

национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ»

Институт физики высоких энергий имени А.А. Логунова Национального исследовательского центра «Курчатовский институт»

Препринт 2022-1

И.В. Богданов, С.С. Козуб, Л.М. Ткаченко, В.И. Шувалов

СОЗДАНИЕ УСТРОЙСТВ НА ОСНОВЕ ВЫСОКО-ТЕМПЕРАТУРНЫХ СВЕРХПРОВОДНИКОВ

Направлено в ВАНТ

Протвино 2022

Аннотация

Богданов И.В., Козуб С.С., Ткаченко Л.М., Шувалов В.И. Создание устройств на основе высокотемпературных сверхпроводников: Препринт НИЦ «Курчатовский институт» – ИФВЭ 2022–1. – Протвино, 2022. – 15 с., 11 рис., 4 табл., библиогр.: 8.

В статье представлены результаты проектирования и испытаний обмоток возбуждения ротора для прототипа сверхпроводящего синхронного электродвигателя мощностью 200 кВт и обмоток возбуждения ротора для прототипа сверхпроводящего синхронного генератора мощностью 1 MBA, а также первого российского дипольного магнита, изготовленного из ленты ВТСП второго поколения.

Abstract

Bogdanov I.V., Kozub C.C., Tkachenko L.M., Shuvalov V.I. Creation of Devices Based on High-Temperature Superconductors: NRC «Kurchatov Institute» – IHEP Preprint 2022–1. – Protvino, 2022. – p. 15, fig. 11, tables 4, refs.: 8.

The article presents the design and test results of excitation coils of the rotor of a prototype 200 kW superconducting synchronous electric motor and excitation coils of the rotor of a prototype 1 MVA superconducting synchronous generator as well as the first Russian dipole magnet made of HTS tape of the second generation.

© НИЦ «Курчатовский институт» – ИФВЭ, 2022

Введение

В настоящее время во всем мире ведутся интенсивные разработки нового и перспективного направления в сверхпроводимости – использование высокотемпературных сверхпроводников второго поколения в энергетической промышленности [1-4]. Электрические машины с ВТСП-2 обмотками по сравнению с машинами, имеющими обмотки из традиционных проводников, позволяют существенно уменьшить габариты и вес электрических машин. Рейстрековые обмотки из ВТСП лент второго поколения представляют большой интерес не только для электрических машин, но и создания ВТСП магнитов для ускорителей заряженных частиц. Такие магниты позволят значительно повысить экономичность и эффективность работы такой высокоэнергоемкой системы, как ускоритель.

В статье представлены конструкция и результаты испытания полномасштабных рейстрековых обмоток возбуждения ротора опытного образца сверхпроводящего синхронного электродвигателя (СПСД) мощностью 200 кВт и полномасштабных рейстрековых обмоток возбуждения ротора опытного образца сверхпроводящего синхронного генератора (СПСГ) мощностью 1 МВА, изготовленных из ВТСП ленты второго поколения в ФГБУ ГНЦ ИФВЭ НИЦ КИ, и проходящих испытания в составе этих электрических машин [5-6]. Также представлен дипольный магнит и основные результаты, полученные при его испытаниях.

Конструкция ВТСП обмоток

Конструкция ВТСП обмоток СПСД и СПСГ представлена на рисунке 1.

Рис. 1. ВТСП обмотка. 1 - шестислойная обмотка, 2 - полюс, 3 - пластина, 4 - каркас медный, 5 - вставка, 6 - выводы обмотки. Размеры без скобок для СПСГ, в скобках – для СПСД.

Обмотки СПСД и СПСГ отличаются размерами и отсутствием медного каркаса в обмотке СПСД. Обмотка состоит из трех двухслойных катушек типа рейстрек, намотанных на полюс из стали 3 ВТСП лентой компании American Superconductor (AMSC) с размерами поперечного сечения в изоляции 4.93×(0.32-0.40) мм². Толщина этой ленты в 1.5 раза выше по сравнению с лентой фирмы "SuperPower", что связано с большим содержанием стабилизирующей меди и должно обеспечить большую устойчивость при переходе обмотки в нормальное состояние. Изоляция ВТСП ленты состоит из полиимидной пленки толщиной 13 мкм, шириной 10 мм с односторонним силиконовым клеящим покрытием толщиной 25 мкм, намотанной с перекрытием 50% (два слоя), итого 76 мкм на сторону.

Разброс толщины ВТСП лент от 0.32 до 0.40 мм обусловил разброс количества витков в обмотках СПСД (188 – 205) и СПСГ (381-393). В обмотке соединение концов двухслойных катушек осуществлялось пайкой по мостовой схеме на длине 60 мм. масса обмотки с полюсом составила 13 кг для СПСД и 51 кг для СПСГ. Обмотки СПСД и СПСГ представлены на рисунке 2.

Рис. 2. ВТСП обмотки СПСД (слева) и СПСГ (справа).

Результаты испытаний ВТСП обмоток

Результаты испытаний обмоток СПСД при температуре 77 К представлены в таблице 1, где N - номер обмотки; n – число витков; I_0 – критический ток ВТСП ленты (A) при 1 мкВ/см, 77 К в собственном поле; I_{C1} – критический ток обмотки в A при 1 мкВ/см; I_{C10} – критический ток обмотки в A при 10 мкВ/см; L – индуктивность обмотки в мГн, R- сопротивление при комнатной температуре, Ом.

Ν	n	<i>I</i> ₀ , A	Ic_1	<i>IC</i> 10	Ic_1/I_0	L	R
1	204	104-114	46.3	51.3	0.425	49	5.19
2	188	114-115	48.8	54.1	0.426	45	4.36
3	205	116	49.7	54.5	0.428	51	5.07
4	204	116-117	50	55.7	0.429	50	5.0
5	204	113-115	52.1	57.6	0.457	48	4.8
6	204	116-118	53	57.6	0.453	49	5.1
7	204	107-113	49.7	54.4	0.452	50	4.9

<u>Таблица 1.</u> Результаты испытаний ВТСП обмоток СПСД при температуре 77 К.

Критический ток обмоток СПСД находился в интервале 46.3 – 53.0 A и 51.3 – 57.6 A при падении напряжения на обмотке 1 мкВ/см и 10 мкВ/см, соответственно. Индуктивность обмоток составила 45 – 52 мГн, сопротивление находилось в интервале 4.6 – 5.19 Ом.

Результаты испытаний обмоток СПСГ при температуре 77 К представлены в таблице 2, где обозначения такие же, как и в таблице 1, *I*_{0mean} – усредненный ток обмотки *I*₀.

N	n	I ₀ , A	Ic ₁	Ic ₁₀	Ic_1/I_{0mean}
1	387	98-105	40.3	44.7	0.41
2	388	103-112	42.4	47.3	0.41
3	387	104-112	43.9	48.9	0.42
4	388	103-106	39.4	44.0	0.38
5	387	103-112	42.3	47.5	0.41
6	381	103-108	41.0	45.7	0.40
7	383	98-109	41.3	45.9	0.42
8	386	103-112	40.1	44.6	0.39
9	393	94-112	41.5	46.4	0.44
10	384	106-114	43.5	48.5	0.41
11	390	94-115	42.3	47.1	0.45

Таблица 2. Результаты испытаний ВТСП обмоток СПСГ при температуре 77 К.

При напряжениях, отвечающих критерию 1 и 10 мкВ/см, медиана значений токов для группы обмоток СПСГ составила 41.7 А и 46.5 А при разбросе значений ±2.3 А и ±2.5 А, соответственно. Индуктивность обмоток СПСГ равна 0.42 – 0.43 Гн, их сопротивление при комнатной температуре находилось в интервале 16.20–17.36 Ом.

На примере обмотки СПСГ проведен расчетный анализ величины ее критического тока. Расчет компонент магнитного поля проведен при токе в обмотке 50 А. Центр координат совпадает с центром полюса. Компоненты поля B_x , B_y вдоль горизонтальной линии, проходящей через середину каждого слоя обмотки СПСГ от его внутреннего до наружного витков представлены на рисунках 3 и 4. Нумерация слоев снизу-вверх.

Рис. 4. Компонента поля B_y в обмотке СПСГ.

Компонента поля B_x , перпендикулярная ВТСП ленте, достигает максимального значения 0.13 Тл в витках первого (нижнего) слоя обмотки СПСГ. Продольная ВТСП ленте компонента B_y достигает максимального значения 0.27 Тл в наружном витке этого нижнего слоя.

На рисунке 5 представлена зависимость критического тока от магнитного поля при температуре 77 К ВТСП ленты "AMSC" [7]. Из этого рисунка следует, что при *B_x*, =

0.13 Тл критический ток составляет 0.3 - 0.7 от значения в нулевом поле. Влияние продольной компоненты слабее, при B_y равном 0.27 Тл критический ток составляет 0.5 - 0.6от значения в нулевом поле. Данное снижение критического тока согласуется с результатами измерений, представленными в таблице 2. Это свидетельствует о том, что снижение критического тока ВТСП ленты обусловлено влиянием магнитного поля, создаваемого обмоткой.

Рис. 5. Критический ток в перпендикулярном и продольном магнитном поле относительно широкой стороны ВТСП ленты "AMSC" при температуре 77 К [7]. □ – ВТСП лента первого поколения, о - ВТСП лента второго поколения.

Результаты расчета сил, действующих на слои обмотки СПСГ при токе 50 А в витке, представлены в таблице 3. Нумерация слоев обмотки производится от медианной плоскости вверх (1, 2, 3, которые составляют первый квадрант) и вниз (4, 5, 6, составляющие четвертый квадрант).

Номер слоя обмотки	F_x	F_y	F	
1	-79.60	-2.48	79.64	
2	-83.54	-19.18	85.71	
3	-91.76	-35.28	98.31	
Первый квадрант	-254.91	-56.94	261.19	
4	-78.47	14.43	79.79	
5	-79.91	31.15	85.77	
6	-84.80	46.90	96.90	
Четвертый квадрант	-243.18	92.48	260.17	

Таблица 3. Силы, действующие на обмотку СПСГ, Н/см.

Из этой таблицы видно, что по оси X обмотка прижимается к полюсу с суммарной силой около 500 H/см, при этом в направлении перпендикулярном широкой стороне ВТСП ленты, максимальное давление на изоляцию ленты наблюдается в третьем слое и составляет 187 H/см². По оси Y слои четвертого квадранта обмотки прижимаются к полюсу с силой 92 H/см, а максимальное давление на изоляцию ВТСП ленты в этом направлении не превышает 40 H/см².

Исследование процесса перехода в нормальное состояние ВТСП обмоток

Исследование процесса перехода обмоток СПСД и СПСГ из сверхпроводящего в нормальное состояние проводились в ванне с жидким азотом при атмосферном давлении. Для обмотки СПСД №2 до тока 47.3 А (падение напряжения на обмотке 6.3 мВ, мощность тепловыделения 0.27 Вт) не происходило значительного роста напряжения на обмотке (температуры нормальной зоны), нормальная зона в обмотке находилась в тепловом равновесии с охлаждающим ее жидким азотом. При дальнейшем увеличении тока всего на 0.3 А происходило нарушение этого равновесия и при мощности тепловыделений 0,3 Вт начинался резкий рост падения напряжения на обмотке (температуры нормальной зоны). Таким образом, для этой обмотки пороговое значение тока равно 47.6 А и оно близко к значению тока 48.8 А, соответствующего падению напряжения на обмотке 1 мкВ/см.

На рисунке 6 приведены временные зависимости падения напряжения на обмотке СПСД при токах, значительно превышающих пороговый ток перехода в нормальное состояние. До тока 95 А, превышающего пороговое значение в два раза, не происходило повреждения обмотки.

Рис. 6. Падение напряжения на обмотке №2 СПСД в процессе перехода в нормальное состояние при токах, превышающих пороговое значение.

После достижения на обмотке падения напряжения 18 В, ограниченного возможностями источника питания, ток в обмотке уменьшался за счет роста сопротивления обмотки СПСД и устанавливалось новое стационарное состояние между нормальной зоной в обмотке и охлаждающим ее азотом при токе 10.6 А, что соответствовало мощности тепловыделений 190 Вт. На рисунке 7 показаны величина тока и падения напряжения на обмотке СПСД в процессе перехода в стационарное состояние при начальном токе 52 А. Видно, что в процессе этого перехода мощность тепловыделений в нормальной зоне обмотки достигала 800 Вт. После вывода тока не обнаружено снижения критического тока ВТСП обмотки.

В целом все вышесказанное справедливо и для обмотки СПСГ. В обмотке №11 до тока 42.3 А (падение напряжения на обмотке 37 мВ, мощность тепловыделений 1.57 Вт) тепловыделения в нормальной зоне находились в тепловом равновесии с охлаждающим обмотку жидким азотом. При дальнейшем увеличении тока до 42.8 А происходило нарушение этого равновесия и при мощности тепловыделений 1.93 Вт начинался резкий рост падения напряжения на обмотке. Таким образом, для этой обмотки пороговое значение тока равно 42.8 А и оно близко к значению тока 42.3 А, соответствующего падению напряжения на обмотке 1 мкВ/см.

Рис. 7. Изменение тока и напряжения в обмотке №2 СПСД в процессе перехода в нормальное состояние при начальном токе 52 А и охлаждении жидким азотом.

На рисунке 8 приведены временные зависимости падения напряжения на обмотке СПСГ при токах, значительно превышающих пороговое значение тока перехода в нормальное состояние. До тока 54 A, связанного с возможностями источника тока и заметно превышающего пороговое значение, не происходило повреждения обмотки СПСГ. После достижения на обмотке падения напряжения 18 B, ограниченного возможностями источника питания, ток в обмотке уменьшался за счет роста ее сопротивления и устанавливалось новое стационарное состояние между нормальной зоной в обмотке и охлаждающим ее азотом при токе 5.8 A, что соответствовало мощности тепловыделений 104 Bт.

Рис. 8. Падение напряжения на обмотке №11 СПСГ в процессе перехода в нормальное состояние при токах, превышающих пороговое значение.

Для защиты при переходе в нормальное состояние обмоток СПСД и СПСГ рекомендуется не превышать порогового значения тока, которое составило 47.3 А для обмотки №2 СПСД и 42.3 А для обмотки №11 СПСГ.

Целесообразно использовать для работы на постоянном токе источники с небольшим выходным напряжением, например, уровень напряжения 18 В для этих обмоток является безопасным. Процесс разогрева идет медленно, собственная запасенная энергия на разогрев проводника влияет мало и после достижения максимального напряжения источника за счет роста сопротивления обмотки ток в обмотке уменьшается и устанавливается новое стационарное состояние между нормальной зоной в обмотке и охлаждающим ее азотом.

HTS-2G дипольный магнит

Дипольные магниты используются в ускорителях частиц для научных и медицинских целей. Для изготовления дипольного магнита использовалась лента HTS-2G Superox (сечение 0,1×12 мм²). Минимальный критический ток ленты HTS-2G (77 K, автономное поле) составлял 400 А. В НИЦ «Курчатовский институт» - IHEP лента HTS была обернута полиимидной лентой толщиной 20 мкм с перекрытием 50%.

На рисунке 10 показано поперечное сечение диполя HTS, а в таблице 4 перечислены основные параметры магнита. В верхней и нижней частях катушки из нержавеющей стали симметрично расположены две двойные обмотки типа рейстрек. Каждая обмотка состоит из двух слоев, изготовленных из отдельных кусков ленты HTS-2G, соединенных мостовыми паяными соединениями длиной 60 мм. Типичное сопротивление паяного соединения, измеренное при 77 К в собственном поле на коротких отрезках ленты, составляет 13 нОм. Количество витков в слое обмотки составляет 90, или 180 в каждой двойной обмотке, общее количество витков в магните составляет 360.

Магнитопровод состоит из четырех частей. Каждая часть изготовлена из стальных листов стали марки 2212 толщиной 0.5 мм с лаковой изоляцией толщиной 5 мкм. Листы магнитопровода сжимаются боковыми пластинами с помощью стержней из нержавеющей стали и закрепляются сваркой. Четыре ключа из нержавеющей стали используются для поперечного выравнивания деталей магнитопровода. Детали магнитопровода крепятся к катушке болтами, а затем свариваются вместе.

Рис. 9. Поперечное сечение ВТСП диполя.

Номинальное магнитное поле в апертуре	1 Тл
Рабочий ток	100 A
Число обмоток	2
Число слоев в каждой обмотке	2
Число витков в каждой обмотке	180
Полное число витков	360
Поперечное сечение ВТСП ленты без изоляции	0.1×12 мм ²
Минимальный критический ток (77К, собственное поле)	400 A
Толщина изоляции ВТСП ленты	40 мкм
Продольная длина магнита	425 мм
Длина прямой части обмотки	250 мм
Продольная длина магнитопровода	250 мм
Размеры апертуры	40×80 мм ²
Масса магнита	103 кг

<u>Таблица 4.</u> Основные характеристики ВТСП диполя.

ВТСП диполь был испытан в ванне с жидким азотом при 77 и 65 К. При 77 К ток обмотки достиг 110 и 113 А при критериях 1 мкВ/см и 10 мкВ/см соответственно. При 113 А центральное поле составляло 1.12 Тл. При 65 К ток обмотки достигал 226 и 228 А при критериях 1 мкВ/см и 10 мкВ/см соответственно. При 228 А центральное поле равно 1.66 Тл.

На рисунке 10 показаны измеренные и рассчитанные зависимости центрального поля дипольного магнита от рабочего тока и полевые зависимости критического тока ленты HTS-2G при 77, 65 и 5 К [8]. Вероятной причиной наблюдаемого расхождения между измеренными и расчетными значениями поля при токах выше 400 А является влияние механической обработки магнитопровода. На поверхности магнитопровода имеется слой толщиной около 0.1 мм с ухудшенными магнитными свойствами, созданный механической обработкой после сборки ярма. В средних и сильных магнитных полях поврежденный поверхностный слой насыщается раньше, чем остальная часть стали ярма, что увеличивает эффективное расстояние между полюсами ярма и уменьшает центральное поле. При рабочем токе выше 400 А генерируемое магнитное поле линейно зависит от тока. Это происходит потому, что ярмо полностью насыщено, и поле увеличивается только за счет увеличения тока.

Рис. 10. Измеренные (красный) и рассчитанные (синий) зависимости центрального поля магнита от рабочего тока и полевые зависимости критического тока ленты HTS-2G (зеленый) при 77, 65 и 5 К.

В ванне с жидким гелием максимальный ток 847 А был ограничен источником питания, а центральное поле составляло 3.0 Тл. Для рабочего тока, равного критическому току образца короткой ленты в жидком гелии, магнитное поле в центре магнита, как ожидается, достигнет примерно 4.5 Тл.

На рисунке 11 показано распределение магнитного поля вдоль оси диполя при токе 30 А.

Рис. 11. Измеренное (символы) и рассчитанное (кривая) распределение магнитного поля вдоль оси магнита при токе 30 А.

Заключение

Из ВТСП ленты второго поколения изготовлены полномасштабные рейстрековые обмотки возбуждения ротора опытного образца сверхпроводящего синхронного электродвигателя мощностью 200 кВт (7 шт) и сверхпроводящего синхронного генератора мощностью 1 МВА (11 шт).

Критический ток обмоток при температуре 77 К и падении напряжения на обмотке 1 мкВ/см находился в интервале 46.3 – 53.0 А для СПСД и 39.4 – 43.9 А для СПСГ.

Значения критического тока при 1 мкВ/см практически совпали с пороговым значением тока, при котором начинался резкий рост падения напряжения (температуры) в нормальной зоне обмотки.

Для защиты при переходе в нормальное состояние обмоток СПСД и СПСГ рекомендуется не превышать пороговое значение тока и использовать для работы на постоянном токе источники с небольшим выходным напряжением.

Изготовлен и успешно испытан первый в России дипольный магнит с апертурой 80×40 мм из ВТСП ленты второго поколения производства компании «СуперОкс».

При температуре 77 К ток в обмотке ВТСП диполя составил 113 А при уровне напряжения на обмотке, соответствующего критерию 10 мкВ/см. При этом токе магнитное поле в центре диполя было равно 1.12 Тл.

При 65 К ток в обмотке ВТСП диполя составил 228 А при 10 мкВ/см. При этом токе магнитное поле в центре диполя было равно 1.66 Тл.

При испытаниях в жидком гелии был введен ток 847А (максимальный ток источника питания), при этом поле в центре магнита составило 3.03 Тл.

Список литературы

- [1] W. Yuan et al., "Measurements and calculations of transport AC loss in second generation high temperature superconducting pancake coils", Journal of Applied Physics, 2011, 110 (11).
- [2] A. Friedman et al., "Critical Currents and AC Losses in YBCO Coils", Physics Proceeding 36 (2012) 1169 – 1174.
- [3] D. Dezhin, R. Ilyasov, S. Kozub, K. Kovalev, L. Verzhbitsky. "Synchronous Motor With Hts-2g Wires". Proceedings Of Eucas 2013, Genoa, Italy, September, 2013.
- [4] S. Kozub et al. "HTS Racetrack Coils for Electrical Machines". Proceedings of Cryogenics 2014, Prague, April, 2014.
- [5] D. Dezhin, K. Kovalev, L. Verzhbitsky, S. Kozub, V. Firsov. "Design and testing of 200 kW synchronous motor with 2G HTS field rotor coils". Proceedings of EUCAS 2015, Lyon, France, September, 2015.
- [6] K. Kovalev, V. Poltavets, R. Ilyasov, L. Verzhbitsky, S. Kozub. "1 MW HTS 2G Generator for Wind Turbines". Proceedings of EUCAS 2015, Lyon, France, September, 2015.
- [7] V.E. Sytnikov, V.S. Vysotsky1, I.P. Radchenko, N.V. Polyakova, "1G versus 2G Comparison from the Practical Standpoint for HTS Power Cables Use", Journal of Physics: Conference Series 97 (2008) 012058 doi:10.1088/1742-6596/97/1/012058, 8th European Conference on Applied Superconductivity (EUCAS 2007).
- [8] Results of Independent Measurements of SuperOx 2G HTS Wire in Digital Format 2012-2015, available at <u>http://www.superox.ru/en/products/42-2G-HTS-tape/</u>

Рукопись поступила 3 декабря 2021 г.

И.В. Богданов, С.С. Козуб, Л.М. Ткаченко, В.И. Шувалов

Создание устройств на основе высокотемпературных сверхпроводников.

Препринт отпечатан с оригинала-макета, подготовленного авторами.

Подписано к печати 07.12.2021	Формат ($50 \times 84/16.$	Цифровая печать.			
Печ.л. 1,25. Уч.– изд.л. 1,6.	Тираж 60.	Заказ 1.	Индекс 3649.			
НИЦ «Курчатовский институт» – ИФВЭ						
142281 Macropered officer p. Thornwood H. Haven 1						

142281, Московская область, г. Протвино, пл. Науки, 1

www.ihep.ru; библиотека http://web.ihep.su/library/pubs/all-w.htm

Индекс 3649

ПРЕПРИНТ 2022-1, НИЦ «Курчатовский институт» – ИФВЭ, 2022