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Abstract

Bogdanov L.V., Kozub S.S., Smirnov V.M. et al. HTS Dipole Magnet: IHEP Preprint 2016-6. —
Protvino, 2016. —p. 19, figs. 17, tables 4, refs.: 18.

The design and test results of the dipole magnet with HTS coil, made of a second-generation
HTS tape, which was produced by JSC - "SuperOx", are presented. The dipole magnet is designed on
the central magnetic field of 1 T in the aperture of 40x80 mm’.at 77 K The characteristics of the HTS
tape, an insulation coating and steels, used in this magnet, are presented. The test results of the magnet
at temperatures of 77, 65 and 4.2 K are presented and a comparison of measured and calculated results
is performed.
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[IpeacTaBiICHB KOHCTPYKIMS W PE3YJIbTaThl HCIBITAHUH AumonbHOro Marauta ¢ BTCIT 06-
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1. Introduction

In recent years, active research has been carried out on using second-generation high
temperature superconducting (2G HTS) wire in industrial and scientific devices. Magnets and
devices, based on 2G HTS wire [1-11] can operate in the temperature range, attained with af-
fordable liquid nitrogen or cryocoolers, that gives the considerable cost saving in comparison
with LTS magnets, besides magnets with HTS inserts can create higher magnetic fields. Mag-
netic fields of 27 T (32 T design) have been demonstrated with HTS inserts in a LTS magnet
[1], as well as 24.6 T in an all-HTS magnet [2]. Commercial HTS dipole magnet was devel-
oped, using 1G HTS wires [3]. Replacing the resistive magnets by the HTS magnets in accel-
erators provides a significant reduction in operating costs [4, 5]. One of the first dipole mag-
nets, made with 2G HTS wire, reaching about 2 T at 18 K, was reported by Nielsen et al. [6].
At present, a collaborative effort lead by CERN is ongoing on the development and test of
HTS dipole magnets as inserts into LTS magnets, in order to reach magnetic field, exceeding
20 T in accelerator magnets [5, 7]. This paper describes the design, fabrication and test results

of the 2G HTS dipole magnet in Russia IHEP.

2. Design of the HTS Dipole Magnet

Figure 1 shows the cross-section of the HTS dipole magnet, and Tablel lists its main

parameters.
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Figure 1. Cross-section sketch of the HTS dipole magnet.
Table 1. Main design parameters of the HTS dipole magnet.
Parameter Value
Nominal magnetic field in aperture 1T
Operating current 100 A
Number of coils 2
Number of layers in each coil 2
Number of turns in each coil 180
Total number of turns 360
2G HTS wire cross-section without insulation 0.1x12 mm®
2G HTS wire insulation thickness 40 um
Longitudinal magnet length 425 mm
Longitudinal coil length 418 mm
Coil straight section length 250 mm
Longitudinal yoke length 250 mm
Aperture dimensions 40x80 mm®
Magnet mass 103
2.1. Magnet Coils

There are two double racetrack coils, located symmetrically at the top and bottom of a
304L stainless steel coil spool. Each coil consists of two layers, made of single pieces of 2G
HTS wire and connected with 60 mm bridge solder joints. The typical solder joint resistance,

measured at 77 K in self-field on short wire pieces is 13 nQ2. The number of turns in a coil



layer is 90, or 180 in each double racetrack, therefore the total number of turns in the magnet
is 360. The double racetrack coil layers are insulated with a 0.5 mm thick G11 glass-cloth-
base laminate. The coils are insulated from the yoke and the spool with a 2 mm thick G11

sheet.

2.2. Yoke

The iron yoke consists of four parts (Figure 1). Each part is made of 0.5 mm thick 2212
steel sheets with 5 um varnish insulation. The yoke sheet stack is compressed between 8§ mm
side plates with 10 mm 304L stainless steel rods and welded across the stack. The yoke fill
factor is 0.97. Four 304L stainless steel keys are used for the transverse alignment of the yoke

parts. The yoke parts are attached to the spool with bolts and then welded together.

3. Materials

3.1. 2G HTS Wire

The magnet coils were wound with the SuperOx 2G HTS wire (Table 2), based on the
non-magnetic Hastelloy C276 substrate. lon beam assisted deposition (IBAD) was used for
buffer layer texturing and the GdBa,Cu3;O; HTS layer was grown by pulsed laser deposition
(PLD) [12]. The wire is finished with a 1.5 um thick silver coating and a 20 um thick sur-

round copper stabilising coating.

Table 2. Properties of the SuperOx 2G HTS wire used in the magnet coils.

Parameter Value
Substrate Hastelloy C276
Minimum critical current (77 K, self-field) 400 A
Width 12 mm
Wire thickness without insulation 100 pm
Silver coating 1.5 um
Copper coating 40 um (20 pm per side)

Figure 2 shows the distribution of critical current along the wire length for a typical
wire, measured by non-contact trapped field technique [13]. The non-contact measurements
were verified by direct transport current measurements of 50 mm long wire samples (Table

3), confirming critical currents above 400 A.



Table 3. Critical current of short wire samples, measured with direct transport current.

Sample num- Critical current at 77 K, self-field, /. (A)
ber 0.1 uV/ecm 1 uV/ecm 10 uV/em
1 411 440 472
2 416 445 477
3 410 438 469
4 414 442 474
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Figure 2. Distribution of critical current at 77 K in self-field along the wire length for one of the Su-
perOx 2G HTS wires used for winding the magnet coils. Data of non-contact trapped field measure-
ments.

The critical current of HTS wires in external magnetic field is reduced, and the extent
of the reduction depends on the field orientation with respect to the wire [14]. The in-field
critical current anisotropy depends not only on the basic properties of the HTS compound, but
also on the concentration and morphology of defects in the HTS layer, which are determined
by the HTS deposition method and processing parameters. For the SuperOx 2G HTS wire in a
wide range of cryogenic temperatures, the minimum critical current value corresponds to the
perpendicular orientation of magnetic field with respect to the wire flat surface (so-called per-
pendicular field or the B notation) [15]. Therefore, it is convenient to use the /. (7, B1) value
for the assessment of the minimum performance of the wire at given temperature and mag-
netic field (any orientation) conditions. A lift factor is defined as the ratio of a wire critical
current at certain temperature and magnetic field and its critical current in liquid nitrogen in

self-field (s.f.): LF (T, B) = 1. (T, B)/I. (77 K, s.f-). It has been demonstrated that lift factors of



SuperOx 2G HTS wires reproduce well among wires from different production runs [15]. The

lift factors of SuperOx 2G HTS wires at various temperatures and magnetic field are shown in
Table 4 [16].

Table 4. Lift factors LF = Ic (T,BL)ic (77 K, s.f.) of SuperOx 2G HTS wire.

Magnetic field, B1 (T) Temperature, T (K)

5 20 40 65 77
0.0 11.1 | 840 | 5.13 | 230 ] 1
0.5 8.25 ] 5.10 | 2.53 |1 0.82 | 0.30
1.0 6.06 | 3.60 | 1.78 | 0.55 | 0.18
1.5 493 289143042 0.12
2.0 422 124511211033 0.08
2.5 3.78 | 2.17 | 1.07 | 0.28 | 0.06
3.0 341 | 1.95 [ 0.96 | 0.23 | 0.04
3.5 3.11 | 1.79 | 0.88 | 0.20 | 0.03
4.0 2.88 | 1.67 | 0.80 | 0.17 | 0.02
4.5 2.67 | 1.55 1 0.74 | 0.15 | 0.02
5.0 2521145 ]0.69 | 0.13 | 0.01

3.2. Insulation of 2G HTS Wire

At IHEP, the 2G HTS wire was wrapped with 20 pm polyimide tape insulation at 50%
overlap; therefore, the resulting insulation thickness was 40 um per side. An electric strength
of the insulation were measured on stacks of insulated 2G HTS wires (Figure 3) at room tem-
perature and under 10 MPa pressure, applied to the wide surface of the wire. The length of
measurement section was equal to 70 mm. A voltage was applied sequentially between all
neighbouring wires in a stack, pair by pair, thus, the turn-to-turn electric strength was meas-
ured between all wires in the stack. The pressure on the wire stack was applied using a hy-
draulic press. The insulation electrical resistivity was measured in the 50-2500 V operation

range.



Figure 3. Stacks of insulated 2G HTS wires, used in electric strength measurements.
Electric strength measurements, performed with 11 pairs of wires, showed that the
wire insulation accomplished with 20 pm thick, 10 mm wide polyimide tape wrapped around
the wire with a 50% overlap could withstand voltages between neighbouring wires up to

2.5 kV under a pressure up to 10 MPa.

3.3. Yoke Material

Iron yoke was made of 2212 steel [17] with the demagnetisation force H. of 65 A/m
and saturation magnetisation Mg of 2.12 T. The field dependence of the steel magnetic perme-
ability x4 is shown in Figure 4, the maximum u value is equal to 4680. For 2212 steel u(H) is

almost temperature independent [17].
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Figure 4. Dependence of magnetic permeability on magnetic field for the yoke material (2212 steel).



3.4. Stainless Steel

Austenitic stainless steel 304L with low magnetic susceptibility was used in the dipole
magnet structure. At 77 K and 4.2 K, the magnetic susceptibility of 304L steel is below 0.01
[17].

4. Magnetic Properties of the Dipole Magnet

The MULTIC software [18] was used to model all magnetic properties of the dipole

magnet.

4.1. Effective Magnet Length

The effective length of the dipole magnet, L., was calculated, using the formula:

1
Lpf = W -[:H'n.(ﬂ,. , E)ti.z

where By(0,0,0) — magnetic field in the centre of the magnet and By(0,0,z) — magnetic field
along the longitudinal axis of the magnet, with the origin in the centre of the magnet.

Figure 5 shows the dependence of the effective magnet length on the operating cur-
rent.
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Figure 5. Calculated dependence of the effective magnet length on the operating current.
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The effective magnet length at currents above 200 A increases because the yoke satu-
rates first in the central cross-section, therefore, the field in the centre grows more slowly with

increasing current.

4.2. Magnetic Forces

The dependences of horizontal and vertical components of forces in the first quadrant
on operating current are shown in Figure 6-8 (“1 coil” and “2 coil” denote the coil layers

counting from the median plane; “Total” is the total force, applied at both layers in the first

quadl‘ant)'
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Figure 6. Calculated horizontal force on conductor in the first quadrant of the coil.
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Figure 7. Calculated vertical force on conductor in the first quadrant of the coil.
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Figure 8. Calculated total force on conductor in the first quadrant of the coil.



4.3. Magnet Stored Energy and Inductance

The calculated inductance and stored energy of the magnet are shown in Figures 9 and
10. The inductance decreases with increasing operating current because the yoke saturates,

making the dependence of the central field on current non-linear.
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Figure 9. Calculated dependence of the magnet inductance on operating current.
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Figure 10. Calculated dependence of the magnet stored energy on operating current.
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Figure 11 shows the assembled HTS dipole magnet.

Figure 11. Assembled 2G HTS dipole magnet.

5. Tests of HTS Dipole Magnet

5.1. Measurements Instrumentation

Figure 12 shows the schematic of the critical current measurement system, used for

testing the HTS dipole magnet.
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Figure 12. Schematic of critical current measurement system.

A current to HTS coils was supplied, using Agilent 6680A power supply in current
stabilised mode, with voltage wave-function, controlled by Agilent 33200A function genera-
tor. Linear current ramp rate of 0.5 A/s was used.

The current through the coil was measured by Agilent 34420A digital voltmeter, using
a 300 A-75 mV shunt with a 0.5% accuracy. Another Agilent 34420A digital voltmeter was
used to measure voltage at the HTS coil.

Magnetic field was measured with a 1D Hall sensor, attached to a manipulation rod.
The Hall sensor voltage and the measurement shunt voltage were constantly logged during the

measurements.

5.2. Measurements in Liquid Nitrogen

The HTS dipole magnet was tested in liquid nitrogen at 77 and 65 K at 0.5 A/s current
ramp rate. The voltage-current (V-I) curve of the magnet is presented in Figure 13. The high
amplitude pulses on the V-7 curve at low currents are due to the irregular current injection by

the power supply at the low circuit resistivity and the relatively high inductance. The slight

12



voltage decrease at currents over 75 A was due to the yoke saturation and associated the mag-
net inductance decrease.

At 77 K the HTS coil current reached 110 and 113 A at 1 pV/cm and 10 pV/cm crite-
ria, respectively. At 113 A the central field was 1.12 T.

At 65 K the HTS coil current reached 226 and 228 A at 1 pV/cm and 10 pV/cm
criteria, respectively. At 228 A the central field was 1.66 T.
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Figure 13. Measured current-voltage (V-/) curves of the HTS dipole magnet at 77 and 65 K.

Voltage (V)

Figure 14 shows the measured and calculated dependences of the magnet central field
on the operating current along with the field dependences of the 2G HTS wire critical current
at 77 and 65 K (for 1. (77 K, s.f.) =400 A). One can see that the wire in the magnet coils just
reaches the critical current of short wire samples in the magnetic field, generated by the mag-

net.

13
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Figure 14. Measured (red symbols) and calculated (dark blue curve) dependences of the magnet cen-
tral field on the operating current, and field dependences of the 2G HTS wire critical current at 77 and
65 K (for I, (77 K, s.f.) =400 A; light curves).

Figure 15 shows the dependence of the measured and calculated magnet transfer func-
tion on the current. At currents over 75 A the yoke saturates and it contributes less to the

magnetic field increase.
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Figure 15. Measured (symbols) and calculated (solid blue curve) dependence of the magnet transfer
function on the operating current.

14



Figure 16 shows the magnetic field distribution along the magnet axis at 30 A current.
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Figure 16. Measured (red curve) and calculated (solid blue curve) distribution of the magnetic field
along the magnet axis at 30 A current.

5.3. Measurements in Liquid Helium

In liquid helium the current was injected at a ramp rate of 2 A/s. The maximum in-
jected current was 847 A, and it was limited by the power supply. The magnetic field at this
current was 3.03 T. In next current ramp the maximum injected current was again 847 A and
any sign of the magnet quench is not seen. Figure 17 shows the measured and calculated de-

pendences of the magnet central field on the operating current in liquid helium.

15
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Figure 17. Measured (red symbols) and calculated (dark blue curve) dependences of the magnet cen-
tral field on the operating current in liquid helium bath, and field dependences of the 2G HTS wire
critical current at 77, 65, and 5 K (for /. (77 K, s.f.) =400 A; light curves).

We believe that a likely reason for the observed discrepancy between the measured
and calculated filed values at currents above 400 A is the peculiarity of the yoke machining.
There is an about 0.1 mm thick layer with deteriorated magnetic properties on the yoke sur-
face, created by the machining after assembling the yoke. In medium and high magnetic fields
the damaged surface layer saturates earlier than the rest of the iron yoke steel thus increasing
the effective distance between the yoke poles and reducing the central field.

At operating current above 400 A the generated magnetic field linearly depends on the
current. This is so because the yoke is fully saturated, and the field increases only due to cur-
rent increase.

For operating current equal to the short wire sample critical current in liquid helium,

the magnetic field in the magnet centre is expected to reach approximately 4.5 T.
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Conclusion

The HTS dipole magnet with 1-T central field in a 80x40 mm? aperture have been de-

signed, fabricated and successfully tested by IHEP. The coil of this dipole was wounded, us-

ing the 2G HTS wire, produced by SuperOx.

At 77 K the current in the HTS coil reached 113 A, which corresponds to central field

of 1.12 T. At 65 K the HTS coil current was 228 A and the central field was 1.66 T. In liquid

helium bath the maximum injected current of 847 A was limited by the power supply and the

central field was 3.03 T.

These results show good promise for the use of liquid nitrogen, cooled HTS dipole

magnets in accelerators.
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