

### национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ» Институт физики высоких энергий имени А.А. Логунова Национального исследовательского центра «Курчатовский институт»

Препринт 2020-03

В.С. Буртовой, С.А. Акименко, А.В. Артамонов, А.М. Блик, В.В. Бреховских,
А.М. Горин, С.В. Донсков, А.В. Инякин, В.Н. Колосов, В.Ф. Куршецов, В.А. Лишин,
М.В. Медынский, Ю.В. Михайлов, В.Ф. Образцов, В.А. Поляков, В.И. Романовский,
В.И. Рыкалин, А.С. Садовский, В.Д. Самойленко, О.В. Стенякин, В.А. Уваров,
А.П. Филин, Г.В. Хаустов, С.А. Холоденко, О.Г. Чикилёв, О.П. Ющенко
(НИЦ «Курчатовский Институт»-ИФВЭ, Протвино),
Е.Н. Гущин, В.А. Дук<sup>1</sup>, В.И. Кравцов, Ю.Г. Куденко<sup>23</sup>, А.Ю. Поляруш,
С.Н. Филиппов, А.А. Худяков
(ИЯИ РАН, Москва),
В.Н. Бычков, Б.Ж. Залиханов, Г.Д. Кекелидзе, В.М. Лысан
(ОИЯИ, Дубна)

# Когерентное образование $K^+\pi^0$ -системы на ядрах меди в пучке заряженных каонов на установке ОКА

Протвино 2020

<sup>&</sup>lt;sup>1</sup>Также Sezione INFN of Perugia, Via A. Pascoli, 06123 Perugia, Italy

<sup>&</sup>lt;sup>2</sup>Также НИЯУ МИФИ, Москва

<sup>&</sup>lt;sup>3</sup>Также МФТИ, Москва

### Аннотация

Буртовой В.С. и др. Когерентное образование  $K^+\pi^0$ -системы на ядрах меди в пучке заряженных каонов на установке ОКА: Препринт НИЦ «Курчатовский институт» – ИФВЭ 2020-03. – Протвино, 2020. – 19 с., 12 рис.

На статистике ~  $1.7 \cdot 10^8$  взаимодействий положительно заряженных каонов с ядрами меди проведено выделение когерентных событий образования  $K^+\pi^0$ -системы. Определено число кулоновских и сильных взаимодействий и соответствующих им сечений в области  $K^*(892)$ -мезона. Измерена парциальная ширина распада  $K^*(892) \rightarrow K^+\gamma$ . При изучении спектра масс системы  $K^+\pi^0$  обнаружен эффект, который можно интерпретировать, как интерференцию амплитуд киральной аномалии и  $K^*(892)$ -мезона в *s*-канале. Отсюда получена оценка на отношение наблюдаемой амплитуды киральной аномалии к теоретическому значению:  $A_{exp}/A_{th} = 0.9 \pm 0.24$  (стат.)  $\pm 0.3$  (сист.).

### Abstract

Burtovoy V.S. et al. The coherent production of  $(K^+\pi^0)$ -system by  $K^+$  beam on copper nuclei in OKA detector: NRC «Kurchatov Institute» – IHEP Preprint 2020-03. – Protvino, 2020. – p. 19, figs. 12.

On the statistics of ~  $1.7 \cdot 10^8$  interactions of positively charged kaons with copper nuclei coherent events of  $K^+\pi^0$  production are selected. The number of coulomb, strong and interference events are determined and their cross sections in the region of  $K^*(892)$ -meson are measured. The phase difference between Coulomb and strong amplitudes and the partial width of the  $K^*(892) \rightarrow K^+\gamma$  decay is measured. When studying the mass spectrum of the  $K^+\pi^0$  system, an effect is observed, which can be interpreted as the interference of the amplitudes of the chiral anomaly and  $K^*(892)$ -meson in the *s*-channel. From this, an estimate is obtained for the ratio of the observed amplitude of the chiral anomaly to it's theoretical value:  $A_{exp}/A_{th} = 0.9 \pm 0.24$  (stat.)  $\pm 0.3$  (syst.).

### 1. Введение

Взаимодействие заряженного каона с ядром, при котором внутреннее состояние ядра не изменяется, называется когерентным. Такие взаимодействия характеризуются малыми значениями квадрата переданного 4-импульса ядру t. При когерентном образовании  $K^*(892)$ -мезона, фундаментальным условием когерентности является соотношение [1]

$$P_L R_N \le 1,\tag{1}$$

где  $P_L \simeq \frac{m_R^2 - m_K^2}{2P_b}$  – импульс ядра в лабораторной системе отсчёта вдоль направления пучкового каона, который оно приобретает после взаимодействия,  $m_R$  – масса  $K^*(892)$ -мезона,  $m_K$  – масса каона,  $P_b$  – импульс пучкового каона,  $R_N$  - радиус ядра. Из этих выражений следует, что при больших  $m_R$  и малых  $P_b$  условие (1) может нарушаться и резонанс с массой  $m_R$  будет образовываться только некогерентно. В этом эксперименте  $P_b = 17.7 \Gamma$ эВ, а радиус ядра меди  $R_{Cu} \simeq 4.2$  фм. Тогда  $P_L R_{Cu} \simeq 0.33$ , что удовлетворяет условию (1).

При эффективных массах  $(K^+\pi^0)$ -пары, близких к массе  $K^*(892)$ -мезона, основной вклад в амплитуду когерентного взаимодействия дают диаграммы с промежуточным  $K^*(892)$ -мезоном в *s*-канале [2, 3, 4], которые показаны на рис. 1а) и 1б). Диаграмме кулоновского взаимодействия каона с ядром (рис. 1а) соответствует амплитуда [3]

$$M_{\gamma} = 4eZ \frac{g_{K\gamma}g_{K\pi}}{q^2} \frac{\varepsilon^{\mu\nu\alpha\beta}p_{1\mu}q_{\nu}b_{\alpha}f_{\beta}}{w - m_*^2 + i\,m_*\Gamma_*}F_C(q^2), \qquad (2)$$

где e – электрический заряд протона, Z – число протонов в ядре,  $g_{K\gamma} \simeq 0.25 \, \Gamma$ эВ<sup>-1</sup> – постоянная распада  $K^*(892) \to K^+\gamma$ ,  $g_{K\pi} \simeq 3.23$  – постоянная распада

 $K^*(892) \to K^+\pi^0[3, 4], p_1$ – 4-импульс ядра до взаимодействия,  $q_\nu, b_\alpha, f_\beta$ – 4-импульсы виртуального фотона, пучкового и образовавшегося каонов, соответственно, w– квадрат эффективной массы ( $K^+\pi^0$ )-пары,  $m_*, \Gamma_*$ – масса и ширина  $K^*(892)$ -мезона,  $F_C(q^2)$ – электромагнитный формфактор ядра.



Рис. 1. Диаграммы когерентного образования пар  $(K^+\pi^0)$ -мезонов: а) – в кулоновском поле ядра через  $K^*(892)$ -мезон в *s*-канале; б) – в сильном поле ядра  $\omega$ ,  $\eta$  и  $\eta'$ -мезонов через  $K^*(892)$ -мезон в *s*-канале.

Диаграмма для сильного взаимодействия каона с ядром (рис. 16) может быть с промежуточными  $\omega, \eta, \eta'$  и другими мезонами. Все они имеют нулевой изотопический спин. Амплитуды взаимодействия, включающие промежуточный  $\pi^0$  или  $\rho^0$ -мезоны, с ядром, у которого количество протонов и нейтронов одинаково, зануляются. Поэтому, диаграммы с промежуточными  $\rho^0, \pi^0$  и с аналогичными им мезонами далее не рассматриваем. Более того, как будет видно из экспериментальных угловых распределений, доминирует диаграмма с промежуточным  $\omega$ -мезоном. Поэтому в дальнейшем мы ограничимся рассмотрением одной сильной диаграммы.

Не рассматриваем и траектории Редже, так как при импульсе пучкового каона 17.7 ГэВ и массе ядра меди  $m_{Cu} \simeq 59.1$  ГэВ значение инварианта  $s = (P_b + P_{Cu})^2 \simeq 5588$  ГэВ<sup>2</sup>, а квадрата массы ядра меди  $m_{Cu}^2 \simeq 3481$  ГэВ<sup>2</sup>. Видно, что условие применения траекторий Редже  $s \gg m_{Cu}^2$  в этом эксперименте не выполняется.

Амплитуда сильного взаимодействия каона с ядром, соответствующая диаграмме с промежуточным  $\omega$ -мезоном может быть представлена в виде:

$$M_{\omega} = \frac{g_{N\omega}g_{K\omega}g_{K\pi}A_{Cu}^{2/3}}{q^2 - m_{\omega}^2 + i\,m_{\omega}\Gamma_{\omega}}\frac{\varepsilon^{\mu\nu\alpha\beta}p_{1\mu}q_{\nu}b_{\alpha}f_{\beta}}{w - m_*^2 + i\,m_*\Gamma_*}F_S(q^2),\tag{3}$$

где  $g_{N\omega}$  – постоянная взаимодействия  $\omega$ -мезона с нуклоном,  $g_{K\omega}$  – постоянная вершины  $K^+ \to \omega K^*(892)$ ,  $m_{\omega}, \Gamma_{\omega}$  – масса и ширина  $\omega$ -мезона,  $F_S(q^2)$  – формфактор ядра по сильному взаимодействию.

Обе амплитуды (2-3) содержат знаменатель пропагатора  $K^*(892)$ -мезона  $(w - m_*^2 + i \, m_* \Gamma_*)$ . Он будет определять поведение сечения в зависимости от w вблизи

этого резонанса. Величина  $q^2$  фотонного пропагатора в знаменателе амплитуды  $M_{\gamma}$ объясняет узкий когерентный кулоновский пик в сечении и вместе со свёрткой импульсов с тензором Леви-Чивиты этот пик представляется в виде  $(t - t_{min})/t^2$  [3], где  $t = -q^2$ . Такого поведения не наблюдается в амплитуде  $M_{\omega}$ , поскольку знаменатель пропагатора  $(q^2 - m_{\omega}^2 + i m_{\omega} \Gamma_{\omega})$  содержит квадрат массы  $m_{\omega}^2$ . Для когерентных событий в этом эксперименте  $|q^2| \leq 0.025 \, \Gamma \Rightarrow B^2$ , что пренебрежимо мало по сравнению с  $m_{\omega}^2 \simeq 0.61 \, \Gamma \Rightarrow B^2$ . Поэтому  $q^2$  – зависимость в амплитуде  $M_{\omega}$  определятся в основном формфактором  $F_S(q^2)$ . Кроме того, знаменатель пропагатора  $\omega$ -мезона комлексный, что отличает его от вещественного знаменателя  $(q^2)$  пропагатора в кулоновской амплитуде  $M_{\gamma}$ .

При вычислении сечения когерентных событий квадрат модуля от суммы кулоновской амплитуды  $M_C = M_{\gamma}$  и амплитуды сильного взаимодействия  $M_S = M_{\omega}$  можно представить в виде:

$$|M_C + M_S|^2 = ||M_C|e^{i\varphi_C} + |M_S|e^{i\varphi_S}|^2 = |M_C|^2 + |M_S|^2 + 2|M_C||M_S|\cos(\varphi_C - \varphi_S), \quad (4)$$

где  $\varphi_C, \varphi_S$  – фазы кулоновской амплитуды и амплитуды сильного взаимодействия, соответственно. Из этого выражения следует, что сечение когерентного взаимодействия зависит от разности фаз и, поскольку знаменатель пропагатора  $K^*(892)$ -мезона  $(w - m_*^2 + i \, m_* \Gamma_*)$  есть во всех амплитудах, то соответствующая ему комплексная фаза в выражении (4) вычитается. Разность фаз от других промежуточных мезонов будут порядка отношения их ширины к массе и составляют малые величины:  $\Gamma_{\omega}/m_{\omega} \simeq 1.1 \cdot 10^{-2}, \, \Gamma_{\eta}/m_{\eta} \simeq 2.4 \cdot 10^{-6}, \, \Gamma_{\eta'}/m_{\eta'} \simeq 2.1 \cdot 10^{-4}.$ 

Формфакторы  $F_C(q^2)$  и  $F_S(q^2)$  вычислялись из выражений [10]:

$$F_C(q^2) = -4\pi \frac{q^2}{P_t} \int_0^\infty b^2 db \, J_1(P_t b) \, e^{i\chi_C(b) - A_{Cu}\sigma'_K T(b)/2} \int_0^\infty \frac{\cos(\Delta z)dz}{(b^2 + z^2)^{3/2}} \int_0^\tau r^2 \rho_A(r)dr, \quad (5)$$

$$F_S(q^2) = \frac{2\pi}{aP_t} \int_0^\infty b^2 db \, J_1(P_t b) \, e^{i\chi_C(b) - A_{Cu}\sigma'_K T(b)/2} \int_0^\infty \frac{\rho_o \cos(\Delta z) dz}{\sqrt{b^2 + z^2} \left(1 + \cosh\frac{\sqrt{b^2 + z^2} - R}{a}\right)}, \quad (6)$$

где  $q^2 \simeq -P_t^2 - \Delta^2$ ,  $P_t$  – модуль проекции импульса ядра после взаимодействия на плоскость U, перпендикулярную импульсу пучкового каона,

 $\Delta = \sqrt{t_{min}} \simeq (m_*^2 - m_K^2)/(2P_b) \simeq 15.6$  МэВ – проекция импульса ядра в конечном состоянии на направление импульса пучкового каона (на ось z),  $\tau = \sqrt{b^2 + z^2}$ , b – модуль прицельного параметра в плоскости U,  $J_1(x)$  – функция Бесселя,  $\rho_A(r)$  – ядерная плотность Woods-Saxon [11]:

$$\rho_A(r) = \rho_o \frac{1 + j \frac{r^2}{R^2}}{1 + e^{\frac{r-R}{a}}},\tag{7}$$

где для ядра меди параметры j = 0, R = 4.20641 фм, a = 0.5977 фм. Параметр  $\rho_o$  определяется из нормировки  $4\pi \int_0^\infty r^2 \rho_A(r) dr = 1$  и его значение составляет [12] :

 $\rho_o = \left(\frac{4}{3}\pi R^3 \left(1 + \frac{\pi^2 a^2}{R^2}\right)\right)^{-1} \simeq 2.67 \cdot 10^{-3} \,\mathrm{фm^{-3}}.$ Ядерная "толщина"  $T(b) = \int_{-\infty}^{\infty} \rho_A(\tau) \, dz.$  $\chi_C(b) = -\frac{Z\alpha}{v_b} \int_{-\infty}^{\infty} \phi(\sqrt{b^2 + z^2}) \, dz$  – фаза от кулоновского потенциала ядра [13, 15]:

$$\chi_C(b) = 2\frac{Z\alpha}{v_b} \left( \ln(kb) + 4\pi \int_b^\infty \left( \ln\left(\frac{r}{b}(1+\lambda)\right) - \lambda\right) \rho_A(r) r^2 dr \right),\tag{8}$$

где  $Z\alpha\phi(r)$  – электрический потенциал ядра,  $\alpha = \frac{e^2}{4\pi}$  – постоянная тонкой структуры,  $v_b \simeq c$  – скорость пучкового каона,  $\lambda = \sqrt{1 - b^2/r^2}$ , k – произвольный параметр, значение которого можно не определять, так как в формулах (5) и (6) он войдёт как постоянная фаза  $e^{2iZ\alpha ln(k)/v_b}$ , что не скажется на результате при вычислении модуля амплитуды.

Сечение

$$\sigma'_K = \sigma(1 - i\beta_K) = \frac{4\pi}{iP_b} f_K(0), \qquad (9)$$

где  $\beta_K = \frac{Ref_K(0)}{Imf_K(0)} = -0.26$  ([10][14]),  $\sigma = 17$  мбн – полное сечение взаимодействия  $K^+$ -мезонов с нуклоном,  $f_K(0)$  – амплитуда упругого каон-нуклонного рассеяния на нулевой угол. В формулах (5) и (6) предполагается, что сечения взаимодействия для пучковых каонов и образовавшихся  $K^*(892)$ -мезонов с нуклонами ядра одинаковы [15]. В основном,  $K^*(892)$ -мезон будет покидать ядро меди до своего распада, так как этот мезон будет проходить расстояние около 77 фм.

Из приведённых выше формул видно, что формфакторы  $F_C(q^2)$  и  $F_S(q^2)$  тоже являются комплексными величинами и их фазы зависят от  $P_t^2$ . Представим разность фаз в (4) в виде суммы разности фаз  $\Delta \psi(P_t^2)$  от формфакторов и разности фаз  $\Delta \varphi$ от остальных членов в амплитудах  $M_C$  и  $M_S$ :

$$\varphi_C - \varphi_S = \Delta \psi(P_t^2) + \Delta \varphi. \tag{10}$$

### 2. Выделение когерентных событий

В установке OKA [5] пучок положительно заряженных каонов взаимодействовал с медной мишенью диаметром 10 см и толщиной 2 мм. Мишень располагалась внутри распадного объема, оснащенного охранной системой (GS) (рис. 2).

Исследование проводилось на статистике ~  $8 \cdot 10^9$  каонов, пропущенных через мишень в 2011-м и 2012-м годах. Изучались события с одним заряженным треком и двумя  $\gamma$ -квантами, зарегистрированными в детекторе GAMS-2000. В каждом событии требовалось отсуствие энерговыделения в охранной системе распадного объема и в боковом гамма детекторе (BGD). Вторичный каон выделялся по отсутствию сигнала в четырехканальном пороговом черенковском счетчике (C3), заполненном воздухом (порог по импульсу  $\pi^+$ -мезона составляет 6 ГэВ).

Основным фоном для когерентных событий с  $(K^+\pi^0)$ -парой в конечном состоянии является распад  $K^+ \to \pi^+\pi^0$ , в котором  $\pi^+$ -мезон был ошибочно идентифицирован в черенковском счетчике (C3) как вторичный каон. Целью последующих отборов



Рис. 2. Схематичное изображение детекторов в установке ОКА.

является максимально уменьшить фон при минимальном подавлении количества когерентных взаимодействий.

Выделялись события с импульсом пучкового каона в диапазоне  $16.8 < P_b < 18.8 (\Gamma \Rightarrow B)$ , с углом между направлениями импульсов пучкового и вторичного каонов  $\theta_{bs} > 2$  мрад, с энерговыделением в боковом гамма детекторе  $E_{\gamma} < 100$  МэВ, с энерговыделением в охранной системе  $E_{GS} < 40$  МэВ. Для того, чтобы вторичный пион в черенковском счётчике (C3) хорошо отделялся от вторичного каона, импульс последнего удовлетворял отбору  $P_{sK} > 7$  ГэВ. Неупругость, которая определялась как  $dE = E_K + E_{\pi} - E_b$ , где  $E_b$ ,  $E_K$ ,  $E_{\pi}$  – энергии пучкового каона, вторичного каона и пиона, соответственно, требовалась в пределах -0.6 < dE < 1 (ГэВ). Распределения по dE для экспериментальных и намоделированных кулоновских событий показаны на рис. 5в). Реконструированная вершина пересечения пучкового и вторичного треков рассматривалась в пределах  $-10.9 < Z_{vtx} < -10.3$  (м). Координата мишени z = -10.647 м.

Экспериментальное распределение по эффективной массе двух  $\gamma$ -квантов  $M_{\gamma\gamma}$  показано на рис. 3. Для выделения  $\pi^0$ -мезона использовалось ограничение  $110 < M_{\gamma\gamma} < 160 \,(\text{M} \Rightarrow \text{B})$  и в дальнейшем двум  $\gamma$ -квантам приписывалось табличное значение массы  $\pi^0$ -мезона ( $M_{\pi^0} = 134.9764 \,\text{M} \Rightarrow \text{B}$ ) с последующим перевычислением энергии каждого  $\gamma$ -кванта.

Поскольку в этом эксперименте измеряются импульс и углы для пучкового каона, то система покоя каона, распавшегося на  $\pi^+\pi^0$ -пару, определяется без использования импульсов и углов вторичных частиц. В этом случае угол  $\theta_{\pi^+\pi^0}$  между направлениями импульсов  $\pi^+$ -мезона и  $\pi^0$ -мезона в такой системе для распада будет близок к числу  $\pi$  и его измеренное значение можно использовать для подавления фона. Чтобы уменьшить количество таких распадов в выборке когерентных взаимодействий бы-



Рис. 3. Распределение по эффективной массе двух  $\gamma$ -квантов.

ло введено ограничение  $\theta_{\pi^+\pi^0} < 3$  радиан. В системе покоя пучкового каона модуль импульса каждого пиона составляет 205 МэВ. Двумерное распределение модулей импульсов  $\pi^0$ -мезона и вторичного трека с массой  $\pi^+$ -мезона, которое было получено с приведёнными выше отборами, показано на рис. 4а). Здесь исключены события из эллипса  $\left(\frac{P_{\pi^+}-203.5}{16}\right)^2 + \left(\frac{P_{\pi^0}-205}{12}\right)^2 = 1$ , где импульс  $P_{\pi^+}$  вычислен из измерений вторичного трека, а импульс  $P_{\pi^0} -$ из измерений  $\gamma$ -квантов. В этом распределении хорошо видно превышение числа событий над средним уровнем при  $P_{\pi^+} \sim 205$  МэВ, при  $P_{\pi^0} \sim 205$  МэВ и на полосе с полярным углом  $\sim 120$  градусов с центром в эллипсе. Для удаления этих полос не рассматривались события со значениями  $P_{\pi^+} < 150$  МэВ и при  $150 < P_{\pi^0} < 220$  (МэВ). Кроме этого, были исключены события, для которых  $P_{\pi^0} > 150$  МэВ и  $150 < P_{\pi^+} < 212$  (МэВ).

Такого превышения не наблюдается в распределении намоделированных когерентных кулоновских событий, которое показано на рис. 4b. Видно, что эти события распределены преимущественно по диагонали. Это объясняет максимум вблизи нуля в распределении намоделированных событий по разности модулей импульсов  $P_{\pi^+}$  и  $P_{\pi^0}$  в системе покоя каона, которое показано на рис. 5a). Из этого распределения для дальнейших вычислений получен отбор  $|P_{\pi^+} - P_{\pi^0}| < 100 \text{ M}$ эВ. To, что вектора импульсов  $\vec{P}_{\pi^+}$  и  $\vec{P}_{\pi^0}$  (в системе покоя каона) не удовлетворяют условию  $\vec{P}_{\pi^+} = -\vec{P}_{\pi^0}$  позволяет ввести третий вектор  $\vec{P}_3 = -\vec{P}_{\pi^+} - \vec{P}_{\pi^0}$ . Распределение угла  $\theta(P_{\pi^+}P_3)$  между векторами  $\vec{P}_{\pi^+}$  и  $\vec{P}_3$  показано на рис. 5б). Это распределение имеет пик при  $\theta(P_{\pi^+}P_3) \sim 1.7$  радиан, поэтому далее, при выделении когерентных событий



Рис. 4. Двумерные распределения модулей импульсов  $\pi^+$  и  $\pi^0$ -мезонов в системе покоя каона: а) – для экспериментальных событий; б) – для намоделированных когерентных кулоновских событий.

применялся отбор  $1 < \theta(P_{\pi^+}P_3) < 2.5$  (радиан).



Рис. 5. а) – распределение Монте-Карло (МК) намоделированных событий по разности модулей импульсов  $P_{\pi^+}$  и  $P_{\pi^0}$  в системе покоя каона; б) – распределение МК событий по углу  $\theta(P_{\pi^+}P_3)$  между векторами  $\vec{P}_{\pi^+}$  и  $\vec{P}_3$  в системе покоя каона; с) – распределения по неупругости dE для экспериментальных (точки с ошибками синего цвета) и намоделированных (гистограмма чёрного цвета) кулоновских событий.

После этих отборов было получено распределение по эффективной массе  $(K^+\pi^0)$ пары, которое показано на рис. 6а). Далее, для изучения рождения  $K^*(892)$ -мезона рассматривались эффективные массы  $(K^+\pi^0)$ -пары в пределах  $0.8 < M(K^+\pi^0) < 0.984$  (ГэВ).

На рис. 6б) показано распределение событий по углу Треймана-Янга ( $\Phi_{TY}$ ), которое было получено при дополнительном отборе  $P_t^2 < 0.015 \, \Gamma 
m sB^2$ . Оно хорошо описывается ( $\chi^2/ndf \simeq 1.1$ ) функцией  $P_1 \sin^2(\Phi_{TY}) + P_2$ , что ожидается во взаимодействии при обмене векторной частицей ( $\gamma$ -квантом или  $\omega$ -мезоном).



Рис. 6. а) – распределение по эффективной массе  $(K^+\pi^0)$ -пары; б) – распределение событий по углу Треймана-Янга, где чёрная кривая – это результат фитирования функцией  $P_1 sin^2(\Phi_{TY}) + P_2$ .

## **3.** $P_t^2$ -распределение

Полученные отборы применялись при накоплении распределения по  $P_t^2$  для статистики 2-х сеансов, которое показано на рис. 7а). Для правильной интерпретации этого распределения надо знать точность измерения  $P_t$ . Поскольку в распадах пучковых каонов  $P_t = 0$ , то точность измерения этой величины можно оценить из распределения по  $P_t^2$  для распадов (рис. 8д), которое фитировалось функцией вида:

$$\frac{dN_d}{dP_t^2} = c_1 e^{-P_t^2/(2\sigma_1^2)} + c_2 e^{-P_t^2/(2\sigma_2^2)},\tag{11}$$

где  $c_1, c_2, \sigma_1, \sigma_2$  – параметры фита. Полученные значения  $\sigma_1 = 8.6 \pm 0.1 \, (M \Rightarrow B)$ и  $\sigma_2 = 13.9 \pm 0.3 \, (M \Rightarrow B)$  определяют точность измерения  $P_t$  в нашем эксперименте, которая приблизительно в пять раз лучше, чем размер бина в распределении по  $P_t^2$  на рис. 7. Наблюдаемое распределение по  $P_t^2$  заметно шире, чем ожидаемое для чистого кулоновского взаимодействия. Это вызвано наличием когерентного сильного взаимодействия и интерференции.



Рис. 7. а) – распределение по  $P_t^2$  для взаимодействий пучковых каонов с ядром после учета всех отборов; б) – фит этого же распределения по  $P_t^2$  с фиксированным параметром  $P_3 = \Delta \varphi = 0$ . Синяя пунктирная кривая – это вклад кулоновского взаимодействия, зеленая штриховая – когерентного сильного взаимодействия, фиолетовая штрих-пунктирная кривая – интерференционный член, красная сплошная кривая у нижней оси – вклад некогерентного сильного взаимодействия.

При фитировании распределений на рис. 7 рассматривались остаточный фон от распадов пучковых каонов, когерентные и некогерентные взаимодействия. Функция для когерентных взаимодействий может быть получена из выражения (4), если подставить амплитуды (2) и (3) и проинтегрировать по всем переменным, за исключением  $P_t^2$ :

$$f(P_t^2) = P_t^2 \left( \frac{k_1 |F_C|^2}{(P_t^2 + \Delta^2)^2} + k_2 |F_S|^2 + \frac{2\sqrt{k_1 k_2}}{P_t^2 + \Delta^2} |F_C| |F_S| \cos(\Delta \psi(P_t^2) + \Delta \varphi) \right), \quad (12)$$

где  $k_1, k_2$  – постоянные величины,  $F_C, F_S$  – формфакторы ядра, как функции от  $P_t^2$ , задаваемые формулами (5) и (6). По первому слагаемому в выражении (12) программой Geant-3 были намоделированы когерентные кулоновские взаимодействия каонов с образованием ( $K^+\pi^0$ )-пары, по второму – события сильного взаимодействия. После их реконструкции были получены распределения  $Y_C$  и  $Y_S$  по  $P_t^2$  для кулоновского и сильного взаимодействий, соответственно. Они показаны на рис. 8а) и 8б). Каждое распределение было нормированно на единицу. Кроме того, из формул (5)



Рис. 8. Распределения по  $P_t^2$  для намоделированых когерентных событий после реконструкции: а) – для кулоновских событий; б) – для событий сильного взаимодействия; в) – разность фаз  $\Delta \psi$  для намоделированых когерентных событий в зависимости от  $P_t^2$  (в градусах); г) – распределение по  $P_t^2$  для событий без мишени; д) – распределения по  $P_t^2$  для распадов  $K^+ \to \pi^+ \pi^0$ .

и (6) была получена зависимость от  $P_t^2$  для разности фаз от формфакторов  $\Delta \psi(P_t^2)$ , которая показана на рис. 8в). Тогда вклад когерентных событий в распределении по  $P_t^2$  может быть выписан в виде:

$$\frac{dN_{coh}}{dP_t^2} = p_1 Y_C + p_2 Y_S + 2\sqrt{p_1 p_2 Y_C Y_S} \cos(\Delta \psi(P_t^2) + p_3), \tag{13}$$

где  $p_1, p_2, p_3$  – параметры фита, которые при единичной нормировке распределений  $Y_C$  и  $Y_S$  будут определять количество когерентных событий кулоновского и сильного взаимодействия, наблюдаемые в эксперименте.

Распределение по  $P_t^2$  для некогерентных взаимодействий пучковых каонов с нуклонами ядра описывается фукцией вида [14]:

$$\frac{dN_{inc}}{dP_t^2} = p_4 P_t^2 e^{-p_5 P_t^2},\tag{14}$$

где  $p_4, p_5$  – параметры фита. Из экспериментального распределения по  $P_t^2$  (рис. 7а) видно, что оно заметно шире, чем ожидаемое для чистого кулоновского взаимодействия. Это вызвано вкладом когерентного сильного взаимодействия и интерференции между ними.

Фон от распадов пучковых каонов  $K^+ \to \pi^+ \pi^0$  определялся на статистике, набранной в том же сеансе, но без мишени. Для этого было построено распределение по  $P_t^2$  с такими же отборами, как и на рис. 7а). Оно показано на рис. 8г). Это распределение фитировалось спадающей экспонентой  $P_1 e^{-P_2 P_t^2}$ . В диапазоне реконструированных вершин  $-10.9 < Z_{vtx} < -10.3$  (м) были выделены  $n_{nt} = 65459$  распадов на статистике без мишени и  $n_t = 51909$  распадов на статистике с мишенью. Используя эти значения, фон от распадов  $K^+ \to \pi^+ \pi^0$  в распределении на рис. 7а) можно выписать в виде:

$$\frac{dN_{dec}}{dP_t^2} = \frac{n_t}{20n_{nt}} P_1 e^{-P_2 P_t^2},\tag{15}$$

где параметры  $P_1$  и  $P_2$  получены из фита распределения на рис. 8г). Множитель 20 в знаменателе этой формулы появился из-за различия ширины бины в распределениях на рис. 7а) и на рис. 8г).

После фитирования распределения по  $P_t^2$  на рис. 7а) суммой функций  $\frac{dN}{dP_t^2} = \frac{dN_{coh}}{dP_t^2} + \frac{dN_{inc}}{dP_t^2} + \frac{dN_{dec}}{dP_t^2}$  было получено количество когерентных кулоновских событий  $N_C = 285.8^{+60.0}_{-39.7}$ , количество когерентных событий сильного взаимодействия  $N_S = 523.9^{+106.1}_{-49.2}$ , разность фаз  $\Delta \varphi = 0.3^{+25.3}_{-38.5}$  град. По результатам этого фита было определено, что количество событий интерференции между кулоновским и сильным взаимодействием составляет  $N_I = 464.4^{+68.0}_{-39.8}$ , а суммарное количество когерентных взаимодействий  $N_{coh} = 1274.1^{+139.5}_{-74.7}$ . Разность фаз получилась  $\Delta \varphi \simeq 0$  и из теории ожидается  $\Delta \varphi \simeq 0$ , поскольку  $\Gamma_{\omega}/m_{\omega} \simeq 1.1 \cdot 10^{-2}$ . Поэтому был сделан дополнительный фит с нулевым фиксированным третьим параметром, который показан на рис. 76). Полученные количества когерентных кулоновских событий  $N_C = 275.2^{+23.5}_{-22.2}$ , когерентных событий сильного взаимодействия  $N_S = 564.8^{+38.4}_{-36.7}$ , событий интерференции  $N_I = 473.1^{+25.8}_{-24.5}$  и суммарное количество когерентных взаимодействия  $N_{coh} = 1313.1^{+51.9}_{-24.5}$ . Эти величины близки к значениям предыдущего фита, но ошибки у них меньше.

### 4. Вычисление сечений

Определив количество когерентных событий, можно вычислить соответствующее сечение по формуле:

$$\sigma_{coh} = \frac{m_{Cu} N_{coh}}{\rho \, d \, \varepsilon_{coh} \, \varepsilon_{tq} \, N_K},\tag{16}$$

где  $m_{Cu} \simeq 1.05 \cdot 10^{-22}$ г – масса ядра меди,  $\rho = 8.96$ г/см<sup>3</sup> – плотность меди, d = 0.2 см – толщина медной мишени,  $N_{coh}$  – количество зарегистрированных когерентных событий из фита на рис. 7b,  $\varepsilon_{coh}$  – эффективности регистрации когерентных взаимодействий, которые определялись при моделировании распределений  $Y_C$  и  $Y_S$  (рис. 8a) и 86). Полученые значения для кулоновского взаимодействия  $\varepsilon_C = 0.0806 \pm 0.0001$ , для сильного:  $\varepsilon_S = 0.06855 \pm 0.00009$ ,  $\varepsilon_{tg} \simeq 0.936$  – вероятность того, что пучковый каон пройдёт через диск мишени.

Количество попавших на мишень пучковых каонов  $N_K$  определялось по средней плотности распадов  $K^+ \to \pi^+ \pi^0$  в области  $z = (-1248 \div -1168)$  см перед мишенью, где оно имеет плато (рис. 9):

$$N_K = \frac{\gamma c\tau}{\varepsilon_{\pi\pi} B r_{\pi\pi}} \frac{N_{\pi\pi}}{\Delta z},\tag{17}$$

где для пучковых каонов  $\gamma c\tau = 133.819 \text{ м}; N_{\pi\pi} = 45295 \pm 46$  – среднее количество распадов каонов на два пиона в бине  $\Delta z = 4 \text{ см}$ , полученное из фита экспериментального распределения на рис. 9(1);  $Br_{\pi\pi} = 0.2067$  – табличная вероятность распада  $K^+ \to \pi^+ \pi^0; \ \varepsilon_{\pi\pi} = 0.143 \pm 0.0002$  – средняя эффективность регистрации распада каона на два пиона, полученная из фита распределения  $\varepsilon_{\pi\pi}$  по z, которое также показано на рис. 9(2).



Рис. 9. Распределение по *z*-координате вершины распада K<sup>+</sup> → π<sup>+</sup>π<sup>0</sup> – синяя кривая (1) с правой шкалой; эффективность регистрации распада каона на два пиона при различных *z*-координатах вершины распада – чёрная кривая (2) с левой шкалой. Вертикальной линией показано положение мишени.

Полученное таким образом для сеанса 2012г.  $N_{K1} = 5.13 \cdot 10^9$  каонов. Для сеанса 2011г.  $N_{K2} = 2.93 \cdot 10^9$  каонов. В сумме это составляет  $N_K = 8.06 \cdot 10^9$  каонов. Тогда сечения когерентных событий, полученных из фита распределения по  $P_t^2$  (рис. 76) при фиксированной разности фаз  $\Delta \varphi = 0$ , составляют:  $\sigma_C = 26.6^{+2.3}_{-2.1}$  (стат)  $^{+5.5}_{-3.5}$  (сист) мкб – для когерентных кулоновских событий,  $\sigma_S = 64.2^{+4.4}_{-4.2}$  (стат)  $^{+13.6}_{-5.3}$  (сист) мкб – для когерентных событий сильного взаимодействия,  $\sigma_I = 49.4^{+2.7}_{-2.6}$  (стат)  $^{+7.9}_{-5.3}$  (сист) мкб для событий их интерференции и  $\sigma_{coh} = 137.2^{+5.4}_{-5.2}$  (стат)  $^{+18.7}_{-14.1}$  (сист) мкб – сумма всех трёх сечений. Основной вклад в систематических ошибках сечений составляет неопределённость угла  $\Delta \varphi$ : в полюсном приближении он близок к нулю, в теории Редже, применимость которой в нашем случае не очевидна (см. Введение), его значение определяется сигнатурнвым множителем  $\omega$ -траектории и равен  $\pi(1 - \alpha_{\omega})/2 \simeq 50.4$ 

градуса (здесь  $\alpha_{\omega} \simeq 0.44$  - наклон  $\omega$ -траектории). Из наших данных угол определяется с большой ошибкой. Другой источник систематики – отборы, приведенные в разделе 2 и неидеальное соответствие данных и результатов моделирования.

По значению сечения  $\sigma_C$  когерентных кулоновских событий можно определить  $\Gamma_{K^+\gamma}$  – парциальную ширину распада  $K^*(892) \rightarrow K^+\gamma$ . Известно [3, 4], что  $\sigma_C \sim \Gamma_{K^+\gamma}$ . Теоретическое значение сечения, вычисленное при указанных выше отборах и табличной [17] парциальной ширине  $\Gamma^0_{K^+\gamma} = 50.3$  кэВ составляет  $\sigma^0_C = 16.41$  мкб. Тогда измеренное значение парциальной ширины  $\Gamma_{K^+\gamma} = \sigma_C \cdot \Gamma^0_{K^+\gamma} / \sigma^0_C = 81.6^{+7.0}_{-6.6}$  (стат.)  $^{+16.8}_{-10.7}$  (сист.) кэВ. Табличное значение базируется на работе [18], выполненной во FNAL в 1983 г.

### 5. Поиск эффектов киральной аномалии

Киральная аномалия является широко известным следствием КХД. Впервые она была применена при вычислении вклада треугольных диаграмм в амплитуде распада  $\pi^0 \rightarrow \gamma \gamma$  [6]. Далее было показано, что киральная аномалия может быть представлена в эффективном лагранжиане [7] и были получены предсказания для различных процессов.

В работах [8, 9] предполагается, что амплитуда образования  $K^+\pi^0$ -пары при отсуствии аномалии зануляется при w = 0. Чтобы это получить, вычтем из формулы (2) её значение при w = 0. В результате имеем следующее выражение:

$$M_{\gamma} = 4eZ \frac{g_{K\gamma}g_{K\pi}}{q^2} \frac{\varepsilon^{\mu\nu\alpha\beta}p_{1\mu}q_{\nu}b_{\alpha}f_{\beta}}{w - m_*^2 + i\,m_*\Gamma_*} \frac{w\,F_C(q^2)}{m_*^2 - i\,m_*\Gamma_*},\tag{18}$$

где произведение постоянных  $g_{K\gamma}g_{K\pi}$  может быть как положительным, так и отрицательным. Вклад киральной аномалии Весса-Зумино-Виттена [2, 4, 7] при рождении  $K^+\pi^0$ -пары в электрическом поле ядра определяется амплитудой [3]:

$$M_d = -\frac{2\alpha Z}{\pi F_\pi^3 q^2} \varepsilon^{\mu\nu\alpha\beta} p_{1\mu} q_\nu b_\alpha f_\beta, \qquad (19)$$

где  $\alpha=\frac{e^2}{4\pi}\simeq \frac{1}{137}$  — постоянная тонкой структуры,  $F_{\pi}\simeq 93$ МэВ — постоянная распада  $\pi\to l\nu,\,p_2$  — 4-импульс ядра после взаимодействия.

Задачей эксперимента является обнаружение и измерение амплитуды (19). Это можно попытаться сделать несколькими способами. Первый способ основан на том, что в сечении, вычисленном для суммы амплитуд (18) и (19), вклад интерференции приведёт к изменению формы распределения по эффективной массе  $K^+\pi^0$ -пары в окрестности  $K^*(892)$ -мезона. Задача усложняется необходимостью учета когерентной сильной амплитуды (3), которая также интерферирует с аномалией и кулоновской амплитудой (18). Изучение распределения проводилось в расширенном диапазоне по массе  $M(K^+\pi^0)$ . Так как после расширения изучаемого диапазона фон увеличивается, то были предприняты усилия для его дополнительного подавления. Двумерное распределение модулей импульсов  $\pi^+$  и  $\pi^0$ -мезонов в системе покоя каона (рис. 10) показывает на увеличение числа событий при  $P_{\pi^+} \simeq 0.215 \,\Gamma$  в и при  $P_{\pi^0} \simeq 0.145 \,\Gamma$  в. Выделим область превышения следующим прямоугольником (в единицах  $\Gamma$  в):



$$0.19 < P_{\pi^+} < 0.215, \qquad 0.12 < P_{\pi^0} < 0.15.$$
 (20)

Рис. 10. Двумерное распределение модулей импульсов  $\pi^+$  и  $\pi^0$ -мезонов в системе покоя каона без отбора по массе  $M(K^+\pi^0)$ .

Распределение по  $P_t^2$  для событий из прямоугольника (20) показано на рис. 11а). При  $P_t^2 \simeq 0.006 \,\Gamma$ эВ<sup>2</sup> наблюдается пик, что указывает на возможную потерю незарегистрированной частицы в событии. При  $P_t^2 < 0.0005 \,\Gamma$ эВ<sup>2</sup> видно указание на намного меньший когерентный пик. Распределение по  $P_t^2$  для событий вне прямоугольника (20) показано на рис. 11б). При  $P_t^2 < 0.015 \,\Gamma$ эВ<sup>2</sup> наблюдается чёткий когерентный пик.

Далее, на рис. 11в) показаны распределения по эффективной массе  $(K^+\pi^0)$ -пары, которые получены с условиями, что  $P_t^2 < 0.0005 \,\Gamma$ эВ<sup>2</sup>, если событие попадает в прямоугольник (20), или  $P_t^2 < 0.015 \,\Gamma$ эВ<sup>2</sup>, если событие находится вне этого прямоугольника. Гистограммой (на рис. 11в) показано распределение для событий с медной мишенью, точечной с ошибками – для событий без мишени, все точки которого были умножены на коэффициент 1.559, равный отношению полного количества событий с мишенью к количеству событий без мишени.

В распределении на рис. 11г) приведена эффективность регистрации  $(K^+\pi^0)$ пары при различных массах, которая была получена на смоделированных событиях. Разность двух распределений на рис. 11в) была поделена на эффективность регистрации (рис. 11d и показана на рис. 12а. Функция для фита этого распределения кулоновским Брейт-Вигнером (BW) с вычитанием (18), киральной аномалией (19),



Рис. 11. Распределение по P<sub>t</sub><sup>2</sup> для событий: а) – из прямоугольника (20); б) – вне его; в) – распределения по эффективной массе (K<sup>+</sup>π<sup>0</sup>)-пары для событий с медной мишенью (сплошная гистограмма) и для событий без мишени (точечная гистограмма); г) – эффективность регистрации (K<sup>+</sup>π<sup>0</sup>)-пары при различных массах, полученная на смоделированных событиях.

сильным BW (3) и их интерференцией принимает следующий вид [3, 4]:

$$F(x) = p_1 \left( \left( x^2 - m_K^2 - m_\pi^2 \right)^2 - 4m_K^2 m_\pi^2 \right)^{\frac{3}{2}} \times \left( \frac{p_2^2 \alpha}{4\pi^3 x^3 F^6} + \frac{2p_2 \sqrt{\alpha} \left( m^2 - x^2 \right) \left( g + Ig_S \right)}{x\pi^{3/2} F^3 \left( \left( m^2 - x^2 \right)^2 + m^2 \Gamma^2 \right) m^2} + \frac{4x (g^2 + 2Igg_S + g_S^2)}{\left( \left( m^2 - x^2 \right)^2 + m^2 \Gamma^2 \right) m^4} \right),$$
(21)

где x – эффективная масса  $(K^+\pi^0)$ -пары,  $p_1, p_2, p_3 \equiv m$  – параметры фита,  $g = g_{K\gamma}g_{K\pi}, g_S = g \frac{m^2}{x^2} \sqrt{\frac{\sigma_S}{\sigma_C}}$  – эффективная константа когерентного сильного взаимодействия,  $\sigma_S, \sigma_C$  – сечения когерентного сильного и кулоновского процессов, измеренные в Главе 4. Множитель  $m^2/x^2$  учитывает отсутствие вычитания в амплитуде когерентного сильного взаимодействия (3).

I=0.6– это перекрытие нормированных  $P_t^2$ – распределений для кулоновского и сильного взаимодействий:  $I=\sum \sqrt{Y_C(P_t^2)} \; Y_S(P_t^2) \; cos[\Delta \psi(P_t^2)]$  (суммирование по бинам гистограмм на рис. 8(а-в)). Все определения даны в формулах (12) и (13) Главы 3,  $m_K, \; m_\pi$ – массы  $K^+$  и  $m_\pi$ -мезонов, m– фитируемое значение массы  $K^*(892)$ -мезона. В этой формуле ширина  $\Gamma$  является функцией от импульса  $K^+$ -мезона q в системе покоя  $K^*(892)$ -мезона [16]:  $\Gamma = \Gamma_0 \frac{m_{K^*}}{x} \left(\frac{q}{q_0}\right)^3$ , где  $\Gamma_0$ – фитируемое значение массы  $K^*(892)$ -мезона,  $q = \sqrt{(m_\pi^2 - m_K^2 + x^2)^2 / (4x^2) - m_\pi^2}, \; q_0 = q$  при  $x = m_{K^*}$ . Параметр  $p_2$ ,



Рис. 12. а) Разность между распределением по эффективной массе (K<sup>+</sup>π<sup>0</sup>)-пары для событий с медной мишенью и распределением событий без мишени, делённая на эффективность; б) то же распределение, что на рисунке а), но функция фита без киральной аномалии. Чёрная кривая – результат фита. Фиолетовая кривая – её продолжение на диапазон масс (0.7 ÷ 0.83) ГэВ. Синяя пунктирная кривая – вклад киральной аномалии. Зелёная штриховая кривая – вклад диаграммы с промежуточным K<sup>\*</sup>(892)-мезоном. Красная штрих-пунктирная кривая – вклад интерференции.

который часто называют "силой сигнала", учитывает отличие измеренной амплитуды киральной аномалии от амплитуды (19). В результате фитирования получаем  $p_2 = 0.9 \pm 0.24$  (стат.)  $\pm 0.3$  (сист.). Значения для массы и ширины  $K^*(892)$ -мезона составляют:  $m = 896.7 \pm 2.7$  (МэВ) и  $\Gamma_0 = 62.3 \pm 4.3$  (МэВ). Табличные значения для этих величин [17]:  $m_{K^*} = 891.66 \pm 0.25$  (МэВ) и  $\Gamma_{K^*} = 50.3 \pm 0.8$  (МэВ). Качество фита определяется параметром  $\chi^2/NDF = 0.81$ . Фит проведён для эффективных масс  $(K^+\pi^0)$ -пары  $0.83 < M(K^+\pi^0) < 1.1$  (ГэВ). Положительное значение параметра фита  $p_2$  в распределении на рис. 12а позволяет сделать вывод, что произведение постоянных  $g_{K\gamma}g_{K\pi}$  положительно.

Фит экспериментального распределения по эффективной массе  $(K^+\pi^0)$ -пары функцией F(x) без киральной аномалии (т.е. при фиксированном значении параметра  $p_2 = 0$ ) даёт значения для массы и ширины  $K^*(892)$ -мезона :  $m = 887.7 \pm 1.1$  (МэВ) и  $\Gamma = 40.0 \pm 1.9$  (МэВ), а параметр  $\chi_2^2/NDF = 5.9$  (рис. 126) при том, что значения массы и ширины  $K^*(892)$ -мезона существенно отличаются от табличных. То есть, этот фит значительно хуже первого фита, при котором  $p_2 \neq 0$ . Мы интерпретируем этот результат, как указание на наличие киральной аномалии в процессе образования  $(K^+\pi^0)$ -пары.

Если экстраполировать результаты фита в область масс 700 <  $M(K^+\pi^0)$  < 830

(МэВ) (фиолетовая кривая на рис. 12б), то становится очевидным присутствие в этой области фона или неучтенных физических процессов. В статьях [3, 4] рассматриваются ряд дополнительных процессов с промежуточными  $\rho, \omega, \phi$ -мезонами в t и и-каналах, но делается вывод о малости вклада по сравнению с процессами с амплитудами (18) и (19).

Второй способ наблюдения киральной аномалии основан на том, что как показано в [2, 3, 4], сечение образования  $K^+\pi^0$ -пары с промежуточным  $K^*(892)$ -мезоном у порога определяется киральной аномалией, что даёт возможность её экспериментального обнаружения. Такой метод поиска киральной аномалии является предпочтительным с теоретической точки зрения, так как амплитуда (19) справедлива в околопороговой области. В интервале эффективных масс  $(K^+\pi^0)$ -пары  $675 < M(K^+\pi^0) < 720$ (MэB) и при  $P_t^2 < 0.005 \ \Gamma \Rightarrow B^2$  для когерентных кулоновских взаимодействий определялось количество зарегистрированных событий с последующим вычитанием количества событий без мишени и делением на эффективность. Полученное значение позволяет по формуле (16) вычислить сечение, которое составляет  $\sigma_{exp} = 2.8 \pm 1.8$  мкб. Аналогично было получено сечение из намоделированных по формулам [3] когерентных кулоновских событий  $\sigma_{th} = 0.45 \pm 0.05$  мкб. Видно, что экспериментальное значение заметно превышает теоретическое. Причина этого, как уже отмечалось, неизвестна. Корень из отношения экспериментальной величины к модели дает верхний предел на амплитуду киральной аномалии. Отсюда получаем  $A_{exp}/A_{th} < 3.2 \ 90\%$ C.L.

Как это отмечено в работах [2, 3, 4], вопрос о присутствии киральной аномалии в амплитуде процесса  $K^+Z \to K^+\pi^0 Z$  можно прояснить путем сравнения этого процесса с  $K^+Z \to K_s\pi^+Z$ , в котором аномалии нет. Мы надеемся провести это сравнение в обозримом будущем.

### ЗАКЛЮЧЕНИЕ

- В установке «ОКА», на статистике ~  $1.7 \cdot 10^8$  взаимодействий положительно заряженных каонов с ядрами меди проведено выделение когерентных событий с определением числа кулоновских и сильных взаимодействий и соответствующих им сечений в области  $K^*(892)$ -мезона:  $\sigma_C = 26.6^{+2.3}_{-2.1}$  (стат)  $^{+5.5}_{-3.5}$  (сист) мкб для когерентных кулоновских событий,  $\sigma_S = 64.2^{+4.4}_{-4.2}$  (стат)  $^{+13.6}_{-8.5}$  (сист) мкб для когерентных событий сильного взаимодействия,  $\sigma_I = 49.4^{+2.7}_{-2.6}$  (стат)  $^{+7.9}_{-5.3}$  (сист) мкб для когерентных событий их интерференции и  $\sigma_{coh} = 137.2^{+5.4}_{-5.2}$  (стат)  $^{+18.7}_{-14.1}$  (сист) мкб сумма всех трёх сечений.
- Получено значение парциальной ширины распада  $K^*(892) \to K^+ \gamma$  $\Gamma_{K^+\gamma} = 81.6^{+7.0}_{-6.6} (\text{стат}) \stackrel{+16.8}{_{-10.7}} (\text{сист})$  кэВ.
- Проведены поиски эффектов киральной аномалии с помощью оценки сечения образования (K<sup>+</sup>π<sup>0</sup>)-системы в околопороговой области. Получено ограничение на амплитуду киральной аномалии A<sub>exp</sub>/A<sub>th</sub> < 3.2 на 90%-м уровне достоверности.
- При изучении формы спектра масс  $(K^+\pi^0)$ -системы в области  $K^*(892)$ -мезона обнаружен эффект, который можно интерпретировать, как интерференцию амплитуды киральной аномалии и амплитуды с  $K^*(892)$ -мезоном в *s*-канале. Отсюда получена оценка на амплитуду киральной аномалии:  $A_{exp}/A_{th} = 0.9 \pm 0.24$  (стат.)  $\pm 0.3$  (сист.).

Авторы благодарны Высоцкому М.И., Годизову А.А., Жемчугову Е.В., Лиходеду А.К. и Некрасову М.Л. за многочисленные обсуждения. Работа выполнена при поддержке гранта РФФИ No18 -02-00179а.

### Список литературы

- [1] О. Займидорога, ЭЧАЯ, **30**, вып. 1, 68, 1999.
- [2] Р. Рогалёв, ЯФ 64, 72, (2001);
  R. Rogalyov, Phys. Atom. Nucl. 64, 68, 2001;
  Р. Рогалёв, Препринт № 2000-3, ИФВЭ (Протвино, 2000).
- [3] V. Burtovoy, Phys. Atom. Nucl. **76**, 450, 2013.
- [4] M. Vysotsky, E. Zhemchugov, Phys. Rev. **D93**, 094029, 2016.
- [5] A. Sadovsky et al. EPJ C, 78:92, 2018.
- [6] S. Adler, Phys. Rev. 177, 2426, 1969;
  J. Bell, R. Jackiw, Nuovo Cim. 60, 147, 1969.
- J. Wess, B. Zumino, Phys. Lett. B37, 95, 1971;
   E. Witten, Nucl. Phys. B223, 422, 1983.
- [8] M. Terent'ev, Phys. Lett. B38, 419, 1972;
   Sov. Phys. Usp. 17, 20, 1974;
   VΦH 112, 37, 1974.
- [9] B. Holstein, https://arxiv.org/abs/hep-ph/9512338v1
- [10] S. Gevorkyan et al. Phys. Rev. C80, 055201, 2009; https://arxiv.org/abs/0903.4715
- [11] S. Gevorkyan et al. Primex Note 45, 2007, URL:www.jlab.org/primex
- [12] W. Czyz et al. Ann. Phys. 42, 97, 1967.
- [13] G. Faldt Phys. Rev. **B2**, 846, 1970.
- [14] C. Bemporad et al. Nucl. Phys. **B51**, 1, 1973.
- [15] G. Faldt Nucl. Phys. **B43**, 591, 1972.
- [16] G.J. Gounaris, J.J. Sakurai, Phys. Rev. Lett. 21, 244, 1968.
- [17] P.A. Zyla et al., (Particle Data Group), to be published in Prog. Theor.Exp.Phys. 2020, 083C01. http://pdg.lbl.gov/2019/tables/rpp2019-sum-mesons.pdf
- [18] C. Chandlee et al., Phys. Rev. Lett. 51, 168, 1983.

Рукопись поступила 12 марта 2020 г.

Препринт отпечатан с оригинала-макета, подготовленного авторами.

Буртовой В.С. и др. Когерентное образование  $K^+\pi^0$ -системы на ядрах меди в пучке заряженных каонов на установке ОКА.

Оригинал-макет подготовлен с помощью системы ИТЕХ.

Подписано к печати 17.03.2020 Формат 60 × 84/16. Цифровая печать. Печ.л. 1,5. Уч.-изд.л. 2,016. Тираж 80. Заказ 8. Индекс 3649.

НИЦ «Курчатовский институт» – ИФВЭ 142281, Московская область, г. Протвино, пл. Науки, 1

www.ihep.ru; библиотека http://web.ihep.su/library/pubs/all-w.htm

Индекс 3649

ПРЕПРИНТ 2020–03, НИЦ «Курчатовский институт» — ИФВЭ, 2020