

национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ»

Институт физики высоких энергий имени А.А. Логунова Национального исследовательского центра «Курчатовский институт»

Препринт 2018–19

В.И. Белоусов, В.В. Ежела, Н.П. Ткаченко

Совместное описание полных, дифференциальных сечений и *ρ*-параметра *p*(*p̄*)*p*-рассеяний

в интервале энергий $\sqrt{s} \ge 7$ ГэВ и при всех t < 0

Направлено в ЯФ

Протвино 2018

Аннотация

Белоусов В.И., Ежела В.В., Ткаченко Н.П. Совместное описание полных, дифференциальных сечений и ρ -параметра $p(\bar{p})p$ -рассеяний в интервале энергий $\sqrt{s} \ge 7$ ГэВ и при всех t < 0: Препринт НИЦ «Курчатовский институт» – ИФВЭ 2018-19. – Протвино, 2018. – 15 с., 8 рис., 1 табл., библиогр.: 30.

Приведены результаты совместного описания данных по дифференциальным, полным сечениям рассеяния и ρ -параметру (анти)протон-протон столкновений. В настройке параметров аналитической модели, построенной для описания данных в широкой области кинематических переменных $\sqrt{s} > 6.9$ ГэВ и всех известных в настоящее время экспериментальных данных по *t*. Экспериментальные данные взяты из компиляций группы КОМПАС (ИФВЭ) и компиляции СLM, дополненные данными экспериментов FNAL-COLLIDER-D0, CERN-LHC-TOTEM и данными обсерватории космических лучей РАО.

Abstract

Belousov V.I., Ezhela V.V., Tkachenko N.P. Consolidated description of total and differential cross sections, and ρ -parameter of $p(\bar{p})p$ -scattering within energy range of $\sqrt{s} \ge 7$ GeV and for all t < 0: NRC «Kurchatov Institute» – IHEP Preprint 2018-19. – Protvino, 2018. – p. 15, figs. 8, table 1, refs.: 30.

Here are the results derived from a consolidated description of data on differential and total cross section as well as on the ρ -parameter of the (anti) proton-proton collisions in setting the parameters of the analytical model designed to describe data in a wide range of kinematic variables $\sqrt{s} > 6.9$ GeV and all the known experimental data on t. The experimental data were taken from COMPAS group (IHEP) compilations and CLM compilations, supplemented by experimental data of FNAL-COLLIDER-D0, CERN-LHC-TOTEM as well as PAO cosmic ray observatory.

Введение

Новые данные по измерениям наблюдаемых величин do/dt, otot и ρ в упругих рассеяниях антипротонов и протонов на протонах при максимальных энергиях, полученных на коллайдерах и в космических лучах [1–7] показали необходимость подстройки почти всех моделей описания экспериментальных данных для уточнения прогнозов значений измеряемых величин получаемых с их помощью (см. рис. 4 в [1]). Здесь мы представляем результаты совместного аналитического описания всех опубликованных экспериментальных данных, полученных по указанным наблюдаемым в ускорительных экспериментах для $\sqrt{s} > 6.9$ ГэВ и в наблюдениях взаимодействий космических лучей с атмосферными ядрами при высоких энергиях во всем интервале экспериментальных инвариантных передач квадрата импульса t < 0 ГэВ².

Экспериментальные данные

Экспериментальные данные по дифференциальным сечениям [19] упругих рассеяний антипротонов и протонов на протонах в переменных ($x = \sqrt{s}$, y = t, $z = d\sigma/dt(s,t)$) распределены вблизи некоторых двумерных поверхностей, для которых и подбираются аналитические модели для наилучшего описания данных по методу наименьших квадратов. Проекция этих распределений на плоскость (y, z) показана на рис. 1, на котором видны некоторые общие особенности поверхностей и их относительное расположение:

1. совместное согласованное поведение обеих поверхностей при малых $-t \lesssim 0.16 \ \Gamma \Rightarrow B^2$ похожее на их пересечение и последующее сближение (при $-t \to 0$) или склейку поверхностей в области кулон-ядерной интерференции в пределах экспериментальных погрешностей (более детальная картина представлена на рис. 2);

- "полоса" пересечения и склейки поверхностей слабо изменяется с энергией¹; 2.
- 3. проявление "оврагов (складок)" на поверхностях в области $-t \gtrsim 0.16 \ \Gamma \Rightarrow B^2$ прижимающихся к области кулон-ядерной интерференции при больших значений энергий столкновений².

Набор данных сформирован на основе известной компиляции CLM [8], файл данных которой выверен нами по справочникам Landolt – Börnstein [9–11], базам данных HEPDATA и COMPAS. Файл CLM поправлен: устранены замеченные некорректности, заполнены пропуски, добавлены новые экспериментальные данные опубликованные после 2006 года.

Текстовый формат файлов с данными по сечениям и р-параметру находятся на сайте Particle Date Group и в наших сетевых файлах [20 - 27].

¹ эффект "cross-over". ² эффект "dip/shoulder"

Описание модели

Полные сечения σ^{tot} , ρ^{tot} -параметр и дифференциальные сечения $d\sigma/dt$ описываются соотношениями³:

$$\sigma_{\pm}^{\text{tot}}(s) = \frac{\text{Im}\,T_{\pm}(s,t=0)}{\sqrt{s(s-4m_p^2)}}, \quad \rho_{\pm}^{\text{tot}}(s) = \frac{\text{Re}\,T_{\pm}(s,t=0)}{\text{Im}\,T_{\pm}(s,t=0)}, \quad \frac{d\sigma_{\pm}}{dt}(s,t) = \frac{|T_{\pm}(s,t)+T_{\pm}^{c}(s,t)|^{2}}{16\pi(\hbar c)^{2}s(s-4m_p^2)},$$

здесь $T_{\pm}(s,t)$ и $T_{\pm}^{c}(s,t)$ ядерная и кулоновская амплитуды соответственно (в mb · GeV²), m_{p} – масса протона, $(\hbar c)^{2}$ – переводной множитель в системе c = 1.

Вводя обозначения⁴:

$$\hat{s}(s,t) \equiv \hat{s} = \frac{-t+2s-4m_p^2}{2s_0}, \quad s_0 = t_0 = 1 \, [\text{GeV}^2], \quad \tilde{s} = \ln \hat{s} - \frac{i\pi}{2}, \quad \tilde{\tau} = \sqrt{-t/t_0} \cdot \ln \tilde{s},$$

Выпишем выражения для ядерной амплитуды, которая выражается как линейная комбинация *с*-четной (*F*₊) и *с*-нечетной (*F*₋) реджевских амплитуд:

$$T_+(s,t) = F_+(\hat{s},t) \pm F_-(\hat{s},t).$$

В свою очередь $F_{\pm}(\hat{s},t)$ четно-нечетные реджевские амплитуды записываем в виде:

$$\begin{split} F_{+}(\hat{s},t) &= F_{+}^{H}(\hat{s},t) + F_{+}^{P}(\hat{s},t) + F_{+}^{PP}(\hat{s},t) + F_{+}^{R}(\hat{s},t) + F_{+}^{RP}(\hat{s},t) + N_{+}(s,t), \\ F_{-}(\hat{s},t) &= F_{-}^{MO}(\hat{s},t) + F_{-}^{O}(\hat{s},t) + F_{-}^{OP}(\hat{s},t) + F_{-}^{R}(\hat{s},t) + F_{-}^{RP}(\hat{s},t) + N_{-}(s,t), \end{split}$$

где $F_{+}^{H}(\hat{s}, t)$ – вклад Гайзенберга-Фруассара [16] (тройной редже-полюс), $F_{-}^{MO}(\hat{s}, t)$ – тройной редже-полюс для максимального оддерона, $F_{+}^{P}(\hat{s}, t)$ – простой редже-полюс померона, $F_{-}^{O}(\hat{s}, t)$ - простой редже-полюс оддерона, $F_{+}^{PP}(\hat{s}, t)$ – описывает вклад от померонпомеронного вклада, $F_{-}^{OP}(\hat{s}, t)$ – описание вклада от померон-оддеронного вклада, $F_{\pm}^{R}(\hat{s}, t)$ – вклады от вторичных *с*-четных и *с*-нечетных реджеонов, $F_{\pm}^{RP}(\hat{s}, t)$ – вклад от *с*-четных

³ Далее везде где встречается в формулах обозначение \pm знак "+" для **pp**-рассеяния, а знак "-" – для $\bar{p}p$. ⁴ s_0 и t_0 - множители для обезразмеривания, которые приняты тождественно равными 1 GeV². Вообще говоря, их тоже следовало считать фитируемыми параметрами, что чрезмерно увеличивает и без того очень большое число параметров фитирования.

и *с*-нечетных реджеон-померонных ветвлений, $N_{\pm}(s,t)$ – поправочные слагаемые (см. ниже) асимптотических КХД-вкладов в амплитуды. Все они записываются с учетом определяемых в дальнейшем параметров фитирования в виде⁵:

$$\begin{split} \frac{F_{\pm}^{\mathrm{H}}(\hat{s},t)}{i\hat{s}} &= \begin{pmatrix} H_{1}\frac{2J_{1}(K_{\pm}\tilde{\tau})}{K_{\pm}\tilde{\tau}}e^{b_{\pm1}t}\ln^{2}\tilde{s} + \\ H_{2}J_{0}(K_{\pm}\tilde{\tau})e^{b_{\pm2}t}\ln\tilde{s} + \\ H_{3}[J_{0}(K_{\pm}\tilde{\tau}) - K_{\pm}\tilde{\tau}J_{1}(K_{\pm}\tilde{\tau})]e^{b_{\pm3}t} \end{pmatrix}, \quad \frac{F_{\pm}^{\mathrm{M0}}(\hat{s},t)}{\hat{s}} = \begin{pmatrix} O_{1}\frac{\sin(K_{\pm}\tilde{\tau})}{K_{\pm}\tilde{\tau}}e^{b_{\pm1}t}\ln^{2}\tilde{s} + \\ O_{2}\cos(K_{\pm}\tilde{\tau})e^{b_{\pm2}t}\ln\tilde{s} + \\ O_{3}e^{b_{\pm2}t}\ln\tilde{s} + \\ O_{3}e^{b_{\pm2}t}\ln\tilde{s} + \\ O_{3}e^{b_{\pm1}t} \end{pmatrix}, \\ F_{\pm}^{\mathrm{P}}(\hat{s},t) &= -C_{p}e^{b_{p}t}e^{\frac{-i\pi}{2}\alpha_{p}(t)}(\hat{s})^{\alpha_{p}(t)}, \qquad F_{\pm}^{\mathrm{O}}(\hat{s},t) = -iC_{0}e^{b_{0}t}e^{\frac{-i\pi}{2}\alpha_{0}(t)}(\hat{s})^{\alpha_{0}(t)}, \\ F_{\pm}^{\mathrm{PP}}(\hat{s},t) &= \frac{-C_{pp}}{\ln\tilde{s}}e^{b_{pp}t}e^{\frac{-i\pi}{2}\alpha_{pp}(t)}(\hat{s})^{\alpha_{pp}(t)}, \qquad F_{\pm}^{\mathrm{OP}}(\hat{s},t) = \frac{-iC_{0p}}{\ln\tilde{s}}e^{b_{0p}t}e^{\frac{-i\pi}{2}\alpha_{0p}(t)}(\hat{s})^{\alpha_{0p}(t)}, \\ F_{\pm}^{\mathrm{RP}}(\hat{s},t) &= \frac{tF_{R\bar{p}}^{\pm}}{\ln\tilde{s}}e^{b_{R}^{\pm}t}i^{\frac{-1\pm1}{2}}e^{\frac{-i\pi}{2}\alpha_{R}^{\pm}p(t)}(\hat{s})^{\alpha_{R}^{\pm}(t)}, \qquad F_{\pm}^{\mathrm{R}}(\hat{s},t) = \pm C_{R}^{\pm}e^{b_{R}^{\pm}t}i^{\frac{-1\pm1}{2}}e^{\frac{-i\pi}{2}\alpha_{R}^{\pm}(t)}(\hat{s})^{\alpha_{R}^{\pm}(t)}, \\ \alpha_{p}(t) &= 1 + \alpha'_{p}\cdot t, \quad \alpha_{R}^{\pm}(t) = \alpha_{R}^{\pm}(0) + \alpha'_{R}^{\pm}(t)\cdot t, \quad \alpha_{0}(t) = 1 + \alpha'_{0}\cdot t, \\ \alpha_{0p}(t) &= 1 + \frac{\alpha'_{p}\cdot\alpha'_{0}}{\alpha'_{p}+\alpha'_{0}}t, \quad \alpha_{pp}(t) = 1 + \frac{\alpha'_{p}}{2}t, \quad \alpha_{Rp}^{\pm}(t) = \alpha_{R}^{\pm}(0) + \frac{\alpha'_{p}\cdot\alpha'_{R}^{\pm}}{\alpha'_{p}+\alpha_{R}^{\pm}}t. \end{split}$$

Выше к членам $F_{\pm}(s,t)$ добавлены соответственно поправочные слагаемые $N_{\pm}(s,t)$ асимптотики КХД:

$$N_{\pm}(s,t) = -i^{\frac{-1\pm 1}{2}} \cdot \hat{s} \cdot N_{\pm} \cdot \ln \tilde{s} \frac{(t/t_0)}{(1-t/t_{\pm})^5}.$$

Похожие поправки использовались в работе [17]. Экспериментальное поведение $\sim t^{-4}$ при больших t известно. Теоретическая мотивация $N_{-}(s,t)$ была давно дана Donnachie и Landshoff как трехглюонный оддеронный обмен [18]. Мотивация $N_{+}(s,t)$ не так очевидна, но может быть так же интерпретирована как c-четная часть вклада от трехглюоного обмена.

Кроме того:

- 1. Полагается что $O_1 \equiv 0$, в силу его чрезвычайной малости при первичном фитировании (когда этот параметр не зануляется искусственно)⁶.
- 2. Полагаем что параметры $\alpha_{R}^{\pm'} \equiv 0.8$ и в фитировании не участвуют.

⁵ Здесь J_0 и J_1 – функции Бесселя нулевого и первого рода.

 $^{^{6}}$ В этом случае и параметр **b_{-1}** оказывается лишним и его можно просто фиксированно занулить.

- 3. К слагаемым $F_{-}^{MO}(\hat{s}, t)$ и $F_{-}^{O}(\hat{s}, t)$ добавлены эмпирические поправочные множители $(1 + A_{MO}t)$ и $(1 + A_{O}t)$ соответственно. Однако при первичном фитировании параметр A_{MO} оказывался чрезвычайно малым и мы положили его тождественным нулем (в фитировании он не участвовал).
- 4. При свободном фитировании всех без исключения параметров параметр b_p становится отрицательным, что ведет к неограниченному росту экспоненты. По этой причине мы искусственно ограничили изменение этого параметра и не позволяли ему перейти в отрицательную область, что привело к его занулению (еще один фиксированный параметр).

Кулоновские поправки учитываются в дипольном виде следующим образом⁷:

$$T_{\pm}^{C}(s,t) = \pm e^{\left[\pm i\alpha \Phi_{\pm}^{NC}(s,t)\right]} \cdot 8\pi(\hbar c)^{2} \alpha \frac{s}{t} \left(1 - \frac{t}{\Lambda^{2}}\right)^{-4}$$

где $\Phi_{+}^{NC}(s,t)$ - фаза кулон-ядерного взаимодействия:

$$\Phi_{\pm}^{NC}(s,t) = \ln\left[-\frac{t}{2}\left(B_{\pm}(s) + \frac{8}{\Lambda^2}\right)\right] + \gamma - \frac{4t}{\Lambda^2}\ln\left[\frac{-4t}{\Lambda^2}\right] - \frac{2t}{\Lambda^2}.$$

Такой вид фазы кулон-ядерной интерференции взят из работы [14]. Л =√0.71 [GeV].

Для упрощения вычислений мы модернизируем формулу наклона дифракционного конуса следующим образом:

$$B_{\pm}(s) = \left\{ \frac{d}{dt} \ln \left[\frac{d\sigma_{\pm}}{dt}(s,t) \right] \right\}_{t=0} \xrightarrow{\text{Sammera}} B_{\pm}(s) = \frac{\sigma_{\pm}(s)}{4\pi(\hbar c)^2}.$$

Таким образом, описанная нами модель включает в себя следующие 36 неизвестных параметров (которые в дальнейшем были определены фитированием) – красным цветом выделены фиксированные параметры:

$$\begin{aligned} H_1, H_2, H_3, K_+, C_p, C_{pp}, C_R^+, C_{Rp}^+, & \alpha_R^+(0), \alpha_R^{+\prime} = 0.8, \alpha_p^{\prime}, b_{+1}, b_{+2}, b_{+3}, b_p = 0, b_{pp}, b_R^+, b_{Rp}^+, N_+, t_+, \\ O_1 = 0, O_2, O_3, K_-, C_0, C_{0p}, C_R^-, C_{Rp}^-, \alpha_R^-(0), & \alpha_R^{-\prime} = 0.8, \alpha_0^{\prime}, b_{-1} = 0, b_{-2}, b_{-3}, b_0, b_{0p}, b_R^-, b_{Rp}^-, \\ N_-, t_-, A_{MO} = 0, A_0. \end{aligned}$$

⁷ Здесь α – постоянная тонкой структуры; γ – постоянная Эйлера.

Результаты фитирования и параметризации наблюдаемых

В недавних феноменологических обработках данных по $d\sigma/dt$, σ_{tot} и ρ аналитическими параметризациями [12–15] вне области кулон-ядерной интерференции предъявлялись "наилучшие совместные описания данных" до появления данных эксперимента CERN-LHC-TOTEM. Наши попытки воспроизвести результаты работы [14] оказались безуспешными. Возможно по причине того что в этой работе производились выборочные выбрасывания экспериментальных данных без надлежащих для этого пояснений – вероятно для получения хорошего значения χ^2 . Мы исключили выбрасывание массивов экспериментальных точек. На основе формул работы [14] мы построили свою (дополненную) версию параметризации с учетом эффекта кулон-ядерной интерференции.

И хотя параметров в модели очень много, получить удовлетворительное значение функции $\chi^2/\text{DoF} \cong 1$ не получилось. Для всех экспериментальных данных $\chi^2/\text{DoF} = 1.62$. И хотя это рекордное значение этой величины, оно существенно больше единицы и таким образом применить строгую стандартную процедуру для вычисления ошибок параметров методом гессиана не представляется возможным.

Поэтому нами была использована методика так называемого прямого переноса ошибок. Подробно этот метод будет описан в следующей работе, здесь мы только кратко упомянем о нем.

Упорядоченный набор значений параметров для глобального минимума исходных экспериментальных данных мы назовем глобальным вектором параметров.

Далее производилась случайная сдвижка экспериментальных данных в условиях гауссова распределения в пределах полной ошибки каждого экспериментального измерения. После чего проводилось новое фитирование и получался новый вектор параметров. После набора статистики таких векторов, проводилась статистическая обработка этих наборов из которых извлекались ошибки параметров и их посредством вычислялись ошибки наблюдаемых физических величин (полных и дифференциальных сечений и *р*-параметров).

6

Полученные результаты описания экспериментальных данных

В таблице приведены значения параметров и их ошибок полученные из результатов фитирования и их обработки (красным цветом выделены фиксированные параметры).

Далее приведем соответствие экспериментальных данных дифференциальных сечений и теоретических кривых при разных энергиях.

Каждая клетка таблицы (рис. 2) содержит данные, помещенные на рис. 1 из указанного в клетке интервала энергий. Разметка координатных осей в каждой клетке таблицы (рис. 2) такая же, как на рис. 1.

Name	Unit	Value	$\pm V_{std}$	Name	Unit	Value	$\pm V_{std}$
H_1	$\rm mb~GeV^2$	0.2488	0.0010	01	${ m mb}~{ m GeV^2}$	0.	(fix)
H_2	${ m mb}~{ m GeV^2}$	6.912·10 ⁻³	$0.438 \cdot 10^{-3}$	02	${ m mb}~{ m GeV}^2$	0.5756	0.0270
H ₃	$\rm mb~GeV^2$	10.42	0.19	03	${ m mb}~{ m GeV}^2$	-3.256	0.167
K ₊		0.3092	0.0014	K_		0.1000	0.0013
Cp	$\rm mb~GeV^2$	-9.457·10 ⁻²	$0.787 \cdot 10^{-2}$	Co	${ m mb}~{ m GeV}^2$	-6.912	0.339
C _{PP}	${ m mb}~{ m GeV^2}$	159.8	1.6	C _{OP}	${ m mb}~{ m GeV}^2$	53.83	1.44
C_R^+	${ m mb}~{ m GeV^2}$	-30.20	1.08	C_R^-	${ m mb}~{ m GeV}^2$	85.10	2.01
C_{RP}^{+}	$\rm mb~GeV^2$	-1.897	0.179	C_{RP}^{-}	${ m mb}~{ m GeV}^2$	-48.77	2.88
$\alpha_R^+(0)$		0.6504	0.0092	$\alpha_R^-(0)$		0.4558	0.0061
$\alpha_R^{+\prime}$	GeV^{-2}	0.8	(fix)	$\alpha_R^{-\prime}$	GeV^{-2}	0.8	(fix)
α'_{P}	GeV ⁻²	0.1603	0.0051	αο	GeV ⁻²	0.6803	0.0323
b ₊₁	GeV ⁻²	3.895	0.051	b_1	GeV^{-2}	0.	(fix)
b ₊₂	GeV ⁻²	0.6078	0.0114	b_2	GeV ⁻²	2.935	0.038
b ₊₃	GeV ⁻²	6.445	0.220	b_3	GeV ⁻²	2.502	0.029
b_p	GeV^{-2}	0.0	(fix)	bo	GeV^{-2}	14.75	0.42
b_{pp}	GeV ⁻²	5,287	0.056	b _{op}	GeV ⁻²	2.480	0.036
b_R^+	GeV ⁻²	1.928	0.058	b_R^-	GeV ⁻²	9.246	0.236
b_{RP}^+	GeV ⁻²	0.4525	0.0244	b_{RP}^{-}	GeV ⁻²	1.154	0.042
N ₊	$\rm mb~GeV^2$	$-7.730 \cdot 10^{-2}$	$0.485 \cdot 10^{-2}$	N_	${ m mb}~{ m GeV}^2$	15.93	1.59
<i>t</i> ₊	GeV^2	1.475	0.022	t_	GeV^2	0.1221	0.0135
A _{OM}	GeV^{-2}	0.0	(fix)	Ao	GeV ⁻²	-34.72	2.16

Таблица. Значения параметров модели и их ошибки.

На рис. 2 приведены количество точек их указанной области энергий N_{tot} и соответствующее значение χ^2/N_{tot} . В следующей строке указана те же самая величина, но с извлечением из того же массива экспериментальных данных, которые отклоняются от теоретической кривой более чем на три стандартных полных отклонения для каждого данного экспериментального измерения⁸.

Рис. 2. Раскладка выборки данных и теоретические кривые нашей модели дифференциальных сечений для различных \sqrt{s} (*pp* - красные и pp - синие). Разметка осей как на рис. 1.

В целом при искусственном выбрасывании не более 5% экспериментальных точек только в дифференциальных сечениях (отстоящих на 3 и более стандартных ошибки от теоретической кривой) значение полного χ^2 /DoF становится равным единице и менее.

⁸ Общее число точек для этого случая обозначено через ΔN_{tot} . Через N_{out} обозначено количество выброшенных для этого случая экспериментальных точек.

Рис. 3. Теоретические кривые и экспериментальные точки (при $\sqrt{s} = 7$ TeV) дифференциальных сечений для *pp* (красный цвет) и $\bar{p}p$ (синий).

Рис. 4. Теоретические кривые дифференциальных сечений для для *pp*-столкновений при $\sqrt{s} = 12$ GeV (серый цвет), **7** TeV (красный) и 14 TeV (зеленый).

В целом теоретическое описание вполне хорошо соответствует экспериментальным данным во всех областях. Для демонстрации этого соответствия приведем типичное поведение теоретической кривой (с учетом ошибок) и экспериментальных данных при энергии 7 TeV (рис. 3).

На рис. 4 показано плавное смещение deep⁹ для *pp*-столкновений в нашей модели с изменением энергии. Кривые приведены с учетом ошибок параметров, полученных при фитировании.

На рис. 5 Приведены графики для полного (σ_{tot}), упругого ($\sigma_{elastic}$) и неупругого ($\sigma_{inelastic}$) сечений рассеяний pp (верхний график) и $\bar{p}p$ (нижний). Все кривые приведены с учетом ошибок теоретических расчетов. Упругое сечение рассеяния вычислялось как:

$$\sigma_{\text{elastic}}(s) = \int_{t=0}^{\infty} \left(\frac{d\sigma_{\pm}}{dt}\right)_{\text{nuc}}(s,t) \cdot dt,$$

где $(d\sigma_{\pm}/dt)_{\rm nuc}$ вычислялось без кулоновского слагаемого $T^{\rm c}_{\pm}(s,t)$ в полной амплитуде рассеяния:

$$\left(\frac{d\sigma_+}{dt}\right)_{\rm nuc}(s,t) = \frac{|T_{\pm}(s,t)|^2}{16\pi (\hbar c)^2 s (s-4m_p^2)}.$$

Неупругое сечение полагалось равным разнице:

$$\sigma_{\text{inelastic}} = \sigma_{\text{tot}} - \sigma_{\text{elastic}}$$

Видно, что экспериментальные данные по упругим, неупругим и полным сечениям описываются вполне удовлетворительно (численная характеристика такого описания приводится на рис. 6).

На наш взгляд, важной особенностью этой модели является тот факт что кривые *р*-параметров в этой модели, во-первых, пересекаются и, во-вторых, расходятся при больших энергиях (ниже на рис. 6). Ранее у нас никогда не получалось таких результатов, которые были опубликованы в нескольких последних изданиях PDG или в [28].

По этой причине была проведена некоторая минимальная модернизация нашей модели: "выключался" оддерон в полных сечениях и ρ -параметре при $t \rightarrow 0$. Для этого в формулах для полных сечений полагалось t = 0 и в амплитуде занулялись члены, соответствующие оддеронным полюсам. При этом теоретическое описание поведения

⁹ Локальный минимум на кривой $\frac{d\sigma_+}{dt}(t)$ при фиксированной энергии.

дифференциальных сечений $\frac{d\sigma_+}{dt}$ и полных сечений σ_{\pm} практически не отличаются для этих двух случаев. Различия в полных значениях χ^2 /DoF также несущественные.

Рис. 5. Теоретические кривые (при $\sqrt{s} \ge 6.9$ GeV) и экспериментальные точки (полный набор из базы данных) для полных, упругих и неупругих сечений рассеяний *pp* и *pp*.

Рис. 6. Экспериментальные данные (полный набор) и теоретические кривые для дифференциальных сечений (верхняя строка графиков) при $\sqrt{s} \ge 6.9$ GeV, полных, упругих и неупругих сечений при $\sqrt{s} \ge 5$ GeV (средняя строка графиков) и ρ -параметров для *pp* (красный цвет) и $\bar{p}p$ (синий) рассеяний. В левой колонке изображены результаты исходной модели, а в правой – с зануленным оддероном.

При этом поведение ρ -параметра претерпевает принципиальное изменение при больших энергиях \sqrt{s} . Ранее нами было проанализировано большое количество различных теоретических описаний [29] поведения σ_{tot} и ρ -параметра при отсутствии оддерона и во всех этих случаях кривые для ρ -параметра pp и $\bar{p}p$ столкновений при больших энергиях сближаются (не пересекаясь) все ближе и становятся в пределах ошибки неотличимыми при \sqrt{s} больших нескольких сотен GeV. В исходной же модели эти кривые, во-первых, пересекаются и, во-вторых, с ростом энергии все больше расходятся (рис. 6). Этот факт является некоторым косвенным подтверждением отсутствия необходимости включения оддеронных полюсов в модели описания дифференциальных сечений, что ведет к упрощению формул и количества параметров модели.

Рис. 7. Поведение поверхностей $d\sigma/dt$ как функции \sqrt{s} и |t| для pp (вверху) и $\bar{p}p$. Все оси приведены в логарифмическом масштабе.

На рис. 7 приводится общий 3D-вид поведения поверхностей дифференциальных сечений во всей области рассмотренных энергий как функции от \sqrt{s} и |t|.

В ссылке [30] можно наблюдать визуализацию изменения кривой $d\sigma/dt(|t|)$ для *pp* (красная кривая) и $\bar{p}p$ (синяя) при изменении энергии 6.9 GeV $\leq \sqrt{s} \leq 14$ TeV.

В заключение приведем график, иллюстрирующий точность описания экспериментальных данных нашей моделью в районе deep-a:

Рис. 8. Поведение теоретической кривой (с учетом расчетных ошибок) $d\sigma/dt$ при $\sqrt{s} = 7$ TeV для *pp* в районе первого локального минимума.

Получение более точных данных по всем параметрам модели и вариантам описания будет проведено при получении новых результатов с LHC при энергиях 13 и 14 TeV для дифференциальных и полных сечений, а также значений *р*-параметра.

Список литературы

- 1. G. Antchev, et al. [TOTEM Collaboration], EPL 95, 41001 (2011).
- 2. G. Antchev, et al. [TOTEM Collaboration], EPL 96, 21002 (2011).
- 3. G. Antchev, et al. [TOTEM Collaboration], EPL 101, 21002 (2013).
- 4. G. Antchev, et al. [TOTEM Collaboration], EPL 101, 21004 (2013).
- 5. G. Antchev, et al. [TOTEM Collaboration], Phys. Rev. Lett. 111, 012001 (2013).
- 6. V. M. Abazov, et al. [D0 Collaboration], Phys. Rev. D 86, 012009 (2012).
- 7. P. Abreu, et al. [Pierre Auger Collaboration], Phys. Rev. Lett. 109, 062002 (2012).
- 8. J. R. Cudell, A. Lengyel and E. Martynov, Phys. Rev. D 73, 034008 (2006).
- 9. P. J. Carlson, in Landolt-Börnstein, Group I, v.7, 109 (1973).
- 10. R. R. Shubert, in Landolt-Börnstein, Group I, v.9, 216 (1980).
- 11. P. J. Carlson, in Landolt-Börnstein, Group I, v.9, 675 (1980).
- 12. R. Avila, Y. Gauron, B. Nicolescu, Eur. Phys. J. C49, 581 (2007). 13. E. Martynov, Phys. Rev. D 76, 074030 (2007).
- 13. E. Martynov and B. Nicolescu, Eur. Phys. J. C 56, 57 (2008). 15. E. Martynov, Phys. Rev. D 87, 114018 (2013).
- 14. R. Cahn, Z. Phys. C 15, 253 (1982).
- 15. JCGM Working Group 1, <u>http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf</u>
- 16. W. Heisenberg, Zeit. Phys., Bd. 133, 3 65.
- P. Desgrolard, M. Giffon, E. Martynov, Eur. Phys. J. C 18, 359 (2000). [hep-ph/0703248]
- 18. A. Donnachie, P.V. Landshoff, Nucl. Phys. B 348, 297 (1991).
- 19. https://yadi.sk/i/FZWiQqJNG-Nh4g
- 20. *σ*_{tot} для *pp*: <u>http://pdg.lbl.gov/2018/hadronic-xsections/rpp2018-pp_total.dat</u>
- 21. σ_{tot} для pp: <u>http://pdg.lbl.gov/2018/hadronic-xsections/rpp2018-pbarp_total.dat</u>
- 22. *σ*_{elastic} для *pp*: <u>http://pdg.lbl.gov/2018/hadronic-xsections/rpp2018-pp_elastic.dat</u>
- 23. *σ*_{elastic} для *pp*: <u>http://pdg.lbl.gov/2018/hadronic-xsections/rpp2018-pbarp_elastic.dat</u>
- 24. *σ*_{inelastic} для *pp*: <u>https://yadi.sk/i/SYY9n4wWV2IViA</u>
- 25. *σ*_{inelastic} для *pp*: <u>https://yadi.sk/d/SB0T-2eEzIr08w</u>
- 26. *р*-параметр для *pp*:

http://pdg.lbl.gov/2018/hadronic-xsections/rpp2018-pp_elastic.reim

- 27. *р*-параметр для *pp*: <u>http://pdg.lbl.gov/2018/hadronic-xsections/rpp2018-pbarp_elastic.reim</u>
- 28. J. R. Cudell, et al., Phys. Rev. D 61, 034019 (2000);
 - Phys. Rev. D 63, 059901 (2001).
- 29. J. R. Cudell, et al., Phys. Rev. D 65, 074024 (2002);
- 30. https://yadi.sk/i/JAmCDqDMzPEoLw

Рукопись поступила 28 ноября 2018 г.

В.И. Белоусов, В.В. Ежела, Н.П. Ткаченко

Совместное описание полных, дифференциальных сечений и ρ -параметра $p(\bar{p})p$ -рассеяний в интервале энергий $\sqrt{s} \ge 7$ ГэВ и при всех t < 0.

Препринт отпечатан с оригинала-макета, подготовленного авторами.

Подписано к печати 30.11.2018.	Формат 6	$50 \times 84/16.$	Цифровая печать.					
Печ.л. 1,25. Уч.– изд.л. 1,6.	Тираж 80.	Заказ 22.	Индекс 3649.					
НИЦ «Курчатовский институт» – ИФВЭ								

142281, Московская область, г. Протвино, пл. Науки, 1

www.ihep.ru; библиотека http://web.ihep.su/library/pubs/all-w.htm

Индекс 3649

ПРЕПРИНТ 2018-19, НИЦ «Курчатовский институт» – ИФВЭ, 2018