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Abstract

Kamenshchikov A.A. A new model test in high energy physics in classical and Bayesian statistical
formalisms: IHEP Preprint 2016-8. — Protvino, 2016. — p. 15, figs. 10, tables 1, refs.: 11.

A problem of a new physical model test given observed experimental data is a typical one
for modern experiments of high energy physics (HEP). A solution of the problem may be pro-
vided with two alternative statistical formalisms, namely classical and Bayesian, which are widely
spread in contemporary HEP searches. A characteristic experimental situation is modeled from
general considerations and both the approaches are utilized in order to test a new model. The re-
sults are juxtaposed, what demonstrates their consistency in this work. An effect of a systematic
uncertainty treatment in the statistical analysis is also considered.
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[Ipobyiema mpoBepKH HOBOM MOJIEN C UCIIOJB30BAHUEM SKCIIEPUMEHTAIbHBIX TAHHBIX SIBJIS-
€TCsI TUITUIHOMN JIJIsi COBPEMEHHBIX 9KCIIEPUMEHTOB B (usnke Bbicokux suepruii (PBY). Pemenne
TakKoil poBJIEMBI MOXKET OBITH TIOJIYIEHO B PAMKAX JBYX aJbTePHATUBHBIX CTATUCTUIECKIX (DOP-
MAaJI3MOB, & UMEHHO: KJIACCUIECKOrOo W BaiiecOBCKOTO, MMEIOIUX IIMPOKOe PACIIPOCTPAHEHNE B
1ouckoBbIX aHam3ax @BY. B mannoii pabore m3 obIIMX COOOParKeHUA CMOIEIUPOBAHA IKCIIE-
pUMeHTaJIbHAsI CUTYAIsI U IIPOU3Be/ieHa IIpoBepKa HOBoM Momesn PBY ¢ momornso obonx cra-
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HOCTH B CTATHUCTUYECKHUI aHaIn3 Ha Pe3yJIbTaT IIPOBEPKU HOBOH MOIEJIN.
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1. Introduction

Typical experimental conditions, which an experimentalist usually deals with in HEP
search analyses, generally comprise datasets both collected by an experiment (data here-
inafter) and modeled with Monte Carlo (MC) methods. MC datasets are dedicated to
both background and considered model’s signal processes. A general structure of a dataset
is represented by events, which are characterized by variates, e.g. missing transverse mo-
mentum in collider experiments. Such a dataset is named unbinned as opposed to a case
of binned dataset, which consists of frequency distributions of those variates. Binned
datasets possess an advantage of a simpler processing, especially in the latest HEP ex-
periments with high multiplicity of recorded events. Therefore, an input of a statistical
analysis typically includes so-called templates — frequency distributions of variates for all
mentioned kinds of datasets.

A characteristic statistical configuration of a physical search with a binned dataset
and templates is modeled on the first step of this work. A case of a single observable
variate, namely dileptonic invariant mass my; (a basic observable quantity e.g. in Z’ search
analyses), is considered here for a definiteness but may be generalized to a configuration
with multiple variates. The background and signal processes’ templates are modeled,
using basic concepts of the distribution theory [1]. The RooFit toolkit [2] is used for these
purposes since it provides powerful and flexible instrumentalities for an implementation
of probability density functions (p.d.f.s) and datasets’ modeling.

The background is produced as a composition of the three components, which are
marked as A, B and C and characterized by individual p.d.f.s and fractions. The crystal
ball p.d.f. CB(my|z = 91.5,0 = 10, = —2.5,n = 0.9) is used in order to model the
background A for it resembles a general behavior of Z boson peak and Drell-Yan (DY) tail.
The background B modeling implements the complementary error function, constructing
the p.d.f. %errfc(m\l/%jﬁ = 150,0 = 50). Such a parametrization fits for processes that
are distributed almost uniformly up to some scale and tend to gradually decrease beyond
that scale due to any statistical and/or physical reasons, e.g. tt on the Tevatron or the




LHC. The background C is modeled with the exponential p.d.f. exp(my|r = —0.005)
and serves as an approximation for gradually decreasing processes, e.g. fake leptons on
the Tevatron or the LHC. The fractions of the backgrounds A, B and C are set to 0.9,
0.05 and 0.05 respectively. A similar background composition of the Z and DY, the tf
and the fake leptons processes happens to appear in search analyses on the Tevatron and
the LHC. The background A possesses a suppressive dominance in the total composition
because of its peak part; the composition is different on the right tail of the distribution,
where a new physics search typically takes place.

A widespread case of a new model test is related to a resonance of an unknown mass
(m™8). A width of such a resonance is often dominated by experimental resolution effects,
which lead to noticeably wider shapes than those from a Breit-Wigner physics resonance
width. Hence a signal may be modeled by the Gaussian p.d.f. G(my|ms¢ o = 0.05),
where the o happens to be of a few percents order level. A several values of m®® is
usually tested during a search analysis so the range of m®8 € [500,2600] GeV is scanned
with the step of 100 GeV in this case for a definiteness.

A total expected number of the background events is set to 10% for a mere definiteness.
The data are generated by the instrumentality of the total background model p.d.f. in the
extended likelihood formalism, which includes a Poissonian fluctuation of yields w.r.t. the
complete expectation, provided by the defined configuration. The mentioned background
processes p.d.f.s, the total background composition p.d.f. and the signal p.d.f. at m*® = 1
TeV are presented on Fig. 1. The generated data are also shown.
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Figure 1. P.d.f.s for the background and the signal processes and the data.

The MC samples of 107 events for each of the background processes are generated
and normalized according to the total background expectation and the predefined pro-



cesses fractions. The signal MC samples are supplied with the 10 events statistics for
each considered m®® and normalized to the nominal yield of 10 events just as a starting
point: the signal yield is generally unknown and factorized to the nominal yield and the
parameter of interest (POI) of an analysis pu, signal strength. The defined configuration
of the modeling leads to the distribution of the variate m; on Fig. 1.
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Figure 2. Distributions of the my; for the background and signal processes and the data.

The dedicated Control Region (CR) — an area of a phase space where a background
component dominates w.r.t. the rest of the background — is defined in order to precise
the background component’s yield and to constrain its systematic variations. An area of
a phase space, which is chosen to optimize a significance of a predicted signal appearance,
is called Signal Region (SR). CR and SR concepts are actively used in modern physics
searches. A natural choice of a CR in this case is an area around the background A
peak, e.g. the interval m; € (60,120) GeV, which guarantees an obvious dominance
of the background A over the others. An SR should generally be optimized for each
considered m*¢, where a signal hypothesis is to be tested, and doesn’t overlap with a
CR. Therefore, a several SRs may be defined for this case. Taking into account the
signal width, the SRs of this analysis can be set individually for each m*# value under
consideration: my > m® — 100 GeV for 500 < m®& < 1000 GeV, my > me — 200
GeV for 1000 < m*® < 1600 GeV, my; > m®® — 300 GeV for 1600 < m®& < 2000 GeV,
my > m8 — 400 GeV for 2000 < m < 2600 GeV. In a HEP analysis the CR and
SR definition strategy is a subject of a detailed study and usually is an important part
of a physics search. Here the numbers are defined from the very simple considerations
and are chosen mostly for a definiteness since this aspect is not a focus for this work.
A simplest analysis configuration with single bin templates for CR and SRs — simple



counting experiment — is discussed here and may be generalized to a case of multi-binned
templates.

A common milestone of each search analysis is an evaluation and an implementation of
a systematic uncertainty (s.u.). An s.u. may be considered as a variation of a systematic
source (s.s.) and its impact on a yield estimate. An s.s. may be classified as the experi-
mental, which comes from measurements, e.g. Jets Energy Scale (JES) variation, and the
theoretical, which is from a lack of a theoretical knowledge, e.g. modeling uncertainty.
An s.s.’s variation in a predefined direction leads to an impact of an individual size and
direction for each separate process in every CR and SR of an analysis. A case of the
same s.u.s configuration in all SRs is discussed here for a compactness. The next four
s.s.s are introduced in the considered case: experimental s.s. I, which affects backgrounds
A and B and signal equally, e.g. like s.u. of luminosity; experimental s.s. II, affects only
background C, e.g. like the methodical s.u. on data-driven background; experimental s.s.
I11, affects backgrounds A and B and signal individually, e.g. like JES s.u.; theoretical s.s.
IV, affects backgrounds A and B, e.g. like s.u. of modeling. The detailed configuration
of the s.u.s and s.s.s for, proposed for this case, is summarized in Tab. 1.
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Table 1. The s.u.s and s.s.s configuration. Arrow — a direction of a source’s variation, signed
numbers — appropriate impacts in %. “n/a” means that the s.s. doesn’t affect the
process. “n/e” indicates that the effect of corresponding s.s. variation in the respective
direction is not estimated.

A typical aim of a search analysis in HEP is to check a consistency of a background
only model with an observation and to set upper limits on p. The parametrization of the
processes and their composition, as well as the s.u.s, are chosen from the general consider-
ations and the particular parameters’ and variations’ values are set for a definiteness. The
idea of such a problem definition is to reproduce typical physical and statistical conditions
of search experiments in HEP and to illustrate a solution of the problem in the classical
and Bayesian statistical formalisms.

An application of classical formalism to this case is illustrated in Sec. 2, while a solution
in Bayesian paradigm is described in Sec. 4. The problem of an s.u.’s incorporation into



an analysis is discussed in Sec. 3.

2. The classical approach

A pivot of classical (frequentist) formalism is the likelihood function (LF) [3], which
generalizes all knowledge and understanding of an experiment, namely: observations,
systematic variations, etc. The LF, which is also called model, is built up the next way
for the introduced case:

L(N,6° m|u, 8,6,7) =
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The Reg quantity is the set of the regions, defined in Sec. 1, and the N numbers are
the observed yields in those region. The s.u.s and the background components, described
in Sec. 1, are introduced via Sys and Bkg quantities. The renormalization parameters
(3 are possessed by the backgrounds that are supplied with dedicated CRs (Background
A) and float for them during maximization and integration procedures; they are merely
set to unity § = 1 and fixed for the other backgrounds (Background B, Background C).
The B and S numbers describe the predicted contributions of a background and a signal
in a region. The impact function v () introduces an effect of an s.s.’s variation to the
model and is parametrized via a nuisance parameter (NP) 6. NP variations are normally
constrained by auxiliary measurements, which are expressed in the estimated yields under
the various states of s.s.s. Since the Source I affects all concerned processes with equal
strength in CR and SRs, the dedicated impact function is built in a simplest manner as
v (0) = 6. For the remaining s.s.s a  value of 0 conventionally corresponds to a nominal
yield estimate (I°), a value of unity corresponds to an estimate after a 1o up variation of
an s.s. (I1), and a value of -1 corresponds to an estimate after a 1o down variation of an



s.s. (I7). Following the procedure proposed for the LHC [4] the polynomial interpolation
and the exponential extrapolation is applied in order to construct the v (6) with the
0 € (—o0,+00):

(I*/1°° 0>1,
v(OII° 17, 17) =1+ 30 a; x 0 10] < 1, (2)
(1-/1°"° 0<—1.

In a case of only an up variation is available, e.g. Source IV, a down yield is taken sym-
metrically. The coefficients a; are calculated from the boundary conditions v (§ = +1),
dv/ d@‘ P d*v/ dzé" g—r,- This type of parametrization avoids kinks because of the con-
tinuous first and second derivatives and ensures that v (f) > 0 at any . MC statistics
limitedness of the processes’ samples is accounted via the approach that is proposed for
LHC [4]: ~ parameters introduce the effect in CR and SR and fluctuate around unity
during maximization and integration procedures. m variates in the Poissonian constraint
terms are defined as m = (§/ (5)2, where £ is a total estimated yield in a region, subjected
to the effect of MC sample limitedness, and 0 is a total statistical uncertainty of that yield.
If a yield is not subjected to the effect of MC statistics limitedness, corresponding terms
are moved outside of the £ sums in Eq. 1, hence are not multiplied by the parameters ~.
The 7 = (£/6)* quantity is fixed in the model. The 6° and the m sets correspond to nom-
inal yields estimates in the auxiliary measurements of an analysis, therefore, considering
data, 6° is set to 1 for the Source I and to 0 for the remaining sources, while all ms are
set to their initially estimated values. With such an approach the s.s. constraint terms
of the model appear in a Gaussian form with the arguments 6°, the mean 6 and the o
is set to the value from Tab. 1 for the Source I and to unity for the remaining sources.
The IN numbers are called observables whereas 8° and m are the global observables of
an analysis. The 3, @ and ~ sets are named NPs.

The test statistic, which is based on the profile likelihood ratio, is used for the upper
limit setting purpose following the study [5] as written in Eq. 3.

(—2111 (1BG2.8() A() <0
L(0.8(0).6(0 JA(0) ’
G = L (1.8(1).6(0)4(1) ) (3)
—21In L(7.5.07) 0<p<u,
0 > fi.

\

A single hat symbol above a parameter means an unconditional maximization over
that parameter on the whole its domain. A double hat symbol signifies the conditional
maximization over that parameter given the fixed value of the parameter p in parenthesis.
Observables and global observables are considered as arguments of the model (Eq. 1) and
don’t fluctuate during the maximization procedure. The p value for such a case is given
then by Eq. 4 in accordance with [5]:

b= [ tadn) da ()

Qu,0bs



The p.d.f. f ((ju} u) is derived in a classical manner by the production of the pseudo-
experiments (PEs). Unconditional ensembles are considered for this aim at each tested
i value: the N, 8% and m sets do fluctuate during the production of the PEs according

to the model in Eq. 1, given the B (1), @ (1) and 4 (1), extracted using maximization
of the LF under a hypothesis of a given p with the observables and global observables
from data. The randomized quantities IN, 8° and m are treated as arguments for the LF
in Eq. 1 which is eventually subjected to the maximization over the parameters as it is
shown in Eq. 3 during each PE. Both signal+background (s+ b) and background only (b)
unconditional ensembles, which are of the sizes of 100000 PEs and 50000 PEs respectively,
are produced at each p point, providing the expected classical g, distributions for the both
cases, as well as a single g, value for the data, which allows to get the p values for the s+0
and b hypotheses as defined in Eq. 4. The HistFitter framework [6], which is based on
the RooStats |7] classes, is utilized for a practical application of the classical approach to
this case. The ¢, sampling distributions for the 20 POI values in the range of p € [0, 2.5]
at the signal mass point m*® = 1000 GeV are represented on Fig. 2.
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Figure 3. G, distributions for the 20 scan points over p € [0,2.5] at the m®% = 1000 GeV.

The several observed p values, which are also marked C'L, are calculated at each pu
point: C'Lgyy,, C'L, and C'Ls where the latter one is introduced in [8] and is written down
in Eq. 5:

o CLS—H) (5>
1-CLy
The C'L is known to be a conservative quantity, which generally leads to an over-
coverage of an interval and hence looses a statistical sensitivity of an experiment. But

CL,



nonetheless it is preferable in contemporary HEP analyses and is widely used in practice.
In a case that the observed ¢, value from data was substituted by the expected distri-
bution of this quantity from an unconditional b ensemble, the expected classical sampling
distribution of the C'Ls value for a case the signal doesn’t exist becomes available, hence
the median, the +10 band and the +20 band are merely the corresponding quantiles of
that expected C'Ls distribution. The observed and expected C'L values for the m* = 1000
GeV are on Fig. 2. The observed and expected upper limits on the parameter u along
with the expected +10 and +20 values for the given m®e follow from this scan plot just
as the abscissas of the points of intersections of the respective C'Ls curves with a Confi-
dence Level (CL) set to be used for the reporting of an analysis’s result: 95% CL, which
correspond to the p value of 0.05, is typically used in searches of a new physics in HEP.
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Figure 4. CL quantities for the 20 scan points over u € [0,2.5] and m*® = 1000 GeV.

An application of such an approach for various m*®# values allows to build the observed
and expected limits on the parameter ;1 as a function of m*. A straightforward multipli-
cation of those limits by the nominal signal samples yields at each m®® point (10 events
in this case) provides an interpretation of the results as the upper limits on the number
of signal events (N®#) as a function of m*® as it is shown on Fig. 2.

A general tendency of the downward fluctuations (a deficit of the observed background
events w.r.t. its nominal expectation) takes place for all tested signal mass points, leading
to negative fi values, except the m*® = 2500 GeV point, where an opposite (upward)
fluctuation presences. The effect is noticeable on Fig. 2 by a comparison of the observed
limit and the expected limit polygons.

A feature of the modern search papers is to report the py values. As it is proposed



(&)
o

%’-\ _I__ T T T T T T T T T T T T T T T T :I
< 458 =
h— E observed limit E
% 40 E_ —— — expected limit _E
g)_ 35 ;— - expected * 1o —;
% 30 f_ expected + 26 _f

= All limits at 95% CL -
25E E
20} =
15 =
10E- E
55 ;
1_— 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | :I

500 1000 1500 2000 - 2500
m (GeV)

Figure 5. Classical upper limits on N®& as a function of m*.

in [5], the qo test statistic, which is used in order to get py value, is not just a special case
of g, in Eq. 3 and is defined in a different way as it is shown in Eq. 6:

ol L(O,Za((?),?(?)fr(O))
QO — L(Huavof'Y)
0 1 <0.

120,

(6)

The rest of the procedure is the same as for ¢, case - the p.d.f. f(q0|0) is derived in
a classical manner by the instrumentality of 200000 b PEs. py value definition is written
down in Eq. 7, according to [5]:

m=/ £(¢0]0)dgo. 7)
q0,0bs

po values as a function of m®® are represented on Fig. 2.

The pg values are sticked to unity for the majority of mass points due to the downward
fluctuations, which are not interpreted as a deviation from the background model by
definition of ¢y test statistic. The spike at the m®® = 2500 GeV point comes from an
upward fluctuation which is quantified in terms of significance of a deviation from the
background model (< 1o for this case).



L
~ 2500
m*° (GeV)
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3. Systematic variations treatment

An important point of the model construction is a treatment to an s.s. implementation
in the LF in Eq. 1. In particular the theoretical s.s. (Source IV) may be considered in a
unique manner, since it is generally based on a lack of theoretical knowledge rather than
on auxiliary measurement estimate’s interval as it typically happens with the majority
of the experimental s.s.s. Hence a situation with a several independent yield’s estimates
at hand without any preconceptions and preferences about them may be encountered. A
case with independent predicted background yields in an SR from different MC generators
is an example of such an s.s. The Gaussian constraint term in the model of Eq. 1 may
be considered to be replaced by a uniform term with the domain of € (0,1). A global
observable 6° is absent for such an s.s. since it is not related with a measurement and
introduces a freedom of the predicted background yield variation in an SR due to uncertain
theoretical knowledge. The effect of this rearrangement is represented on the rebuilt upper
limits on N*# as a function of m*® on Fig. 3.
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Figure 7. (Classical upper limits on N as a function of m®**®¢ with the uniform constraint term
for Source 1V.

The original upper limits from Fig. 2 are superimposed on top of the Fig. 3. The new
limits are stronger than the original ones because the Source IV’s NP variation is now
restricted by the domain of the uniform term as opposed to the corresponding Gaussian
term. In the same time, the observed and expected limits agree better at m®& = 2500
GeV because of an improved flexibility of the background model in the domain of the
Source IV’s NP.
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4. The Bayesian approach

Bayesian formalism, which rests on Bayes theorem, was being intensively developed for
the second half of the twentieth century [9] and has gotten a wide spread in HEP analyses.
Being applied to the considered situation, Bayes theorem allows us to get posterior p.d.f.
P of analysis’s parameters, both POI (x) and nuisance parameters (3, 6,), given data
(IN,0° m) by means of the LF Ly and the prior p.d.f. of the nuisance parameters Py as
it is written in Eq. 8:

_ Lp(IN,0° m|p, B,0,7) x Po(83,0,7/6°, m)
JLe(IN,8° m|u,B3,0,v) x Py(B,0,v]0°, m)dudBdOdy

P(1,8,0,7|N,6° m) (8)
The index in Lg is to emphasize the difference with respect to L in Eq. 1, since the LF
in Bayesian sense here comprises only the two former poissonian terms of Eq. 1, given
its reminder, which is a product of constraint terms in classical formalism, becomes the
Po(3,0,~|6°, m) after a corresponding normalization. Hence the numerator of Eq. 8
and the frequentist likelihood in Eq. 1 are technically equivalent. An integration of the
posterior p.d.f. P over the nuisance parameters (3,0,7) is called marginalization and
returns a posterior p.d.f. of the POI P(u|IN, 8% m) that allows to extract an upper limit
on p straightforwardly as a declared percentile (0.95 in this case) of the P(u). A part of
POI domain below that percentile is called Credible Interval (CI).

The Bayesian Analysis Toolkit (BAT) [10] is used as a framework for the Bayesian
analysis where the marginalization process is provided with Markov Chains Monte Carlo
(MCMC) techniques. The RooStats [7] classes are widely used during all operations. The
P(u|N,6° m), using data, together with the 95 % CT at the m™8 = 1000 GeV is drawn
on Fig. 4.

The expected upper limit sampling distributions are produced for a case of only back-
ground processes presence. Unconditional b ensembles of 12500 PEs are produced as it is
described in Sec. 2 by means of Lg and Py, using the nuisance parameters’ values from
the fit of the posterior in Eq. 8, given data and u set to 0. The sampling distribution of
the Bayesian upper limit on p from b ensemble at the m*® = 1000 GeV is presented on
Fig. 4, including its observed value from Fig. 4. The conventional order statistics of the
sampling distribution (median, 1o and 20 intervals) are also shown.

Bayesian upper limits on N®# as a function of m®® are shown on Fig. 4. The corre-
sponding classical upper limits from Fig. 2 are overlaid for a comparison.

As it follows from Fig. 4 the Bayesian and classical observed limit curves are compati-
ble, and so are physics interpretations of these curves. The expected bands are diverging
but the divergence is not informative: the Bayesian band is narrower than the classical
one but in the same time it follows closer to the observed curve. A significance of devi-
ations from the background model remains the same, varying statistical formalism: the
observed curve is inside the expected 1o band for both approaches, hence statistical and
physical conclusions are compatible.
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Figure 9. Bayesian upper limit’s b ensemble and observed value at m*' = 1000 GeV.
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Figure 10. Bayesian upper limits on N8 as a function of m".

Conclusion

Typical experimental conditions of HEP search analyses are modeled in this work.
Classical and Bayesian formalisms are applied to the problem and lead to the compatible
statistical and physical interpretations. A choice between the approaches is proposed
to be made with a scrutiny of statistical procedure’s performance and reliability for each
particular case, given its general complexity. It is also shown that the choice of a statistical
treatment to a systematic uncertainty affects the results of a new model test and, therefore,
such a treatment is recommended to be clearly described in publications of search analyses
in HEP.
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