

национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ»

Институт физики высоких энергий имени А.А. Логунова Национального исследовательского центра «Курчатовский институт»

Препринт 2018-2

В.Н. Алферов, Д.А. Васильев, В.Ф. Головкин, П.П. Коробчук, А.В. Лутчев, В.Х. Маляев, В.Н. Рядовиков, В.А. Соловьев, В.Н. Федорченко, А.Н. Холкин

Измерение магнитного поля установки СВД-2

Направлено в ПТЭ

УДК 539.1.074.3

Аннотация

Алферов В.Н. и др. Измерение магнитного поля установки СВД-2: Препринт НИЦ «Курчатовский институт» – ИФВЭ 2018-2. – Протвино, 2018. – 21 с., 20 рис., библиогр.: 7.

Приведено описание разработанной в ИФВЭ системы измерения магнитного поля большого объема, которая была использована для измерения магнитного поля экспериментальной установки СВД ускорительного комплекса У-70. Приведены параметры системы и результаты измерений.

Abstract

Alferov V. et al. The magnetic field measuring of SVD-2 setup: NRC «Kurchatov Institute» – IHEP Preprint 2018-2. – Protvino, 2018. – p. 21, figs. 20, refs.: 7.

The magnetic field measuring system was constructed at IHEP for a large volume and used to measure the magnetic field of SVD setup at the accelerator complex U-70. The system parameters and measurement results are presented.

Введение

Основными целями экспериментов, выполняемых в настоящее время на установке Спектрометр с вершинным детектором (СВД) [1] на ускорительном комплексе ГНЦ ИФВЭ, являются исследования рождения очарованных частиц [2] и изучение многочастичных процессов [3]. С результатами экспериментальных исследований, полученными на установке к настоящему времени, можно ознакомиться на сайте ИФВЭ [4].

Установка СВД расположена на 22 канале ускорителя У-70 и может экспонироваться в пучках заряженных частиц и ионов ¹²С в широком диапазоне их импульсов. В качестве спектрометрического магнита установки используется широкоапертурный магнит М-7. На рис. 1 приведена схема установки. Ось Z системы координат установки направлена по движению частиц первичного пучка и параллельно плоскости нижней полюсной обмотки. Ось Y направлена вертикально снизу вверх по нормали к этой плоскости. Ось X направлена так, чтобы получилась правая система координат. Центр ярма спектрометрического магнита М-7 принимается за начало декартовой системы координат (правой тройки XYZ) спектрометра.

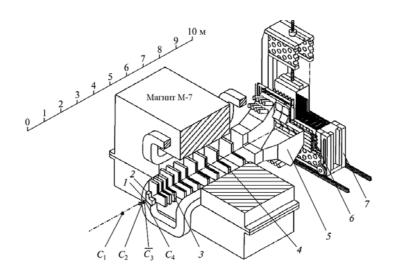


Рис. 1. Схема установки СВД: 1- мишень (М); 2- вершинный детектор (ВД); 3 — дрейфовые трубки (ДТ); 4 — пропорциональные камеры (ПК); 5- черенковский счетчик (ЧС); 6- сцинтилляционный годоскоп (СГ); 7- детектор гамма-квантов (ДЕГА); C_1-C_4- счетчики триггерной системы.

В процедуре восстановления импульса частиц используются координатные детекторы, расположенные сразу за мишенью в магнитном поле. Карта магнитного поля необходима также для прослеживания траектории заряженной частицы в черенковский счетчик, сцинтилляционный годоскоп и детектор гамма-квантов.

Выполненные в 1990 году измерения магнитного поля установки [5] не отвечают современным потребностям текущих экспериментов. В составе установки появились металлические конструкции (экран для экранировки фотоумножителей ЧС и т.п.), которых не было при прежних измерениях. Поэтому были выполнены новые измерения магнитного поля установки СВД.

Измерения индукции магнитного поля были выполнены системой датчиков Холла в автоматизированном режиме под управлением компьютера. Рабочая область измерений составила (140. × 88. × 460.) см³. В работе дается описание аппаратуры, приведены результаты измерений и их анализ, описаны процедуры получения карты магнитного поля установки СВД, которая в дальнейшем будет использоваться для проведения экспериментальных исследований.

Система для измерения магнитного поля

Измерение магнитного поля выполнялось сборками полупроводниковых арсенидогаллиевых датчиков Холла (ДХ) (рис. 2) производства ООО «Вега — Флекс» (Санкт-Петербург) [6], обеспечивающими измерение индукции поля по трем координатам. Каждая сборка (магнитометр) содержит три датчика Холла типа ПХЭ602817В.

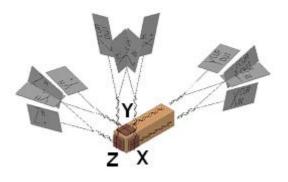


Рис. 2. Схема сборки датчиков Холла, смонтированных на керамическом основании.

Основные характеристики датчика Холла:

- магнитная чувствительность при $B=0.1~\mathrm{Tr}=60\div75~\mathrm{мкB}/\mathrm{мTr};$
- ток питания = 100 мA;
- входное сопротивление = 4.5 Ом;
- температурный коэффициент чувствительности = -0.004% / 0 C.

Схематическое изображение механической конструкции для измерения магнитного поля установки СВД приведено на рис. 3. Обозначение осей соответсвует принятому в экспериментах на СВД правилу (Z-направление пучка, X- горизонталь, Y-вертикаль в правой системе координат). Измерения выполнялись 23 магнитометрами, закрепленными на вертикальной штанге (ось Y) с шагом 4 см. Штанга установлена на подвижной каретке, которая перемещалась по рельсам вдоль оси Z с шагом 4 см с использованием управляемого от ПК электродвигателя и ленточного привода. В поперечной плоскости (по оси X) штанга с магнитометрами перемещалась с шагом 4 см ручным приводом. Ориентация магнитометров на штанге соответствует измерениям компонентов индукции поля (B_x, B_y, B_z) . Положение каретки, штанги и, соответственно, магнитометров по отношению к реперным меткам на ярме магнита измерялось с

точностью $1\div 2$ мм, что с учетом линейных размеров сенсора (2×2 мм 2) можно считать достаточным.

Перед измерениями индукции поля СВД датчики калибровались с помощью ЯМР в 6-метровом магните УНК при трех значениях поля: 3106, 4657, 6500 Гс и стабильностью тока 10^{-4} . Калибровка показала соответствие измеренных значений чувствительности паспортным данным. Показания при нулевом поле определялись как полуразность показаний при двух противоположных ориентациях в заведомо слабом внешнем поле.

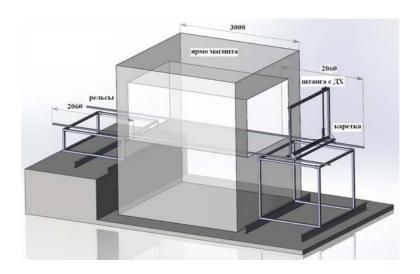


Рис. 3. Схематическое изображение механической конструкции для измерения магнитного поля.

Чтобы обеспечить требуемую погрешность измерения индукции поля на уровне 10^{-3} , необходимо было снизить величину влияющих факторов: тока питания датчика, температуры, тока магнита, точности АЦП – до уровня 10^{-4} .

Блок-схема системы измерения приведена на рис. 4. Система может управляться от удаленного компьютера, размещенного в другом здании либо от ПК из домика экспериментаторов в зоне установки СВД.

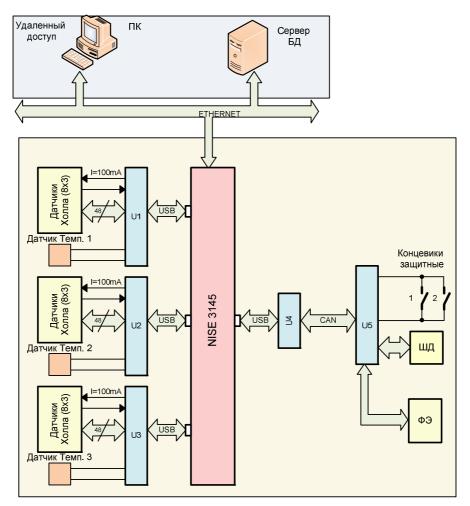


Рис. 4. Блок-схема системы для измерения магнитного поля установки СВД.

В состав системы измерения и управления входят следующие блоки:

- Три 24-канальных блока измерения сигналов датчиков Холла (U1, U2, U3).
- U4 преобразователь интерфейсов (USB-CAN) AC4 [7].
- Блок управления шаговым двигателем FL60STH86 с шагом по окружности 1 мм для перемещения каретки вдоль оси Z, обработки сигналов с фотоэлемента (ФЭ) и концевых выключателей (U5).

Блок измерения сигналов ДХ включает в себя:

- 24 входных канала с одновременной выборкой сигнала. Максимальная частота измерений 6 кГц.
- Диапазон измеряемых напряжений ±120 мВ. Коэффициент усиления канала 20.
- Встроенный стабильный источник тока 100 мА.

- АЦП для контроля тока.
- Два канала измерения температуры полупроводниковыми интегральными микросхемами-термодатчиками типа AD592 с точностью ± 0.5 °C.

Калибровка блоков производилась прибором B1-12 (паспортная погрешность установки напряжения не более 0.005%).

Измеренные шумы блоков, приведенные к входу, при частоте опроса $F=100~\Gamma$ ц составляют $\pm 6~$ мкB, это означает, что среднеквадратичное значение шумов не превышает уровень $10^{-4}~$ от максимального входного сигнала $\pm 120~$ мB.

Измеренные шумы источника тока ± 8 мкA, что составляет около 10^{-4} от величины тока.

Концевые выключатели ограничивают перемещение каретки. Фотодатчик (ФЭ), закрепленный на каретке, перемещается вдоль линейки с прорезями шириной 1 мм, нарезанными с шагом 4 см и задающие координату по оси Z. Полупроводниковые датчики температуры AD592 контролируют изменение температуры измерительных блоков и магнитометров в ходе измерений. Калибровочная точность датчиков температуры 0.5 °C, линейность в диапазоне температур от 0 °C до 70 °C равна 0.15 °C. Термочувствительность блоков измерения сигналов ДХ в целом при нулевом токе проверялась в термокамере SU-241 фирмы ESPEC. Значения тока магнита считывались в контроллере источника питания магнита и передавались на установку СВД по сети с задержкой в единицы секунд.

Процедура измерений

Рабочая область измерений была разделена на две половины по продольной оси Z: переднюю от BД до центра магнита и заднюю от ДЕГА до центра магнита, каждая из них составила (140. \times 88. \times 460.) см³. Измерения индукции (B) задней части магнитного поля установки CBД, выполненные в 2016 году при различных значениях (I=1, 2, 3 и 4 кA) тока в катушках магнита, служили для:

- начальной оценки измерений индукции;
- проверки паспортных данных каждого ДХ;

- получения зависимости индукции поля от тока в магните и проверки ее линейности;
- сравнения измерений с картой поля 1990 года [5];
- получения рекомендаций по усовершенствованию оборудования для окончательных измерений всего объема поля, которые были завершены в 2017 году.

Управление кареткой считывание подвижной И показаний датчиков осуществлялось с помощью программной платформы LabVIEW. Результаты измерений записывались в текстовые файлы, которые содержали служебную информацию: шаг измерительной каретки вдоль пучка и по горизонтали, ток магнита, показания датчиков температуры и усредненные данные по 100 измерениям индукции в одной точке для трех компонент поля в мТл с их дисперсией. Анализ первых измерений поля показал, что разброс показаний датчиков Холла в одной точке небольшой (< 0.1%). Величины измеренных индукций поля неплохо согласуются в центре магнита со старой картой поля. Однако были выявлены проблемы в системе передвижения каретки из-за наличия деталей из нержавеющей стали в конструкции и электродвигателя для перемещения штанги с ДХ в поперечном направлении (ось X). Поэтому этот электродвигатель был удален из конструкции, и перемещение штанги с ДХ в поперечном направлении осуществлялось вручную. Для надежного позиционирования магнитометров в точках измерения по оси Z была смонтирована продольная линейка с прорезями через 4 см и система регистрации сигнала с фотодатчика при прохождении щели, доработана программа для остановки каретки по сигналу фотодатчика. Сравнения измеренных индукций поля в одной точке при движении каретки в обе стороны (X=const) показали, что значения B(вперед) и B(назад) совпадают с точностью лучше 1%. Поэтому в дальнейшем для анализа использовались только измерения, полученные при одном (вперед) прохождении строки. Измерения по оси Z выполнялись от малых к большим значениям поля. Найдено, что зависимость показаний ДХ от их температуры в диапазоне температур, при которых проводились измерения, < 0.01% и в дальнейшем эта зависимость не анализировалась.

Коэффициенты пропорциональности (k) для значений B_y , измеренные при разных величинах тока в магните (I= 1, 2, 3, 4 kA), отличаются от линейной зависимости в пределах ($-1.5\% \div -0.5\%$). В таблице 1 они приведены в качестве примера для одной пространственной точки в центре магнита.

<u>Таблица 1</u>. Коэффициент пропорциональности $k = B_y(4 \text{ kA}) / B_y(I)$.

I, kA	$B_{\rm y}$, mT	$k=B_y(4 \text{ kA}) / B_y(I)$
1.0	267.37	3.938 (-1.5%)
2.0	531.51	1.981 (-1.0%)
3.0	793.95	1.326 (-0.5%)
4.0	1052.75	1.0

Анализ измеренных данных

В 2017 году, после модернизации механической системы передвижения ДХ и улучшения электронной системы управления, были проведены измерения передней (от ВД до центра магнита = front) и задней (от ДЕГА до центра магнита = back) частей магнитного поля при токе в катушках 4 кА и 1 кА. Поле измерялось в 191935 пространственных точках. Анализ полученных массивов данных для каждой компоненты поля (B_x , B_y , B_z) проводился раздельно, после чего они были объединены в карту магнитного поля.

Коррекция значений индукции поля

Измеренные данные магнитной индукции (В) корректировались:

- на величину тока в магните при каждом измерении B (например, фактор $K_I = 4.0$ / $I(\kappa A)$), так как $I(\kappa A)$ мог меняться на величину $\sim 1\%$ при каждом новом включении тока магнита;
- у четвертого магнитометра (нумерация сверху вниз по штанге) не работал датчик для компоненты $B_{\rm z}$, поэтому значение $B_{\rm z}$ для него вычислялось как среднее двух соседних датчиков/

Сглаживание измерений магнитного поля

Предварительные измерения магнитного поля показали, что использование

большого числа ДХ (23 шт. для каждой компоненты поля) при наличии индивидуальных физических характеристик у каждого из них (например, зависимости чувствительности от величины B) и ошибок их индивидуальных калибровочных измерений, предполагает на завершающей стадии проведения процедуры сглаживания данных и анализа результатов этой процедуры. Для иллюстрации этого эффекта на рис. 5 (слева) приведены зависимости основной компоненты B_y (back) от номера датчика ДХ в центре магнита для восьми горизонтальных координат X (четыре в одну сторону и четыре в другую от центра). Относительные «биения» от гладкой кривой значений B_y (back) двух соседних датчиков ДХ небольшие меньше 2%, но ожидается, что кривые должны быть гладкими. Кроме того, при небольших значениях B (на краях поля для B_y и для компонент B_x , B_z) относительные колебания могут иметь значительную величину.

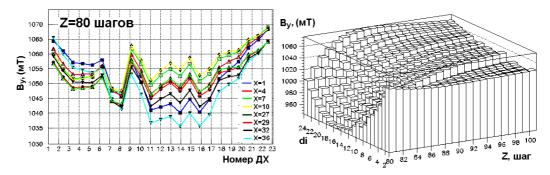


Рис. 5. Зависимости основной компоненты B_y (back) от номера датчика ДХ в центре магнита для восьми значений X (слева); плот B_y (Z, ДX) (справа). На оси Z указан номер шага измерений.

Для сглаживания зависимостей индукции B_{y} от вертикальной координаты кривые фитировались полиномом 3-й степени. Результаты приведены на рис. 6.

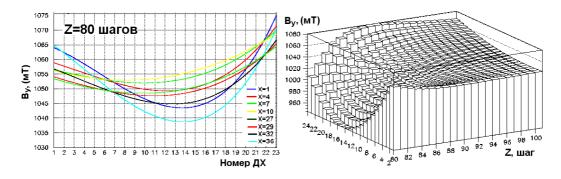


Рис. 6. Зависимости основной компоненты B_y (back) от номера датчика ДХ в центре магнита для восьми значений X (слева); плот B_y (Z, ДX) (справа) после фитирования. На оси Z указан номер шага измерений.

Необходимость сглаживания зависимостей компоненты $B_z(Y)$ иллюстрирует рис. 7, который получен для измерений передней части поля. При малых значениях B_z их относительные колебания достигают иногда ~20%.

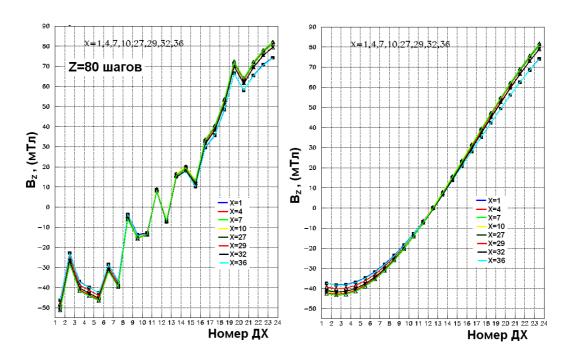


Рис. 7. Зависимости компоненты B_z (front) от номера датчика ДХ в центре магнита для семи значений X до (слева) и после (справа) фитирования.

Для проверки, не искажает ли вышеописанная процедура сглаживания измеренных значений индукции B и ее зависимостей от координат, вычислялась величина $\Delta B/B=(B_{\rm meas}-B_{\rm fit})/\left|B_{\rm fit}\right|$ для каждой измеренной точки, которая отражает также ошибки измерений индукции. Распределение величины $\Delta B_y/B_y$, включающее 88596 измеренных точек в передней части магнита, имеет среднее значение $<\!\Delta B_y/B_y>=0.01$ и $\sigma=0.03$, для 86018 точек в задней части магнита имеем $<\!\Delta B_y/B_y>=0.08$ и $\sigma=0.18$. Зависимость этой величины от значения $B_{\rm fit}$ для основной компоненты поля B_y приведена на рис. 8. Видно, что в центре магнита ($B_y>500$ мТл) величина $\Delta B_y/B_y$ не превышает 0.5% для передней и 1% для задней части магнита.

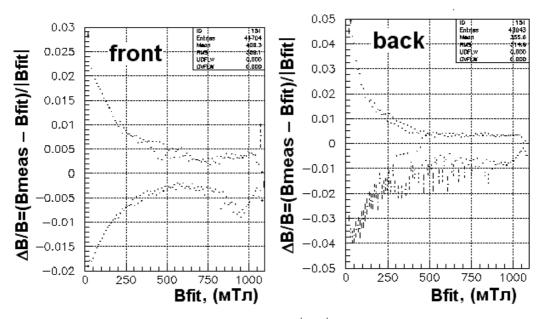


Рис. 8. Относительная разница $\Delta B/B = (B_{\text{meas}} - B_{\text{fit}})/|B_{\text{fit}}|$ для измерений в передней (слева) и задней частях магнита (справа).

Аналогичные распределения для компоненты B_z показывают, что $<\!\Delta B_z/B_z>=0.01$, $\sigma=0.26$ для передней и $<\!\Delta B_z/B_z>=0.07$, $\sigma=0.26$ для задней части магнита. Для компоненты B_x имеем $<\!\Delta B_x/B_x>=-0.04$, $\sigma=0.36$ для передней и $<\!\Delta B_x/B_x>=-0.07$, $\sigma=0.34$ для задней части магнита. Для значений $B_z>100$ мТл средняя ошибка $<\!\Delta B_z/B_z>=-5\%$. Для самой слабой компоненты B_x ошибки $\Delta B_x/B_x$ могут достигать $\sim\!20\%$.

Переход в систему координат центра магнита

Карта магнитного поля, используемая для геометрической реконструкции событий в установке СВД, представляет собой массивы значений трех компонент индукции B_x , B_y и B_z в системе координат, привязанной к геометрическому центру магнита. Измерения магнитного поля получены в системе координат измерительной установки (X_0 , Y_0 , Z_0). Задача — перейти в систему координат магнита (X_0 , Y_0 , Z_0 — центр внутреннего объема ярма, представляющего собой параллелепипед). Для этого использовались геометрические измерения ярма магнита и размеры механической конструкции измерительной установки и ее положения относительно ярма.

Карты силовых линии поля на проекциях (в продольной и поперечной плоскостях) имеют характерные особенности (симметрии). Эти симметрии позволяют восстановить оси магнитного поля в пространстве. Положение осей поля зависит от положения осей ярма магнита и от геометрии его катушек. Для определения центра поля по оси Z строились распределения $B_y(Z)$ вблизи центра магнита (100 < Z < 114 шагов или интервалов измерений, X=18 шагов и Y для ДХ13) для измерений передней и задней частей (см. рис. 9). Индукция максимальна в центре поля (Z'=0). Из анализа рис. 9 следует, что центр поля находится в точке Z=105 шагов для измерений передней половины и Z=110 шагов для измерений задней половины поля магнита.

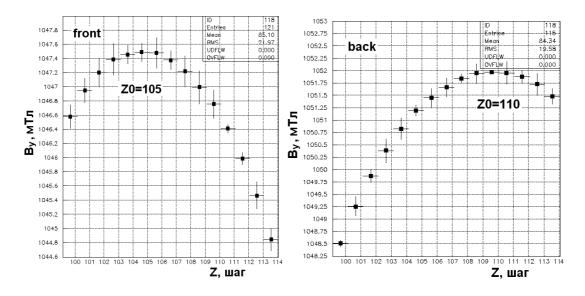


Рис. 9. Зависимость индукции $B_y(Z)$ для измерений в передней (слева) и задней частях магнита (справа). На оси Z указан номер шага измерений.

После перехода в систему Z'=Z-105 шагов для измерений в передней части можно показать, что центр Z'_0 остается центром для всех шагов по X (см. рис. 10 слева). На рис. 10 справа показано, что положение центра также не зависит от величины тока магнита и от процедур сглаживания поля при токе I=4 кА. Чтобы сравнить значения B_y при токах 1 и 4 кА, представлена величина $4.0 \times B_y(1$ кА). Аналогичные рисунки для измерений в задней части магнита показывают, что координата $Z_0=110$ шагов соответствует центру поля (Z'=0).

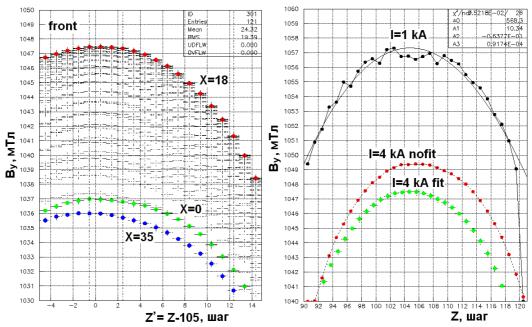


Рис. 10. Зависимость индукции $B_y(Z'=Z-105)$ для разных X (слева) и зависимость индукции $B_y(Z, X=18, Y=d13)$ для I=1 кА и I=4 кА до и после сглаживания (справа).

Далее нужно определить координаты X_0 и Y_0 . Для этого строились проекции индукции $B_y(X)$ и $B_y(Y)$ для различных значений координаты Z. Пример зависимости $B_y(X)$ для Z_0 =80 шагов и всех датчиков ДХ (d1÷ d23) показан на рис. 11 (слева). Для цетрального ДХ (d13) $B_y(X)$ имеет максимум при X_0 =18 шагов.

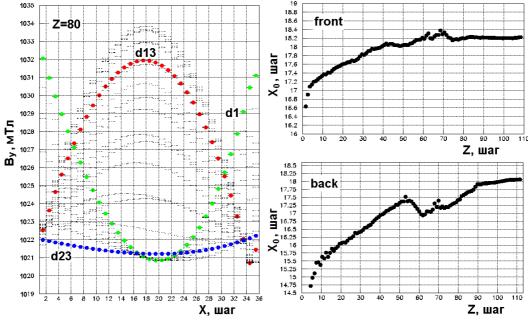


Рис. 11. Зависимость индукции $B_y(X)$ для Z=80 шагов (слева) и зависимость $X_0(Z)$ для передней и задней частей (справа). На оси Z указан номер шага измерений.

Оказалось, что значение X_0 =18 шагов постоянно только в ярме магнита (Z_0 >70) и изменяется с уменьшением координаты Z вне магнита (см. рис. 11 справа). Такое поведение X_0 связано с тем, что направляющие рельсы, проложенные вне магнита для перемещения измерительной каретки с магнитометрами, были повернуты на небольшой угол в горизонтальной плоскости по отношению к рельсам в ярме и, соответственно, оси магнитного поля. Поэтому при переходе в систему координат магнита этот факт учитывался. Для каждого шага по Z значение координаты X_0 было свое.

Анализ проекций $B_y(Y)$ для различных значений координаты Z показал, что за вертикальную координату Y_0 центра поля нужно принять положение датчика d13 при всех значениях Z, с учетом того, что нумерация датчиков имела направление сверху вниз, то есть самым верхним был d1, а нижним датчик d23.

После нахождения координат центра магнита (X_0, Y_0, Z_0) можно объединить данные для измерений передней и задней частей поля магнита и представить их в системе координат (X', Y', Z'). Полученные результаты по компонентам поля для тока магнита 4 кА приведены на рисунках $12 \div 17$.

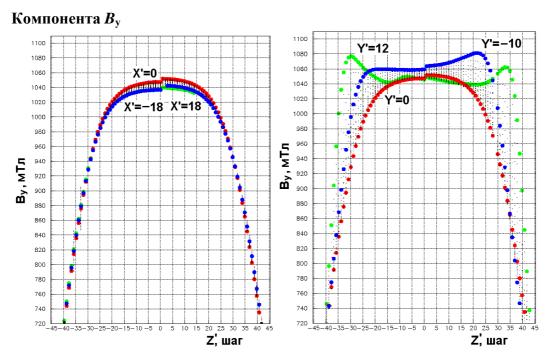


Рис. 12. Зависимость индукции $B_y(Z')$ для Y'=0 и разных шагов по X' (слева) и зависимость $B_y(Z)$ для X'=0 и разных шагов по Y' (справа).

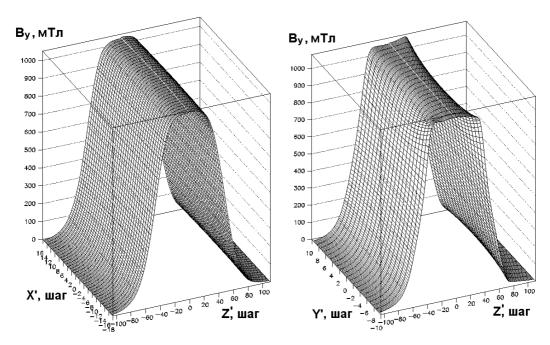


Рис. 13. Плот $B_y(Z', X')$ для Y'=0 (слева) и плот $B_y(Z', Y')$ для X'=0 (справа).

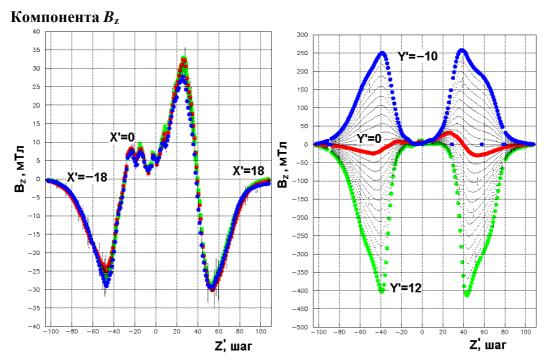


Рис. 14. Зависимость индукции $B_z(Z')$ для Y'=0 и разных шагов по X' (слева) и зависимость $B_z(Z)$ для X'=0 и разных шагов по Y' (справа).

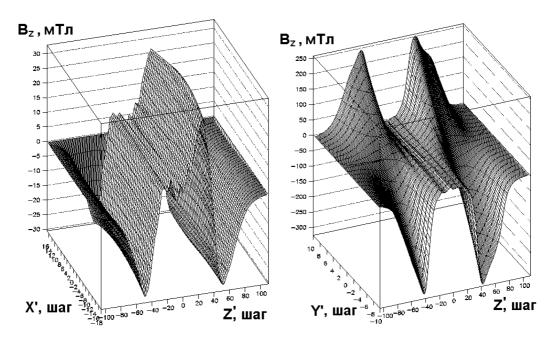


Рис. 15. Плот $B_z(Z', X')$ для Y'=0 (слева) и плот $B_z(Z', Y')$ для X'=0 (справа).

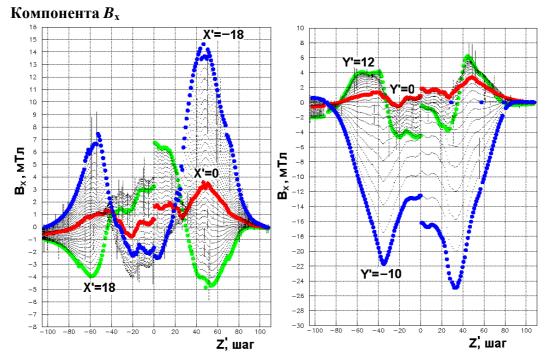


Рис. 16. Зависимость индукции $B_x(Z')$ для Y'=0 и разных шагов по X' (слева) и зависимость $B_x(Z)$ для X'=0 и разных шагов по Y' (справа).

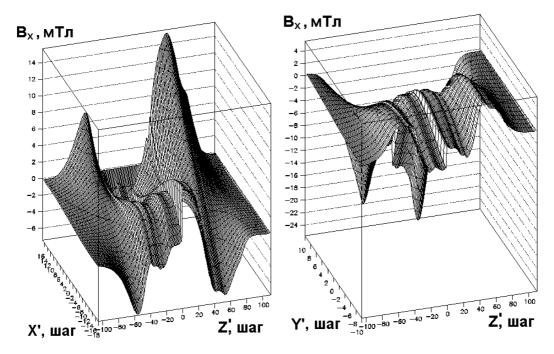


Рис. 17. Плот $B_x(Z', X')$ для Y'=0 (слева) и плот $B_x(Z', Y')$ для X'=0 (справа).

В точке сшивки компонентов поля, измеренных в двух половинах, в центре магнита наблюдается их небольшое различие на уровне $2 \div 4$ мТл для компоненты $B_{\rm x}$, наибольшее на краях магнита. Для компоненты $B_{\rm z}$ эта разница еще меньше. Для компоненты $B_{\rm y}$ результаты этих измерений совпадают с точностью $\sim 0.5\%$, что может быть принято за оценку систематической ошибки, выполненных измерений магнитного поля установки СВД-2.

Сравнение со старой картой

Измеренная карта магнитного поля установки СВД-2 сравнивалась с аналогичной картой, полученной в 1990 году специалистами из ОИЯИ (г. Дубна) [5] и используемой в системе обработки экспериментальных данных. Имеет смысл сравнивать только данные для передней части магнита, так как старая карта была получена в этой области и далее транспонировалась симметрично на заднюю часть. Новая карта не симметрична по оси Z относительно центра из-за установки железного экрана перед ЧС. При совмещенении систем координат старой и новой карт поля получены рисунки $18 \div 20$, на которых демонстрируется сравнение карт для разных компонент поля.

Компонента B_{y} (рис. 18)

- 1) в центральной области магнита (-30 < Z' < 0 шагов или -120 < Z' < 0 см) выполняется соотношение $B_v(\text{new}) > B_v(\text{old})$ в пределах 1%;
- 2) в области больших градиентов поля (-70<Z'<-30 шагов или -280<Z'<-120 см) при B_v >300 мТл наблюдается монотонное превышение B_v (old) > B_v (new) от 1% до 10%;
- 3) в области слабого поля $B_y<100$ мТл (-100<Z'<-70 шагов или -400<Z'<-280 см) имеется значительное отличие новой карты от старой, когда $B_y(\text{old}) > B_y(\text{new})$ и $\Delta B_y/B_y>10\%$.

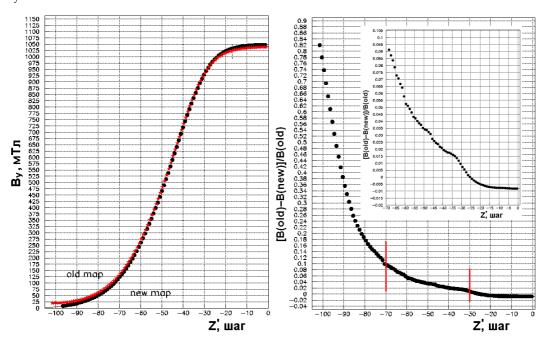


Рис. 18. Зависимость индукции $B_y(Z')$ вдоль продольной оси (X',Y'=0) для старой (красные звезды) и новой (черные кружки) карт (слева) и зависимость относительной разности $\Delta B_y/B_y$ от продольной координаты Z' (справа).

Компонента B_z (рис. 19)

Отличия для компоненты B_z можно характеризовать тем, что при индукции поля B > 100 мТл (в области вне магнита и при $Y' \neq 0$), обе карты совпадают в пределах $\pm 10\%$.

Компонента B_{x} (рис. 20)

Старая карта показывает равенство нулю значений индукции $B_{\rm x}$ во всех областях, что не согласуется с новыми измерениями поля даже качественно. Несмотря на то, что велина $B_{\rm x}$ мала ($\left|B_{\rm x}\right|<20$ мТл), она отличается от 0 даже внутри ярма, особенно вдали от оси поля.

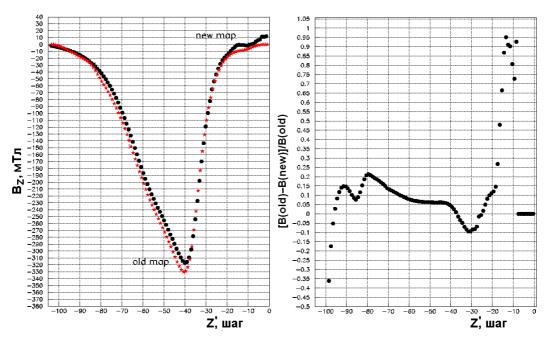


Рис. 19. Зависимость индукции $B_z(Z')$ вдоль продольной оси (X'=0, Y'=-10 шагов) для старой (красные звезды) и новой (черные кружки) карт (слева) и зависимость относительной разности $\Delta B_v/B_v$ от продольной координаты Z' (справа).

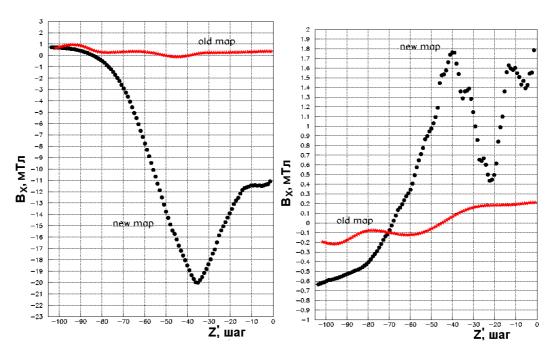


Рис. 20. Зависимость индукции $B_x(Z')$ вдоль продольной оси (X'=0, Y'=10 шагов) (слева) и (X'=0, Y'=0) (справа) для старой (красные звезды) и новой (черные кружки) карт.

Заключение

Новые измерения магнитного поля установки СВД были вызваны появлением металлоконструкций в составе установки, которых не было при измерении карты поля в 1990 году. Проблемы с геометрической реконструкцией событий, проявившиеся при обработке экспериментальных данных, также частично обусловлены неполным соответствием старой карты реальной геометрии установки СВД. Измерения магнитного поля были выполнены системой трехкомпонентных магнитометров в автоматизированном режиме под управлением компьютера. Управление подвижной кареткой и считывание показаний датчиков Холла осуществлялось с помощью программной платформы LabVIEW. Результаты измерений записывались в текстовые файлы, которые содержали служебную информацию (шаг измерения вдоль пучка и по горизонтали, ток магнита, показания датчиков температуры и т.д.) и усредненные данные по 100 измерениям индукции в одной точке трех компонент поля в мТл с их дисперсией. Рабочая область измерений была разделена на две половины от центра магнита, каждая из которых составила (140. \times 88. \times 460.) см³. В системе координат, когда продольная ось (Z) совпадает с направлением пролета пучковых частиц, измерялись три компоненты индукции (B_x, B_y, B_z) магнитного поля с шагом 4 см по каждой координате (всего 191935 пространственных точек) и при разных значениях тока в катушках (I = 1, 2, 3, 4 кA). Результаты анализа полученных данных показывают, что:

- ошибки измерения основной компоненты B_y в области ярма магнита ($B_y > 500$ мТл) не превышают 1%. Вне магнита при $B_y < 100$ мТл они могут достигать $\sim 10\%$;
 - средняя ошибка измерений компонент поля B_x и B_y составила 5%;
- как и ожидалось, новая карта не симметрична относительно центра магнита в продольном направлении (в отличие от старой карты) из-за дополнительных металлоконструкций;
- в передней части поля ярма магнита различия новой и старой карт для B_y не превышают 1%, вне магнита наблюдается монотонное превышение B_y (старая) > B_y (новая) от 1% до 10%;

- значения B_z для новой и старой карт совпадают в пределах 10%;
- старая карта дает значения B_x близкие к нулю, тогда как новая карта показывает, что в некоторых областях поля компонента $B_x \sim 20$ мТл и не равна нулю даже внутри ярма магнита.

Список литературы

- [1]. В. В. Авдейчиков и др. ПТЭ, 2013, № 1, с. 14–37.
- [2]. Е. Н. Ардашев и др. Препринт ИФВЭ 96-98, Протвино, 1996. http://web.ihep.su/library/pubs/prep1996/ps/96-98.pdf
- [3] В. В. Авдейчиков и др. Препринт №Р1-2004-190, ОИЯИ (Дубна 2005).
- [4] www.ihep.ru (Комплекс У-70 —Установки—Действующие установки—СВД).
- [5] И.В. Богуславский и др. Препринт №Р1-90-247, ОИЯИ (Дубна 1990).
- [6] OOO «Вега Флекс», www.sensorspb.ru
- [7] Д.А. Васильев и др. Препринт ИФВЭ 2011-2, Протвино, 2011.

Рукопись поступила 27 марта 2018 г.

В.Н. Алферов и др. Измерения магнитного поля установки СВД.

Препринт отпечатан с оригинала-макета, подготовленного авторами.

Подписано к печати 30.03.2018. Формат $60 \times 84/16$. Цифровая печать. Печ.л. 1,5. Уч.— изд.л. 2,2. Тираж 80. Заказ 4. Индекс 3649.

НИЦ «Курчатовский институт» – ИФВЭ

142281, Московская область, г. Протвино, пл. Науки, 1

www.ihep.ru; библиотека http://web.ihep.su/library/pubs/all-w.htm

 Π Р Е Π Р И Н Т 2018-2, НИЦ «Курчатовский институт» – ИФВЭ, 2018