-2

А.И. Капичников, А.М. Кивер, А.В. Ларионов, А.А. Матюшин, К.Г. Мирзоев, А.Н. Пылаев, А.Д. Рябов

Вакуумная система протонного радиографического комплекса

Направлено в ПТЭ

УДК 621.52.

Аннотация

Капичников А.И. и др. Вакуумная система протонного радиографического комплекса: Препринт ИФВЭ 2016–2. – Протвино, 2016. – 12 с., 3 рис., 2 табл., библиогр.: 6.

Разработана и введена в эксплуатацию вакуумная система протонного радиографического комплекса. В ионопроводе радиографического комплекса получен высокий вакуум $\sim 2\cdot 10^{-6}$ Тор. Реализовано управление вакуумным оборудованием в местном (из тоннеля), дистанционном (из здания) режимах и от ЭВМ.

Abstract

Kapichnikov A.I. et al. The vacuum system of the Proton radiographic Facility: IHEP Preprint 2016—. – Protvino, 2016. – p. 12, figs. 3, tables 2, refs.: 6.

The vacuum system of the Proton radiographic Facility was developed and commissioned. The high vacuum $\sim 2\cdot 10^{-6}$ Torr is obtained in the ion chamber. The control of the vacuum equipments was implemented in local (from tunnel) or remote (from building) modes and from the computer.

[©] Федеральное государственное бюджетное учреждение «Государственный научный центр Российской Федерации-Институт физики высоких энергий» НИЦ «Курчатовский институт», 2016

Введение

В ГНЦ ИФВЭ НИЦ "Курчатовский институт" в 2015 году введен в эксплуатацию протонный радиографический комплекс (ПРГК). Данный комплекс состоит из канала транспортировки протонного пучка и протонной радиографической установки (ПРГУ), позволяющей наблюдать тест-объекты оптической толщины до 450 г/см² с полем обзора не менее 200 мм при энергии протонов 50÷70 ГэВ [1]. Канал транспортировки протонов от ускорителя У-70 до ПРГУ является частью канала инжекции УНК, который был адаптирован для перевода протонного пучка в радиографическую установку.

В данной работе рассмотрена вакуумная система протонного радиографического комплекса, состоящая из вакуумных систем канала транспортировки протонного пучка и протонной радиографической установки. Приведен расчет параметров вакуумной системы ПРГУ и расчет вакуумных камер ПРГУ на устойчивость и прочность.

Расчет параметров вакуумной системы протонной радиографической установки

Так как вакуумная система установки является продолжением высоковакуумного канала инжекции УНК (канала транспортировки), то целесообразно откачивать ПРГУ, как и прежний канал инжекции УНК, магниторазрядными насосами типа НВИГ-100 до давления $\leq 5\cdot 10^{-6}$ мм рт. ст. Такое давление выбрано в целях устойчивого режима работы насосов. Кроме того, откачка всего комплекса магниторазрядными насосами позволит повысить надежность работы вакуумной системы.

В соответствии с параметрами протонного пучка вакуумный цилиндрический ионопровод ПРГУ должен иметь апертуру Ø350 мм, а вакуумные камеры, устанавливаемые в квадрупольные линзы, должны быть эллиптического сечения с апертурой 360×230 мм. Ионопровод ПРГУ разделен атмосферными промежутками на 5 участков.

В табл. 1 представлены результаты расчета вакуумных параметров и геометрические данные участков ПРГУ.

			T		T	
$N_{\underline{0}}$	Участок	1	2	3	4	5
	Параметр					
1	Апертура камеры, мм	350	350	350	350	350
2	Длина участка, м	65,35	63,70	63,70	63,70	14,40
3	Внутр. поверхность, см ²	7,3·10 ⁵	7,0.10 5	7,0·10 ⁵	7,0.10 5	1,6·10 ⁵
4	Объем участка, м ³	6,66	6,1	6,1	6,1	1,4
5	Количество постов предварительной откачки (ППО), штук	1	1	1	1	1
6	Количество магниторазрядных насосов (HM), штук	5	5	5	5	2
7	Среднее расстояние между двумя HM, м	13,03	12,74	12,74	12,74	14,4
8	Давление P_H у насосов	$2,7\cdot 10^{-6}$	2,6·10 ⁻⁶	$2,6\cdot10^{-6}$	2,6·10 ⁻⁶	2,9·10 ⁻⁶

<u>Таблица 1</u>. Результаты расчета вакуумных параметров ПРГУ.

При расчете вакуумных параметров учитывались следующие компоненты остаточного газа: водород (массовое число 2) и азот с окисью углерода (масса 28). Расчет проводился по формуле:

$$P_{H} = \frac{Q_{T} + qBl}{S},\tag{1}$$

где P_H — давление в камере у патрубка магниторазрядного насоса, l — расстояние между двумя соседними насосами, Q_T — сосредоточенный поток через неконтролируемые течи, q — поток газовыделения с единицы поверхности камеры, B — периметр камеры, S — быстрота действия насоса. Давление определялось как сумма парциальных давлений компонентов. При расчете взяты следующие исходные данные: для массового числа $28 \ q = 10^{-10} \ {\rm n\cdot Top/(c\cdot cm^2)}$, $Q_T = 5\cdot 10^{-5} \ {\rm n\cdot Top/c}$; для массового числа $2 \ q = 1\cdot 10^{-9}$

л·Тор/(с·см 2) и Q_T = 0. Быстрота действия насосов для обоих компонентов принята равной 100 л/с. При таких условиях приемлемое давление у насосов (2÷3)·10 $^{-6}$ Тор может быть получено при среднем расстоянии между ними 12÷15 м. Максимальное давление в середине между насосами ненамного превышает давление в насосах из-за большой проводимости камеры. После откачки в течение нескольких дней поток газовыделения должен снизиться в несколько раз, что приведет к улучшению режима работы насосов.

Среднее давление, достигаемое при предварительной откачке постом, расположенным примерно в середине участка длиной $2l_1$, определялось по следующей формуле:

$$\overline{P_{nocm}} = \frac{2(Q_T + qBl_1)}{S_{on}} + \frac{Q_T l_1}{4u_0} + \frac{qBl_1^2}{3u_0},$$
(2)

где S_{on} — эффективная быстрота действия поста на входе в камеру, а u_0 — удельная проводимость камеры по данному компоненту остаточного газа. Приняв S_{on} = 100 л/с и $l_1 \le 33$ м, получим суммарное среднее давление по водороду и азоту, ~ $3\cdot10^{-5}$ Тор для всех участков апертуры ø350 мм, что вполне приемлемо.

Расчет вакуумных камер ПРГУ на устойчивость и прочность

Толщина стенки t вакуумных цилиндрических камер определяется исходя из условия устойчивости по формуле [2]:

$$t = 1,25D \left(\frac{P_H}{E} \frac{l}{D}\right)^{0,4} + c, \qquad (3)$$

справедливой при $1 \le \frac{l}{D} \le 8$ и $\left(\frac{P_H}{E} \frac{l}{D}\right)^{0.4} \le 0,523$.

В этой формуле: E – модуль упругости материала трубы; l – длина, D – внутренний диаметр трубы; P_H – внешнее давление; c – допускаемое отклонение по толщине стенки.

Для трубы диаметра D=350 мм и длиной l=2 м, выполненной из стали ($E=200~\Gamma\Pi a$), при внешнем давлении $P_H=0,1~\mathrm{M}\Pi a$ и $c=0,22~\mathrm{M} m$ формула (3) дает оценку

для толщины стенки t = (2,67+0,22) мм. При этом условия справедливости формулы выполняются: $\frac{l}{D} = 5,7; \left(\frac{P_H}{E}\frac{l}{D}\right)^{0,4} = 6,1\cdot 10^{-3}$.

Принимаем толщину стенки цилиндрической камеры равной t=3 мм. Проблемы прочности камеры нет, поскольку максимальные напряжения в стенке камеры малы: $\sigma_{max} = P_H(^D/_{2t}) \approx 6$ МПа. Исходя из расчета на устойчивость и удобства монтажа максимальная длина камер выбрана равной 3 м с армирующим кольцом посередине. Вес такой камеры составляет ~ 90 кГ. Камеры длиной до 2-х метров не требуют усиления.

Для эллиптической вакуумной камеры были проведены расчеты на устойчивость и прочность с использованием системы численного моделирования ANSYS. Рассматривалась гладкая камера, усиленная массивными фланцами. В расчетах длина камеры принималась равной 2,3 метра, полуоси внутреннего эллипса составляли а = 180 мм и b = 116,5 мм, толщина стенки камеры варьировалась от 3 до 6 мм с шагом 0,5 мм. Диаметр фланца был равен 400 мм, его толщина — 17 мм. Камера свободно лежит внутри апертуры магнита, опираясь в трех сечениях на подставки, установленные на нижних гиперболических полюсах магнита. Фактически камера опирается на 6 точек (по 2 в каждом сечении), которые и держат вес камеры. В расчетах разрешено скольжение камеры по точкам опоры.

Решается нелинейная задача упругости в больших перемещениях. Нагрузка (внешнее давление) возрастает постепенно от нуля до максимального значения, принятого в расчетах равным $P_{\rm max}=3$ атм. При этом направление действия сил давления следует изменяющейся геометрии, т.е. давление всегда действует по нормали в каждой точке оболочки.

В процессе решения не осуществляются проверки на разрушение материала, а также не учитываются пластические деформации, поскольку в приемлемом варианте материал камеры должен работать в упругой области, а камера должна обладать достаточным запасом прочности. Таким образом, приведенные результаты относятся к гипотетической стали, предел упругости которой достаточно большой.

Расчеты показали, что для камер с толщиной стенки не менее 3.5 мм проблемы устойчивости не существует вплоть до $P_{\rm max}=3$ атм. На первый план выходит проблема прочности. Камеры с достаточно толстыми стенками при увеличении давления вплоть до 3 атм ведут себя одинаковым образом: происходит сплющивание камеры вдоль малой оси эллипса с одновременным увеличением размеров вдоль большой оси. При этом оболочка остается поверхностью положительной кривизны (эллипсоподобное сечение) и хорошо держит нагрузку (наблюдается почти линейная зависимость деформаций и напряжений от нагрузки) за счет упругости материала. Максимальные напряжения развиваются в зоне наименьшей кривизны на внутренних поверхностях оболочки.

В табл. 2 представлены основные результаты расчета для всех толщин камеры при номинальном давлении 1 атм.

<u>Таблица 2</u>. Максимальные напряжения, перемещения и "запас упругости" в эллиптических камерах при номинальном давлении P = 1 атм.

Толщина <i>t</i> ,	Bec*),	σ_{eqv}^{max} ,	U_{max} ,	U_{max}	$\frac{\sigma_{02}}{max}$	Комментарии	
MM	кΓ	МΠа	MM	/t	σ_{eqv}^{max}		
3.0	52.2	391	13.3	4.4	0.5	Пластические деформации,	
						$U_{\text{max}} > t$	
3.5	60.9	240	8.0	2.3	0.8	Пластические деформации,	
						$U_{\text{max}} > t$	
4.0	69.8	209	5.3	1.3	1.0	На границе пластической об-	
						ласти, U _{max} > t	
4.5	78.6	142	3.8	0.84	1.6	Упругие деформации,	
						$0.5t < U_{\text{max}} < t$	
5.0	87.4	135	2.7	0.55	1.7	Упругие деформации,	
						$0.5t < U_{\text{max}} < t$	
5.5	96.3	112	2.1	0.37	2.1	Упругие деформации,	
						$U_{\text{max}} < 0.5t$	
6.0	105.2	94	1.6	0.27	2.5	Упругие деформации,	
						$U_{\text{max}} < 0.5t$	

^{*)} Без фланцев.

В таблице: σ_{eav} – эквивалентное напряжение, определяемое формулой:

$$\sigma_{eqv} = \sqrt{\frac{1}{2}((\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2)} \quad , \tag{4}$$

где σ_1 , σ_2 и σ_3 – главные значения тензора напряжений; U_{max} – максимальное перемещение; "запас упругости" – определяется как отношение предела пропорциональности материала σ_{02} к величине максимального эквивалентного напряжения. Для оценок предел пропорциональности выбран равным типичному значению для тонколистовых сталей $\sigma_{02}=205~\mathrm{M}\Pi a$.

Из таблицы видно, что толщина стенки камеры должна быть не менее 4,5 мм, чтобы камера при номинальной нагрузке работала в упругой области.

В работе [3] представлены уравнения для вычисления моментов сил и напряжений в стенке эллиптической камеры под действием внутреннего или внешнего давления. Уравнения выводятся в приближении линейной теории упругости, а значит справедливы для камер с достаточно большой толщиной стенки. Максимальное напряжение можно оценить по формуле:

$$\sigma_{2max} = P\left(6K_2\left(\frac{a}{t}\right)^2 + \frac{a}{t}\right),\tag{5}$$

в которой коэффициент K_2 зависит от отношения полуосей эллипса b/a. В нашем случае $K_2=0.16$ (см. график 5 в [3]), и для камеры толщиной t=5 мм получается оценка $\sigma_{2max}=130$ МПа, что близко к значению 135 МПа, представленному в табл. 2.

Исходя из того, что для эллиптических камер отсутствует проблема устойчивости, а внешняя нагрузка (атмосферное давление) не может быть произвольно увеличена более чем на 10 %, считаем запас упругости на уровне 1,7 приемлемым, и выбираем толщину стенки камеры равной 5 мм.

Описание вакуумной системы ПРГК

В качестве канала транспортировки протонного пучка от ускорителя У-70 до ПРГУ используется участок высоковакуумного канала инжекции УНК длиной около 500 м. Для согласования магнитооптической структуры канала инжекции и ПРГУ изменена только расстановка линз в конце канала. Участок канала транспортировки протонов с постом предварительной откачки показан на рис. 1.

Рис. 1. Участок канала транспортировки протонов с постом предварительной откачки.

Ионопровод канала транспортировки собран из вакуумных камер с апертурой ø97 мм, соединенных между собой с помощью быстроразъемных соединений с медными прокладками. Вакуумные камеры из нержавеющей стали 09X18H10T изготовлены из трубы ø100×1,5 мм. Ионопровод разделен на 6 участков шиберными цельнометаллическими затворами 3ПА-100 [4].

По результатам расчетов спроектирована вакуумная система ПРГУ, спроектированы и изготовлены цилиндрические камеры из нержавеющей стали 304L с апертурой ø350 мм и эллиптические камеры из нержавеющей стали со слабыми магнитными свойствами 05Х20Н15АГ6 с апертурой 360×230 мм. Цилиндрические камеры изготовлены из трубы ø356×3 м, а эллиптические камеры изготовлены из отформованных листов толщиной 5 мм с продольными сварными швами по большой оси эллипса. Проведены измерения величины упругой деформации эллиптической вакуумной камеры под действием атмосферного давления при откачке. Прогиб стенки камеры по малой оси эллипса в центре по длине составил 2,3 мм, что на 15 % меньше величины, полученной по предварительным расчетам.

Фланцы камер выполнены по стандарту ISO-К и соединяются друг с другом с помощью специальных струбцин на прокладках из вакуумной резины круглого сечения диаметром 7 мм.

Ионопровод ПРГУ разделен на 5 участков с помощью мембранных заглушек из нержавеющей стали толщиной 0,25 мм. На каждом участке канала транспортировки и ПРГУ установлен пост предварительной откачки ППО-300/5 [5], который откачивает участок до оптимального давления для запуска магниторазрядных насосов НВИГ-100, не выше $\sim 3\cdot 10^{-5}$ Тор. Посты и магниторазрядные насосы подсоединяются к камерам канала транспортировки и ПРГУ через патрубки с апертурой ϕ 97 мм с использованием медных проволочных уплотнений. Всего на канале транспортировки установлено 6 ППО и 16 магниторазрядных насосов, а на ПРГУ установлено 5 ППО и 22 магниторазрядных насоса. ППО состоит из турбомолекулярного насоса 01AБ-450-003, ловушки для улавливания паров масла, механического насоса 2HBP-5ДМ и запорной арматуры. Электропневматические приводы запорной арматуры постов работают при давлениях сжатого воздуха 5 и 20 атм. Пост подсоединяется к вакуумной камере через затвор 3ПА-100. Участок вакуумной системы ПРГУ с ППО показан на рис. 2.

Рис. 2. Участок вакуумной системы ПРГУ с постом предварительной откачки.

Измерение вакуума в канале транспортировки и в ПРГУ осуществляется с помощью устройства контроля и индикации вакуума УКВ-3/7-003, в состав которого входят: блок питания датчиков вакуума БПДВ-8-001, датчик вакуума терморезистивный ДВТ-3/0-006, датчик вакуума электроразрядный ДВЭ-0/7-007. Датчики ДВТ и ДВЭ работают соответственно с манометрическими преобразователями ПМТ6-3 и ПММ-32. Для сбора сигналов с датчиков вакуума используется специализированный контроллер КДВ-8, имеющий 8 аналоговых входов. Контроллер подключается к блоку питания датчиков вакуума БПВД-8-001, из которого он получает аналоговые сигналы в диапазоне от 0 до 10 В. Конструкция блока обеспечивает одновременное подключение шести датчиков: 4 датчиков ДВТ и 2 датчиков ДВЭ. Контроллер измеряет напряжение с 6 датчиков с периодом 1 секунда. Полученный 16-разрядный код с каждого датчика передаётся на верхний уровень, где после преобразования в давление отображается на операторской консоли. В вакуумных системах ПРГК используются 6 контроллеров КДВ-8, к которым можно подключить сигналы с 48 вакуумных датчиков.

Посты предварительной откачки канала транспортировки и ПРГУ управляются непосредственно от электрических шкафов в тоннеле и от стоек управления, расположенных в зданиях. Магниторазрядные насосы питаются и управляются от стоек, расположенных только в зданиях. В каждой стойке управления магниторазрядными насосами размещены три высоковольтных источника питания и блок сопряжения с объектом (БСО), являющийся интерфейсом между вакуумным оборудованием и системой управления протонного радиографического комплекса (СУ ПРГК) [6]. Контроллер ВК-1, входящий в состав БСО, обеспечивает обмен информацией с верхним уровнем в соответствии с принятым в СУ ПРГК протоколом. Контроллеры ВК-1, объединённые по стандарту САN в локальную сеть, каждые 2 секунды передают на верхний уровень системы управления основные статусы и измеренные значения токов насосов. Измерительная часть стойки включает три 24-разрядных АЦП, обеспечивающих измерение токов насосов в диапазоне 300 мА ÷ 10 мкА. Измеренные значения токов усредняются, нормируются и выводятся в каждой стойке на местную индикацию для оперативного контроля.

На верхнем уровне информация о работе вакуумного оборудования отображается на операторской консоли в виде синоптики расположения элементов вакуумной систе-

мы с измеренными величинами давлений и токов насосов. Ниже синоптики располагается часть интерфейса, на которую можно вывести в виде графика профиль распределения токов магниторазрядных насосов или давления вдоль канала, а также можно вывести архивные данные. Реализована также возможность включения и отключения магниторазрядных насосов из меню, появляющегося при выборе насоса на синоптике. После запуска магниторазрядных насосов и перехода их в рабочий режим оператор может включить программу автоматического слежения за работой насосов. В случае кратковременного пробоя внутри насоса встроенная защита отключает блок питания. В такой ситуации программа автоматического слежения сделает три попытки повторного включения с интервалом 10, 30 секунд и 1 минута. Если насос не включится, то индицируется аварийное состояние насоса, требующее вмешательство дежурного персонала. На рис. 3 показан интерфейс программы управления вакуумным оборудованием ПРГК [6].

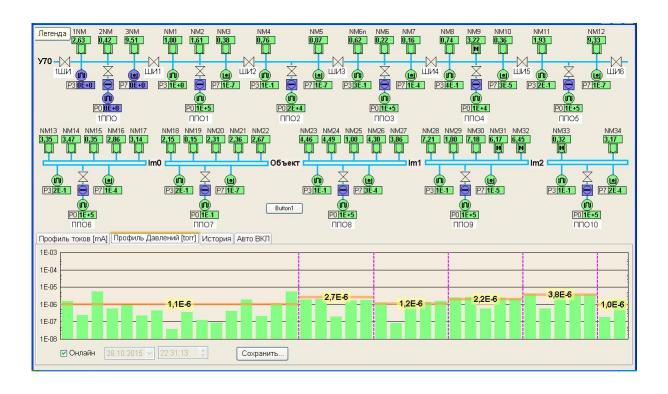


Рис. 3. Интерфейс программы управления вакуумным оборудованием ПРГК.

Вся информация о работе вакуумного оборудования: токи насосов, величины давлений, статусные сигналы, статистика включений и отключений – заносится в архив.

В ионопроводе канала транспортировки и в вакуумных камерах ПРГУ в сеансе работы с протонным пучком получено среднее давление $\sim 2\cdot 10^{-6}$ Тор. Распределение давления по каналу транспортировки и ПРГУ показано на графике в нижней части рис. 3. Непрерывный программный надзор за состоянием оборудования обеспечивает максимальное число включённых насосов, что позволяет поддерживать высокий вакуум в течение всего эксперимента.

Заключение

Разработана и создана вакуумная система протонной радиографической установки на ускорителе У-70 ГНЦ ИФВЭ НИЦ «Курчатовский институт», которая показала свою работоспособность. Рассчитаны параметры вакуумной системы установки, а также выполнены расчеты на устойчивость и прочность цилиндрических вакуумных камер ионопровода и эллиптических камер квадрупольных линз.

С помощью постов предварительной откачки в ионопроводе получается вакуум $\sim 3\cdot 10^{-5}$ Тор, требуемый для запуска в работу магниторазрядных насосов. Дальнейшая откачка производиться только магниторазрядными насосами, с помощью которых в ионопроводе канала транспортировки протонов и в камерах протонной радиографической установки получен вакуум $\sim 2\cdot 10^{-6}$ Тор.

Реализованы дистанционное управление постами предварительной откачки и магниторазрядными насосами, а также сбор информации о работе вакуумного оборудования (токи насосов, величины давлений, статусные сигналы, статистика включений/отключений) с занесением в архив. Анализ архивных данных позволяет целенаправленно проводить профилактическое обслуживание вакуумного оборудования.

Компьютерное управление вакуумной системой ПРГК позволило эффективно решить проблему обслуживания территориально разбросанного оборудования, что значительно снизило нагрузку на оперативный персонал.

Список литературы

- [1] Андриянов А.И., Афонин А.Г., Гусев И.Г., Зятьков О.В. и др. Ввод в эксплуатацию комплекса ПРГК на ускорителе У-70 ГНЦ ИФВЭ. Препринт ИФВЭ 2015-3, Протвино, 2015.
- [2] Данилин Б.С., Минайчев В.Е. Основы конструирования вакуумных систем. Под общей редакцией Р.А. Нилендера. М., «Энергия», 1971.
- [3] R.T. Avery and G.A. Tidrick. Elliptical Vacuum Chamber Stress and Deflections. In IEEE 1969, p. 952.
- [4] Губриенко К.И. и др. Прямопролетные цельнометаллические затворы для вакуумной системы УНК. Препринт ИФВЭ 87-96, 1987.
- [5] Антонов С.С., Губриенко К.И., Кивер А.М. и др. Вакуумная система периода регулярной магнитной структуры I ступени УНК. Препринт ИФВЭ 91-102, 1991, с. 3-4.
- [6] Атрощенко С.А., Копылов Л.И., Матюшин А.А., Меркер С.Э., Михеев М.С. Система управления Протонографическим комплексом У-70. Препринт ИФВЭ 2014 9, Протвино, 2014. 12 с.

Рукопись поступила 22 января 2016 г.

А.И.	Капичников	И	др.
------	------------	---	-----

Вакуумная система протонного радиографического комплекса.

Препринт отпечатан с оригинала-макета, подготовленного авторами.

Подписано к печати 28.01.2016. Формат $60 \times 84/16$. Цифровая печать. Печ.л. 1. Уч.— изд.л. 1,34. Тираж 80. Заказ 3. Индекс 3649.

ФГБУ ГНЦ ИФВЭ НИЦ «Курчатовский институт» 142281, Московская область, г. Протвино, пл. Науки, 1

www.ihep.ru; библиотека http://web.ihep.su/library/pubs/all-w.htm

ПРЕПРИНТ 2016-2, ФГБУ ГНЦ ИФВЭ НИЦ «Курчатовский институт», 2016

٠.