

национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ»

Институт физики высоких энергий имени А.А. Логунова Национального исследовательского центра «Курчатовский институт»

Препринт 2023-3

С. Н.Соколов

Релятивистская механическая модель для одноэлектронных ионов

Протвино 2023

Аннотация

Соколов С.Н. ¹ Релятивистская механическая модель для одноэлектронных ионов: Препринт НИЦ «Курчатовский институт» – ИФВЭ 2023-3. – Протвино, 2023. – 13 с., 2 рис., 2 табл., библиогр.: 11.

Для расчетов энергий связанных состояний систем из двух взаимодействующих частиц предложена простая релятивисткая механическая (PeM) модель, эквивалентная при низких скоростях модели Бора. Модель содержит условие квантования, соблюдает закон сохранения массы, и в простейшем бесспиновом варианте (не учитывающем магнитные взаимодействия) имеет относительную точность примерно $3 \cdot 10^{-5}$. При Z > 3, ее предсказания ионизационных энергий одноэлектронных ионов почти совпадают со значениями главного (Кулоновского) члена для этих энергий, вычисленного Джонсоном и Соффом в [2] с использованием уравнений Дирака.

К работе приложены таблицы вычисленных энергий и Боровских радиусов для основного и первого возбужденного состояний для Z < 119.

Abstract

Sokolov S.N. Relativistic Mechanical Model for One-Electron Ions: Preprint NRC «Kurchatov Institute» – IHEP 2023-3. – Protvino, 2023. – p. 13, figs. 2, tables 2, refs.: 11.

For the calculation of the energies of the bound and excited states of systems of two spinless interacting particles, a simple Relativistic Mechanical (ReM) model, equivalent at low velocities to the Bohr model [1], is proposed. The model includes the quantization condition for the total angular momentum and respects the mass conservation law. ReM model in its simplest spinless version does not take into account the magnetic interactions and QED corrections, what limits its relative accuracy to about $3 \cdot 10^{-5}$. At Z > 3, its predictions for the ionization energies of one-electron ions in the ground state are close to the values for the main ("Coulomb") term in the expressions for the ionization energy, calculated by Johnson and Soff [2] with the use of the Dirac equations.

The tables for the predicted energies and the Bohr radii in the ground and the first excited state for Z < 119 are appended.

 $^{^1}$ E-mail address: skiff.sokolov@gmail.com

1. Введение

Большинство вычислений ионизационных энергий (напр. [2,9]) использует сведение 2-частичной задачи к случаю одной частицы и использует "релятивистские поправки". В качестве альтернативы этому способу, эта работа предлагает очень простую релятивистскую механическую (PeM) модель с двумя Кулоновски взаимодействующими частицами, способную с умеренной точностью предсказать ионизационные энергии водородо-подобных ионов с любым зарядом Z.

Модель PeM подражает модели Бора [1] и при малых скоростях становится ей эквивалентна, но является более примитивной и формальной. Она не содержит параметра эволюции и определяет только условия на мгновенные значения механических параметров, достаточные для образования квантовых связанных состояний. Эти условия формализуются в виде системы алгебраических уравнений, решения которых дают ионизационные энергии одноэлектронных ионов в основном и возбужденных состояниях. Так как PeM модель в ее простейшей базовой версии не учитывает магнитные взаимодействия и квантово-полевые поправки [3,4], то ее относительная точность составляет примерно $3 \cdot 10^{-5}$.

Система уравнений PeM модели использует условие квантования полного вращательного импульса системы двух частиц и включает уравнение сохранения полной энергии, определяющее потери массы частиц в процессе их сближения как из-за расхода энергии как на излучение, так и на накопление кинетической энергии.

2. Определение РеМ модели

В РеМ модели рассматривается мгновенное состояние системы из двух частиц, притягиваемых длуг к другу Кулоновскими силами (с константой взаимодействия *αcħ*) и вращающейся вокруг центра масс системы с угловой скоростью ν. Модель подразумевает, что (абсолютные) скорости и радиусы сязаны соотношениями $c\beta_i =$ $\nu r_i, r = r_1 + r_2,$ и использует релятивистские массы вида

$$M_i = m_i \gamma_i, \qquad \gamma_i = 1/\sqrt{1-\beta_i^2}.$$

Модель не содержит подгоночных параметров и определяется системой 4х уравнений

баланс сил
$$qM_1c\beta_1\nu = \alpha c\hbar Z/r^2$$
 (1)

баланс сил
$$qM_2c\beta_2\nu = \alpha c\hbar Z/r^2$$
 (2)

квантовое условие
$$q(M_1\beta_1r_1 + M_2\beta_2r_2)c = n\hbar$$
 (3)

сохранение массы
$$m_1 + m_2 = q(m_1 + m_2) + \alpha \hbar Z/(rc)$$
 (4)

с 4мя неизвестными (зависящими от состояния *n*): β_1, β_2, ν и коэф. потери массы *q*. Это определение не содержит запаздывания взаимодействий.

PeM модель не претендует на описание самих связанных состояний (состояния могут быть сложными и включать дополнительные элементы), она только задает достаточные условия для перехода системы в связанное состояние.

3. Решение уравнений РеМ модели

Систама уравнений для скоростей, следующая из (1)-(3),

$$\beta_1 + \beta_2 = \alpha Z/n, \qquad M_1 \beta_1 = M_2 \beta_2$$

сводится к алгебраическому уравнению 4го порядка, решаемому аналитически (см. ниже "Аналитическое решение") или, что проще, к уравнениям, решаемым численно последовательными приближениями, стартующими с $\beta_i = 0$ и (в случае $m_2 > m_1$) использующими соотношения

$$\beta_2 = \frac{M_1}{M_1 + M_2} \alpha Z/n, \quad \beta_1 = \alpha Z/n - \beta_2$$

Используя найденные скорости, получаем угловую скорость

$$\nu = q M_{12} \frac{(\alpha c Z)^2}{\hbar n^3},$$

коэф. потери массы

$$q(n) = 1/(1 + \frac{M_{12}}{m_1 + m_2} \frac{(\alpha Z)^2}{n^2}),$$

и радиусы

$$r = \frac{n^2 \hbar}{\alpha c Z M_{12} q}, \qquad r_i = \frac{n^2 \hbar}{\alpha c Z M_i q},$$

где $M_{12} = M_1 M_2 / (M_1 + M_2)$ - приведенная масса..

4. Энергии

Так как силы взаимодействия в ионах - это силы притяжения, то Кулоновская потенциальная энергия оределяется как негативная величина

$$E_{pot}(n) = -\int_{r(n)}^{\infty} dr \ \alpha c\hbar Z/r^2 = -\alpha c\hbar Z/r(n).$$

В РеМ модели, она имеет вид

$$E_{pot}(n) = -qM_{12}\frac{(\alpha cZ)^2}{n^2}.$$

Однако, кинетическая энергия положительна и в РеМ модели определена как

$$E_{kin} = q(m_1(\gamma_1 - 1) + m_2(\gamma_2 - 1))c^2.$$

Ионизационная энергия в PeM модели понимается как энергетический уровень и считается отрицательной. Она определена как сумма

$$E_{ion}(n) = E_{pot}(n) + E_{kin}(n).$$

 $E_{ion}(n)$ - это энергия, потраченная на излучение во время перехода свободных частиц в *n*ое систояние, и является энергией, необходимой для разрушения иона и приведение частиц в состояние покоя на большом расстоянии друг от друга.

В нерелятивистском приближении $q = \gamma_i = 1$, рассмотренные энергии удовлетворяют известному простому соотношению

$$E_{pot}(n) = 2E_{ion}(n) = -2E_{kin}(n).$$

В релятивистском случае, $E_{kin}(n) > abs(E_{ion}(n))$.

Эти формулы для ионизационной и других энергий в бесспиновом приближении - основной результат простой PeM модели. Для достижения большей точности или получения большей информации о свойствах ионов требуется усложнять модель, добавляя больше взаимодействий, переменных, и уравнений.

Определенный намек в этом направлении дает вычисление в PeM модели произведения $\hbar\nu$. Это произведение является энергией некоторого "резонансного" фотона, вращающегося с той же частотой, что и пара частиц. Обозначим эту энергию как E_{ph} . Сравнение выражений для ν и E_{pot} приводит к равенству

$$E_{ph} = -E_{pot}/n$$

утверждающему, что энергии *n* "резонансных" фотонов должны в сумме давать $-E_{pot}$. Такое совпадение может трактоваться как внутреннее условие квантования, основанное на свойствах иона, и альтернативное внешнему квантовому условию (3). Это может иметь экспериментально наблюдаемые специфические следствия, но в рамках простой PeM модели возможная роль "резонансных" фотонов остается неизвестной.

5. Бесспиновый "позитроний"

В случае позитрония, в силу его массовой и зарядовой симметрий, скорости, очевидно, равны, $\beta_i = \alpha/(2n)$, и потенциал и кинетическая энепгия становятся явными функциями константы α :

$$E_{pot} = -qmc^2(\alpha/n)^2\gamma/2, \qquad E_{kin} = q2mc^2(\gamma - 1),$$

где $q = 1/(1 + (\alpha/n)^2 \gamma/4)$. Для основного и первого возбужденного состояний, они дают

$$n = 1: \beta = 0.0036486763, E_{kin} = 6.8028245 eV, E_{ion} = -6.8027793 eV, q = 0.999986687,$$

 $n = 2: \beta = 0.0018243381, E_{kin} = 1.7007104 eV, E_{ion} = -170070755 eV, q = 0.999986687.$

Для физического позитрония, эти величины соответствуют параметрам, усредненным по направлениям спинов.

6. Аналитическое решение

Здесь удобно перейти к индексам j=(0,1). Система уравнений

$$\beta_0 + \beta_1 = \alpha Z/n, \qquad M_0 \beta_0 = M_1 \beta_1.$$

для неизвестных $\beta_{1-j} = x$ сводится к алгебраическому уравнению 4го порядка

$$(a-x)^{2}(1-x^{2})R - x^{2}(1-(a-x)^{2}) = 0,$$

где $a = \alpha Z/n$, $R = m_{1-j}/m_j$. Правильный корень, который соответствует исходной системе уравнений, имеет вид

$$x = (a - g)/2 + (((a - g)/2)^2 - y - (\rho R - y)/g)^{1/2},$$

где $g = (1+2y)^{1/2}, \quad \rho = R/(1-R^2), \quad y = k/t$, где

$$k = a\rho(3/(1-a^2))^{1/2}, \quad t = -2\sin((1/3)\arcsin s), s = 3k/(1-a^2).$$

Эти формулы точные, но проверочные вычисления показали, что их использывание в численных расчетах приводит к заметной потере точности.

7. Сравнение с другими предсказаниями

Рис. 1 показывает предсказания РеМ модели (сплошная кривая 1) для ионизационной энерги $E_{ion}(Z,0)$ в основном состоянии при Z < 110 и вычисленные в [2] значения (квадратные точки) так наываемого Кулоновского члена (основанного на квантовых урвнениях Дирака) ионизационных энергий, представленные частично в таблицах NIST [5]. Для сравнения, рис. 1 содержит также значения $E_{NR}(Z)$ ионизационных энергий (штриховая кривая 2), посчитанные в РеМ модели в нерелятивистском приближении.

С точностью рисунка, предсказания PeM модели совпадают с Кулоновским членом в [2]. Небольшие таблички при избранных Z, включенные в рис. 1, показывают, что относительная точность совпадения растет с Z и при больших Z приближается к 10^{-5} . Таким образом, в рамках заявленной точности PeM модель совместима с соответственными предсказаниями в [2].

Переход от базовой РеИ модели к более точной модели, учитывающей магнит-

ные взаимодействия, может сблизить ее с результатами вычислений в [2]. Однако, уточненная модель не может совпасть с [2], так как вычисления в [2] игнорируют тот физический факт, что масса иона в любом связанном состоянии меньше суммы масс электроны и ядра в свободных состояниях, в то время как PeM модель учитывает эту разницу масс. При больших Z, относительная потеря масс лежит в районе 10^{-6} , что сравнимо с величинами других поправок, рассматриваемых в [2].

Рис. 2. Противоречивые предсказания для первого возбужденного состояния.

Рис. 2 подобен рис. 1, но показывает предсказания ионизационной энергии для первого возбежденного состояния. Как и выше, кривая 1 - предсказания РеМ модели E_{ion} , а кривая 2 дает их нерелятивиское приближение $E_{NR}(Z)$. Рис. 2 содержит еще 2 кривые, вычисленные в РеМ модели - кинетическая энергию E_{kin} (кривая 3) и комбинацию энергий (кривая 4) $E_{mix} = 2E_{kin} - abs(E_{ion})$.

Точки $E_{[2]}(Z)$, вблизи кривой Emix - значения Кулоновского члена E_{Coul} ионизационных энергий, вычисленные из значений разности между основным и возбужденным энергетическими уровнями, табулированными в [2]. Эти точки быстро отдаляются от нерелятивистского приближения и величина относительных релятивистских поправок $E_{[2]}(Z)/E_{NR}(Z)-1$ (которая должна быстро убывать с n) остается примерно той же самой, что и в основном состоянии. Это означает, что предсказания в [2] для возбужденного состояния ошибочны. Так как значения $E_{[2]}(Z)$ близки к Emix, то релятивистские поправки $E_{[2]}(Z) - E_{NR}(Z)$ содержат ошибку, оцениваемую в двойную разность между (абсолютными значениями) кинетической и ионизационной энергий.

Эта ошибка осталась незамеченной в [10], где использовались результаты работы [2].

В эксперименте [11] были сделаны измерения спектров ионов урана, которые использовались для проверки величины сдвига Лэмба в сильных полях. Судя по описанию эксперимента, он давал техническую возможность измерить энергию возбуждения иона. Однако, никаких противоречий измерений с использованными оценками работы [10] в работе [11] упомянуто не было.

8. Заключение

РеМ модель способна успешно предсказывать ионозационные энергии и некоторые другие параметры ионов в бесспиновом приближении в широком диапазоне зарядов Z, несмотря на отсутствие запаздывания взаимодействий в ее определении и на использование Кулоновского потенциала подобно квазипотенциалам в релятивистской квантовой механике [6-8].

PeM модель выявляет незамеченное ранее равенство абсолютного значения потенциальной энергии иона в *n*-ом связанном состоянии с суммарной энергией *n* фотонов вращающихся с той же частотой, с которой электрон-ядерная пара вращается вокруг центра масс иона.

Сравнение предсказаний PeM модели с таблицами в [2] указывает на ошибку в релятивиских поправках, использованных в [2] для первого возбужденного состояния.

PeM модель, так же как и другие теоретические предсказания ионизационной энергии, остаются пока экспериментально непровереными при больших Z. Желательность прямых экпериментальных измерений ионизационных энергий, высказанная еще в 1985 году в [2], остается актуальной, особенно для тяжелых элементов.

Приложение А содержит таблицы предсказаний РеМ модели - энергии, скорости, радиусы, и потери массы для основного состояния n=1 и для первого возбуженного состояния n=2 для одноэлектронных ионов с Z < 119.

*

Список литературы

- N. Bohr Dr. phil. (1913): I. On the constitution of atoms and molecules, Philosophical Magazine Series 6, 26:151, 1-25.
- [2] W.R.Johnson and Gerhard Soff. The Lamb Shift in Hydrogen-like Atoms, $1 \le Z \le 110$. Atomic Data and Nuclear Data Tables **33**, 405 (1985).

- [3] E.A.Uehling. Polarization Effects in the Positron Theory. Phys.Rev. 48, 340 (1935).
- [4] S.Klarsfeld. Analytical Expressions for the Evaluation of Vacuum-Polarization Potentials in Muonic Atoms. Phys.Lett. **B** 66, 86-88 (1977).
- [5] NIST Atomic Spectra Database (ver. 5.9)(2021).
- [6] Sokolov, S.N.: Theory of relativistic direct interactions. Dokl. Akad. Nauk SSSR 233, 575 (1977).
- [7] Coester, F., Polyzou, W.N.: Relativistic quantum mechanics of particles with direct interactions. Phys. Rev. D 26, 1348 (1982).
- [8] W. N. Polyzou, Ch. Elster, W. Glueckle, J. Golak, Y. Huang, H. Kamada, R. Skibinski, H. Witala Mini Review of Poincare' Invariant Quantum Theory. Few-Body Systems 49: 129-147(2011).
- [9] P. F. Lang, B.C. Smith. Methods of Calculating Ionization Energies of Multielectron (Five or More) Isoelectronoc Atomic Ions. Sci. World J. vol. 2013, Article ID 157413.
- [10] V. A. Yerokhin, V. M. Shabaev. Lamb Shift of n = 1 and n = 2 States of Hydrogenlike Atoms, 1 < Z <= 110 Journal of Physical and Chemical Reference Data 44, 033103 (2015).
- [11] A. Gumberidze, Th. Stöhlker, D. Banaś, et.al. (Germany, Poland, ESR storage ring) Quantum Electrodynamics in Strong Electric Fields: The Ground-State Lamb Shift in Hydrogenlike Uranium. PRL 94, 223001 (2005);DOI 101103/PhysRevLett 94,223001.

А. Приложение

Пояснения к таблицам

• "A".

Атомный вес. Масса ядра m_2 , использованная при вычислениях, была определена как $m_2 = Am_u - Zm_1$, где $m_u = 1.660539066\text{E-}24\text{g}$ -константа атомной массы и $m_1 = 9.10938370\text{E-}28$ - масса электрона.

• "Eion".

Энергия ионизации (абсолютное значение).

• "Ekin".

Кинетическая энергия.

• "ν E18".

Угловая скорость (частота $\cdot 2\pi$). Буквы "Е18"
означают, что значения в этой колонке надо умножить на 1. Е18.

• " β_1 ".

Скорость электрона. Скорость ядра можно вычислить как $\beta_2 = \alpha Z/n - \beta_1,$ где $\alpha = \! 7.297352569\text{E-}3$.

• " r_1 ".

Расстояние электрона от центра масс.

• " r_{12} ".

Полное расстояние между электроном и ядром.

• "Mloss".

Относительная потеря масс частиц в связанном состоянии n. Она равна 1-q(n), где q(n) - коэффициент уменьшения массы.

ТАБЛИЦА А основное состояние (n=1)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Z	Ion	А	Eion eV	Ekin eV	ν E18	$\beta 1$	r1 E-12	r12 E-12	Mloss E-6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	п	1 0.09	12 50 8 4 7	12 50992	0.04121007	0 00790228	5204 512	5201 622	0.02806577
1 1	1		1.008	54 41821	54 42401	0.04131997	0.00729338	2645 067	2645 604	0.02890377
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	2		4.00202	122 4562	122 4857	0.1000040	0.01439270	1762 640	1762 501	0.02919001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3		0.997	122.4303 217.7242	217 8170	0.57215255	0.02189034	1322 460	1202.301	0.05180177
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4		9.012103	211.1242	217.0170	1 0241704	0.02918703	1322.400 1057.704	1057 650	0.05169177
0 C 14.0067 657.0682 657.9602 2.022935 0.05170411 05113033 05113033 05113033 05113033 05113033 051130333 051130333 051130333 051130333 051130333 051130333 051130333 051130333 051130333 051130333 0511303333 0511303333333 0513303333333 05133033333333 051333333333333333333333333333333333333	6		12.0116	400.0175	400 4878	1 4806407	0.03048491 0.04378211	881 1567	881 1164	0.00754581
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7		14.0067	490.0175	490.4070	2.0282054	0.04378211	755 0102	754 0807	0.00703327
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8		15 0007	871 4775	872 0662	2.0282954	0.05107940	660 3662	660 3435	0.1023489 0.1170764
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	q	F	18 9984	1103 220	1105 607	3 3 5 5 7 9 8 7	0.06567427	586 7224	586 7054	0.1170704
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	Ne	20 1797	1362 348	1365 990	4 1450747	0.07297154	527 7809	527 7665	0.1240402
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	Ha	20.1131	1648 910	1654.247	5.0183787	0.01251194	479 5295	479 5180	0.1401000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	Mo	24 307	1962 945	1970 515	5 9759774	0.08756625	439 2971	439 2871	0.1737685
	13	Al	26.98154	2304.511	2314.951	7.0181982	0.09486365	405.2320	405.2237	0.1838445
	14	Si	28.086	2673.658	2687.720	8.1453659	0.1021609	376.0135	376.0061	0.2049824
	15	Р	30.97376	3070.451	3089.011	9.3578691	0.1094583	350.6714	350.6651	0.2135386
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	S	32.076	3494.949	3519.016	10.656087	0.1167556	328.4795	328.4738	0.2348090
18 Ar. 39.48 4427.362 4466.056 13.511480 0.131305 291.4403 291.4403 0.2390534 19 K. 39.0983 4935.419 4983.550 15.069566 0.1386477 275.8283 275.8243 275.77 0.2291756 20 Ca. 44.055511 6635.681 6107.822 18.449226 0.1532425 249.0160 249.0129 0.2900568 21 Ti 47.867 6628.663 6715.162 20.1678373 226.8159 266.8134 0.3077919 24 Cr 51.9961 789.826 8021.806 24.186177 0.1751346 217.0851 226.8134 0.3077919 24 Cr 55.83319 10016.63 10216.89 30.740128 0.1824320 208.1188 0.338058 25 Mi 58.6934 10760.48 11012.81 33.109821 0.2042339 185.0066 185.0048 0.3987152 29 Cu 63.34 1127.40 1452.908 44.536858 0.235165 16	17	Cl	35.457	3947.229	3977.956	12.040473	0.1240531	308.8811	308.8763	0.2400130
19 K 39.0833 4935.419 4983.550 15.069566 0.1366477 275.823 275.8244 0.2724195 20 Ca 40.078 5471.494 5530.712 16.715291 0.1459450 261.7533 261.7557 0.2947858 21 Sc 44.95591 603.681 607.822 18.449226 0.1653392 237.418 237.4153 0.2993291 23 Va 50.9415 7248.745 7353.049 221.81028 0.1678373 226.8159 226.8134 0.30277919 24 Cr 51.9961 7897.826 8021.806 24.186177 0.1751346 217.0851 217.0828 0.3287665 25 Min 54.3804 8576.425 8721.788 26.279090 0.1824320 208.139 98.839 0.328026 0.3287655 26 Fe 55.8453 10780.48 1012.81 33.109821 0.204323 185.0661 85.0934 0.3987152 29 Cu 63.546 11573.34 1142.40 345657 </td <td>18</td> <td>Ar</td> <td>39.948</td> <td>4427.362</td> <td>4466.056</td> <td>13.511480</td> <td>0.1313505</td> <td>291.4443</td> <td>291.4403</td> <td>0.2390534</td>	18	Ar	39.948	4427.362	4466.056	13.511480	0.1313505	291.4443	291.4403	0.2390534
20 Ca 40.078 5471.494 530.712 16.715291 0.1459450 261.7533 261.7557 0.2947858 21 Sc 44.95591 6035.681 6107.822 18.449226 0.1532425 249.0160 249.0129 0.2900568 22 Ti 47.867 602.8.063 6715.162 0.2171926 0.1603399 237.4180 237.4180 237.4180 237.4180 237.4180 237.4180 237.4183 0.3077919 24 Cr 51.9961 747.825 8721.788 262.79090 0.1824320 208.1299 208.188 0.3380858 26 Fe 55.845 928.649 9453.354 28.463477 0.197293 199.8499 99.8329 0.3666489 28 Ni 58.6934 10780.48 11012.81 33.19821 0.2413239 185.0066 185.0048 0.3987152 29 Cu 65.38 12395.35 12703.50 38.131861 0.218914 178.348 178.422 0.3366657 30 Zn<	19	K	39.0983	4935.419	4983.550	15.069566	0.1386477	275.8283	275.8244	0.2724195
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	Ca	40.078	5471.494	5530.712	16.715291	0.1459450	261.7593	261.7557	0.2947858
12 Ti 47.867 6628.063 6715.162 20.271926 0.1605399 237.4180 237.4153 0.299291 23 Va 50.9415 7248.745 753.049 22.184028 0.1678373 226.8159 226.8134 0.3077919 24 Cr 51.9961 7897.826 8021.806 24.186177 0.1751346 217.0851 217.0828 0.338058 25 Mn 54.93319 10016.63 10216.89 30.740128 0.1970266 192.1517 192.1498 0.3686689 27 Co 58.93319 10016.63 10216.89 30.740128 0.1970266 192.1517 192.1498 0.3686689 28 Ni 58.9334 10780.48 11814.53 35.573451 0.216214 178.3428 0.387656 0.387656 0.387656 0.387656 0.387656 0.387656 0.4375845 0.3475453 0.246214 178.3438 166.2773 0.4132529 33 As 74.92159 15037.75 15493.69 46.388423 0.248	21	Sc	44.95591	6035.681	6107.822	18.449226	0.1532425	249.0160	249.0129	0.2900568
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	Ti	47.867	6628.063	6715.162	20.271926	0.1605399	237.4180	237.4153	0.2993291
24 Cr 51.9961 789.7826 8021.806 24.186177 0.1751346 217.0851 217.0828 0.3287665 25 Mn 54.93804 8575.425 8721.788 26.279090 0.1824320 208.1209 208.1188 0.3380858 26 Fe 55.845 9281.649 9453.354 28.463477 0.1897293 199.8349 199.8329 0.3602434 27 Co 58.93319 10016.63 10216.89 30.740128 0.1970266 199.5171 192.1498 0.3866689 29 Cu 65.348 10780.48 11012.81 33.10861 0.214914 178.3488 178.3422 0.3366657 30 Zn 65.38 123246.61 13599.19 40.786012 0.2262161 166.2778 16.432577 0.4134503 32 Ge 72.63 14127.40 1452.90 43.55658 0.235135 160.7974 160.7961 0.4236707 33 As 74.92159 1507.750 155.6378 0.44375845	23	Va	50.9415	7248.745	7353.049	22.184028	0.1678373	226.8159	226.8134	0.3077919
25 Mn 54,3804 857,325 8721.788 26,27909 0.1824320 208.1209 208.1188 0.3380558 26 Fe 55,845 9281.649 9453.354 28.64347 0.1897293 199.8349 199.8329 0.3602434 27 Co 58.93319 10016.63 10216.89 30.740128 0.1970266 192.1517 192.1498 0.3886589 29 Cu 63.546 11573.34 11841.53 35.573451 0.2116214 178.3438 178.4422 0.3986567 30 Zn 65.38 12395.55 1270.350 38.131861 0.218417 172.1152 172.1137 0.412251 31 Ga 69.72.3 12346.66 13599.19 40.786012 0.2262161 166.2786 166.3773 0.443607 33 As 74.92159 15037.75 1549.369 45.35843 0.2408108 155.6378 0.44375845 34 Se 78.971 15977.86 1649.357 49.332785 0.2410180 155.	24	Cr	51.9961	7897.826	8021.806	24.186177	0.1751346	217.0851	217.0828	0.3287665
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	Mn	54.93804	8575.425	8721.788	26.279090	0.1824320	208.1209	208.1188	0.3380858
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26	Fe	55.845	9281.649	9453.354	28.463477	0.1897293	199.8349	199.8329	0.3602434
28 Ni 58.6934 10780.48 11012.81 33.109821 0.2043239 185.0066 185.0048 0.3986152 29 Cu 63.546 11573.34 11841.53 35.573451 0.2116214 178.3438 178.3422 0.3956657 30 Zn 65.38 12305.35 12703.50 38.131861 0.2189187 172.1152 172.1137 0.4122251 31 Ga 69.723 13246.66 13599.19 40.786012 0.2262161 166.2776 166.7773 0.413503 32 Ge 72.63 14177.40 14529.08 43.536858 0.2335135 160.7974 160.7961 0.4236707 33 As 74.92159 1503.755 15493.69 46.385423 0.2481082 150.750 150.7739 0.4415229 35 Br 79.904 16947.90 1752.927 52.380034 0.2564055 146.1801 146.1791 0.46834564 37 Rb 85.4678 18978.49 19710.53 58.778971 0.2	27	Co	58.93319	10016.63	10216.89	30.740128	0.1970266	192.1517	192.1498	0.3686689
229 Cu 63.546 11573.34 11841.53 35.573451 0.2116214 178.3428 178.3422 0.3936667 30 Zn 65.38 12305.35 12703.50 38.11861 0.21189187 172.1152 172.1137 0.412251 31 Ga 69.723 13246.66 13599.19 40.786012 0.2262161 166.2776 16407761 0.412251 33 As 74.92159 1507.75 15493.69 46.385423 0.2481082 150.7750 150.7739 0.414529 35 Br 79.904 16947.90 17529.27 52.38034 0.2554055 146.1801 146.1791 0.4633235 36 Kr 83.798 17948.05 18601.39 55.528367 0.2627092 141.8318 141.8308 0.4683456 37 Rb 85.4678 18978.49 1971.05 58.778971 0.2772976 133.7970 133.7961 0.5011945 38 Sr 87.62 20039.42 20857.35 65.29167 0.2845949	28	Ni	58.6934	10780.48	11012.81	33.109821	0.2043239	185.0066	185.0048	0.3987152
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29	Cu	63.546	11573.34	11841.53	35.573451	0.2116214	178.3438	178.3422	0.3956657
31 Ga 69.723 13246.66 13399.19 40.786012 0.222611 166.2786 166.2773 0.4134503 32 Ge 72.63 14127.40 14529.08 43.56858 0.2335135 160.7974 160.7961 0.4236707 33 As 74.92159 15037.75 15493.69 46.385423 0.2408108 155.6370 150.7739 0.4415229 35 Br 79.904 16947.90 17529.27 52.380034 0.2554055 146.1801 146.1791 0.463225 36 Kr 83.798 17948.05 18601.39 55.528367 0.2627029 141.8318 141.8308 0.4683456 37 Rb 85.4678 18978.49 19710.53 58.778971 0.2700002 137.7101 137.7022 0.4860775 38 Y 88.90584 21131.03 2042.53 65.292167 0.2845949 130.0766 0.5214458 40 Zr 91.224 22253.52 23266.76 69.157471 0.2918923 126.	30	Zn	65.38	12395.35	12703.50	38.131861	0.2189187	172.1152	172.1137	0.4122251
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	31	Ga	69.723	13246.66	13599.19	40.786012	0.2262161	166.2786	166.2773	0.4134503
3.3As $(4,3)(219)$ 15037.75 15433.69 40.382423 0.2481082 150.50300 150.7730 0.4415229 3.4Se 79.904 16947.90 17529.27 52.380034 0.2254055 146.1801 146.1791 0.4633235 3.6Kr 83.798 17948.05 18601.39 55.528367 0.2627029 141.8318 141.8308 0.4683456 3.7Rb 85.4678 18978.49 19710.53 58.778971 0.2772976 133.7970 133.7910 0.5011945 3.8Sr 87.62 20039.42 20857.35 62.133132 0.2772976 133.7970 133.7961 0.5011945 3.9Y 88.90584 21131.03 22042.53 65.592167 0.2845949 130.0764 130.0756 0.5214458 40Zr 91.224 22253.52 23266.76 69.157471 0.2918923 126.5339 126.5331 0.538183 41Nb 92.90637 23407.12 24530.78 72.830476 0.2991896 123.1563 123.1566 0.5540589 42Mo 95.95 24592.04 25835.36 76.612701 0.306470 119.9319 119.9311 0.5643432 43Tc 97 25808.51 27181.31 80.505696 0.3137843 116.8498 168.491 0.5866022 44Ru 101.07 27056.77 28569.47 84.511130 0.3210817 113.9003 113.8996 0.5909880 <td< td=""><td>32</td><td>Ge</td><td>72.63</td><td>14127.40</td><td>14529.08</td><td>43.536858</td><td>0.2335135</td><td>160.7974</td><td>160.7961</td><td>0.4236707</td></td<>	32	Ge	72.63	14127.40	14529.08	43.536858	0.2335135	160.7974	160.7961	0.4236707
353678.34110391.78010391.78010493.3749.33216300.254055146.1801146.17910.463323536Kr83.79817948.0518601.3955.5283670.2627029141.8318141.83080.463323537Rb85.467818978.4919710.5358.7789710.2700002137.7101137.70920.486077538Sr87.6220039.4220857.3562.1331320.2772976133.7970133.79610.501194539Y88.9058421131.0322042.5365.5921670.2845949130.0764130.07560.521445840Zr91.22422253.5223266.7669.1574710.2918923126.5339126.53310.553818341Nb92.9063723407.1224530.7872.8304760.2991896123.1563123.15560.554058942Mo95.9524592.0425835.3676.6127010.3064870119.9319119.93110.564342243Tc9725808.5127181.3180.5056960.3137843116.8498116.84910.566602244Ru101.0727056.772869.4784.5111300.3210817113.9003113.89960.590988045Rh102.905528337.0630000.7188.6306790.3283790111.0745111.07390.608741746Pd106.4229649.6531475.9692.8661510.3326761108.3643108.36380.6167663 <tr< td=""><td>23</td><td>AS</td><td>78 071</td><td>15037.75</td><td>15493.09</td><td>40.383423</td><td>0.2408108</td><td>155.0390</td><td>150.0378</td><td>0.4373845</td></tr<>	23	AS	78 071	15037.75	15493.09	40.383423	0.2408108	155.0390	150.0378	0.4373845
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	04 95	D _n	70.971	16047.00	10495.57	49.332703	0.2401002	130.7730	130.7739	0.4415229
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30	Df Kr	79.904	17947.90	18601 30	55 528367	0.2554055	140.1601	140.1791	0.4033233
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37	Bh	85 4678	18978 49	19710 53	58 778971	0.2021029	1377101	137 7092	0.4005450 0.4860775
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38	Sr	87.62	20039 42	20857 35	62 133132	0.2772976	133 7970	133 7961	0.5011945
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39		88 90584	21131.03	22042 53	65 592167	0.2845949	130 0764	130 0756	0.5214458
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	Zr	91.224	22253.52	23266.76	69.157471	0.2918923	126.5339	126.5331	0.5358183
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	Nb	92,90637	23407.12	24530.78	72.830476	0.2991896	123.1563	123.1556	0.5540589
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	42	Mo	95.95	24592.04	25835.36	76.612701	0.3064870	119.9319	119.9311	0.5643432
44Ru101.0727056.7728569.4784.5111300.3210817113.9003113.89960.590988045Rh102.905528337.063000.7188.6306790.3283790111.0745111.07390.608741746Pd106.4229649.6531475.9692.8661510.3356764108.3643108.36380.616766347Ag107.868230994.8032996.1797.2193830.3429737105.7623105.76180.637010748Cd112.41432372.7834562.35101.692340.3502711103.2616103.26110.639371349In114.81833783.8736175.53106.287030.3575684100.8560100.85550.654267850Sn118.7135228.3737836.82111.005560.364865898.5397198.539220.660908751Sb121.7636706.5939547.37115.850140.372163296.3073996.306930.672473952Te127.638218.8441308.37120.823090.379460694.1541494.153710.669237353I126.904539765.4443121.05125.926750.386757992.0754692.075030.701333154Xe131.29341346.7544986.76131.163690.394055290.0671090.066690.706080055Cs132.905542963.1146906.85136.536490.401352688.1251788.124780.726086656 <td>43</td> <td>Tc</td> <td>97</td> <td>25808.51</td> <td>27181.31</td> <td>80.505696</td> <td>0.3137843</td> <td>116.8498</td> <td>116.8491</td> <td>0.5866022</td>	43	Tc	97	25808.51	27181.31	80.505696	0.3137843	116.8498	116.8491	0.5866022
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	44	Ru	101.07	27056.77	28569.47	84.511130	0.3210817	113.9003	113.8996	0.5909880
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	45	Rh	102.9055	28337.06	30000.71	88.630679	0.3283790	111.0745	111.0739	0.6087417
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	46	Pd	106.42	29649.65	31475.96	92.866151	0.3356764	108.3643	108.3638	0.6167663
48Cd112.41432372.7834562.35101.692340.3502711103.2616103.26110.639371349In114.81833783.8736175.53106.287030.3575684100.8560100.85550.654267850Sn118.7135228.3737836.82111.005560.364865898.5397198.539220.660908751Sb121.7636706.5939547.37115.850140.372163296.3073996.306930.672473952Te127.638218.8441308.37120.823090.379460694.1541494.153710.669237353I126.904539765.4443121.05125.926750.386757992.0754692.075030.701333154Xe131.29341346.7544986.76131.163690.394055290.0671090.066690.706080055Cs132.905542963.1146906.85136.536490.401352688.1251788.124780.726086656Ba137.32744614.884882.76142.047920.408650086.2460486.245670.731071857La138.905546302.4550915.99147.700800.415947384.4263684.425990.751528158Ce140.11648026.1953008.12153.498120.423244682.662660.774279859Pr140.907749786.5355160.79159.443030.430541980.9529280.952570.799750860Nd <td< td=""><td>47</td><td>Ag</td><td>107.8682</td><td>30994.80</td><td>32996.17</td><td>97.219383</td><td>0.3429737</td><td>105.7623</td><td>105.7618</td><td>0.6370107</td></td<>	47	Ag	107.8682	30994.80	32996.17	97.219383	0.3429737	105.7623	105.7618	0.6370107
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	48	Cd	112.414	32372.78	34562.35	101.69234	0.3502711	103.2616	103.2611	0.6393713
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	49	In	114.818	33783.87	36175.53	106.28703	0.3575684	100.8560	100.8555	0.6542678
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	50	Sn	118.71	35228.37	37836.82	111.00556	0.3648658	98.53971	98.53922	0.6609087
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	Sb	121.76	36706.59	39547.37	115.85014	0.3721632	96.30739	96.30693	0.6724739
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	52	Te	127.6	38218.84	41308.37	120.82309	0.3794606	94.15414	94.15371	0.6692373
54 Xe 131.293 41346.75 44986.76 131.16369 0.3940552 90.06710 90.06669 0.7060800 55 Cs 132.9055 42963.11 46906.85 136.5049 0.4013526 88.12517 88.12478 0.7260866 56 Ba 137.327 44614.88 48882.76 142.04792 0.4086500 86.24604 86.24567 0.7310718 57 La 138.9055 46302.45 50915.99 147.70080 0.4159473 84.42636 84.42599 0.7515281 58 Ce 140.116 48026.19 53008.12 153.49812 0.4232446 82.66296 82.66260 0.7742798 59 Pr 140.9077 49786.53 55160.79 159.44303 0.4305419 80.95292 80.95257 0.7997508 60 Nd 144.242 51583.88 57375.75 165.53880 0.4378393 79.29348 79.29315 0.8111313	53		126.9045	39765.44	43121.05		0.3867579	92.07546	92.07503	
55 Cs 132.9055 42963.11 46906.85 136.33649 0.4013526 88.12517 88.12478 0.7260866 56 Ba 137.327 44614.88 48882.76 142.04792 0.4063500 86.24604 86.24567 0.7310718 57 La 138.9055 46302.45 50915.99 147.70080 0.4159473 84.42636 84.42599 0.7515281 58 Ce 140.116 48026.19 53008.12 153.49812 0.4232446 82.66296 82.66260 0.7742798 59 Pr 140.9077 49786.53 55160.79 159.44303 0.4305419 80.95292 80.95257 0.7997508 60 Nd 144.242 51583.88 57375.75 165.53880 0.4378393 79.29348 79.29315 0.8111313	54		131.293	41346.75	44986.76		0.3940552	90.06710	90.06669	0.7060800
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	55		132.9055	42963 11	40906.85		0.4013526	88.12517	88.12478	0.7260866
57 La 135.5055 40502.45 50915.99 147.70080 0.4159473 84.42636 84.42599 0.7515281 58 Ce 140.116 48026.19 53008.12 153.49812 0.4232446 82.66296 82.66260 0.7742798 59 Pr 140.9077 49786.53 55160.79 159.44303 0.4305419 80.95292 80.95257 0.7997508 60 Nd 144.242 51583.88 57375.75 165.53880 0.4378393 79.29348 79.29315 0.8111313	57	ва	131.321	44014.88	40002.70	142.04792	0.4086500	80.24604	80.24307	0.7518901
50 60 140.110 48020.19 53008.12 133.49812 0.4232440 82.00290 82.00200 0.7742798 59 Pr 140.9077 49786.53 55160.79 159.44303 0.4305419 80.95292 80.95257 0.7997508 60 Nd 144.242 51583.88 57375.75 165.53880 0.4378393 79.29348 79.29315 0.8111313	50		140 116	40302.43	20212.23	153 40819	0.4109473	04.42030 80 66006	04.42099 80 66060	0.7313281
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	Pr		40020.19	55160 70	150.49012	0.4202440	80 95202	80 95257	0.1142190
	60	Nd	144.242	51583.88	57375.75	165.53880	0.4378393	79.29348	79.29315	0.8111313

ТАБЛИЦА А основное состояние (n=1)

z	Ion	A	Eion eV	Ekin eV	ν E18	β1	r1 E-12	r12 E-12	Mloss E-6

61	Pm	145	53418.67	59654.80	171.78882	0.4451366	77.68210	77.68178	0.8373579
62	5m Fu	151.064	57202 42	64412.00	178.19672	0.4524340 0.4507212	74 50402		0.8370231
64	Eu Gd	151.904	50152 34	66806.06	104.70019 101 50122	0.4397313	74.59405	73 11260	0.8595595
65	Th	158 9254	6114162	69451 51	198 40588	0.4070287	71 67123	71 67095	0.8007202
66	Dv	162.5	63170.78	72081.60	205.48452	0.4816234	70.26691	70.26664	0.8937308
67	Ho	164.9303	65240.37	74788.75	212.74166	0.4889208	68.89827	68.89800	0.9116603
68	Er	167.259	67350.95	77575.53	220.18207	0.4962181	67.56363	67.56338	0.9304083
69	Tm	168.9342	69503.12	80444.66	227.81075	0.5035154	66.26145	66.26120	0.9530993
70	Yb	173.045	71697.48	83398.99	235.63299	0.5108128	64.99022	64.98998	0.9624046
71	Lu	174.9668	73934.67	86441.51	243.65428	0.5181101	63.74855	63.74832	0.9842363
72	Hf	178.486	76215.35	89575.41	251.88048	0.5254075	62.53512	62.53490	0.9974033
73	Ta	180.9479	78540.21	92804.04	260.31771	0.5327048	61.34867	61.34845	1.016789
74	W	183.84	80909.96	96130.94	268.97245	0.5400022	60.18801	60.18779	1.034066
75	Re	186.207	83325.36	99559.85	277.85151	0.5472995	59.05199	59.05178	1.054623
76	Os	190.23	85787.17	103094.8	286.96213	0.5545969	57.93954	57.93934	1.066167
77	Ir	192.217	88296.22	106739.8	296.31189	0.5618942	56.84964	56.84944	1.089525
78	Pt	195.084	90853.34	110499.5	305.90886	0.5691916	55.78129	55.78110	1.108282
79	Au	196.9666	93459.42	114378.6	315.76155	0.5764889	54.73358	54.73340	1.133044
80	Hg	200.592	96115.38	118382.1	325.87903	0.5837862	53.70560	53.70542	1.148213
80	Dh	204.38	101580.0	122010.0	346 94717	0.5910850	51 70548	51 70530	1.102000
82	B:	201.2	101300.5	131104.0	357 01870	0.5385803	50 73172	50 73156	1.103407
84		208.3804	104332.4	135752.0	369 19721	0.6000785	49 77450	49 77434	1.210401
85	At	210	110178 8	140464 9	380 79468	0.6202729	48 83308	48 83291	1 281600
86	Rn	222	113155.9	145340.0	392.72438	0.6275703	47.90674	47.90659	1.250293
87	Fr	223	116190.8	150385.1	404.99999	0.6348677	46.99485	46.99470	1.283594
88	Ra	226	119284.6	155608.8	417.63654	0.6421650	46.09674	46.09659	1.306073
89	Ac	227	122438.8	161020.1	430.64994	0.6494623	45.21178	45.21164	1.340839
90	Th	232.0377	125655.0	166628.9	444.05734	0.6567597	44.33937	44.33923	1.352563
91	Pa	231.0359	128934.6	172445.6	457.87696	0.6640570	43.47891	43.47877	1.400709
92	U	238.0289	132279.3	178481.5	472.12868	0.6713543	42.62982	42.62969	1.401869
93	Np	237	135690.8	184748.8	486.83352	0.6786516	41.79155	41.79142	1.451812
94	Pu	244	139171.1	191260.9	502.01459	0.6859490	40.96355	40.96342	1.454129
95	Am	243	142722.0	198032.0	517.69639	0.6932463	40.14528	40.14516	1.505729
96	Cm	247		205077.7	533.90588	0.7005437	39.33621	39.33609	
97		247	152810 7	212414.9	568 02625	0.7076410	27 7 4 26 2	27 74250	1.575705
90	Ee Ee	251	157675 1	220002.0	586.00301	0.7101000	36 9591	36 95898	1.533450
100	EB	257	161612.9	236368 4	604 63984	0.7297330	36 18173	36 18161	1 662804
101	Md	258	165635.7	245073.8	623.97757	0.7370303	35.41102	35.41091	1.709335
102	No	259	169746.7	254182.1	644.06122	0.7443276	34.64647	34.64636	1.757543
103	Lr	262	173949.2	263722.5	664.94026	0.7516249	33.88759	33.88748	1.793741
104	Rf	267	178246.4	273727.5	686.66917	0.7589223	33.13384	33.13374	1.817665
105	Db	270	182642.3	284232.8	709.30810	0.7662196	32.38474	32.38464	1.856729
106	Sg	269	187140.7	295278.6	732.92378	0.7735169	31.63975	31.63965	1.925685
107	Bh	270	191746.0	306909.3	757.59074	0.7808142	30.89834	30.89824	1.983125
108	Hs	270	196462.9	319175.0	783.39189	0.7881115	30.15996	30.15986	2.050668
109	Mt E		201296.6	332131.9	810.42060	0.7954088	29.42402	29.42393	2.060364
110	Ds	281		345843.3	838.78121	0.8027062	28.68997	28.68987	2.109699
	Rg	281	211336.8	360380.9	868.59213	0.8100034	27.95716		2.184683
112	Un NL	285	210550.1 201017.6	375826.9	899.98806	0.81/3008	27.22496	27.22487	2.231877
113		280	221917.0 227720 6	392274.0	933.12214	0.0240980	20.49209 25.75050	20.49200	2.303938
115		209	233100 9	409032.0	1005 3364	0.0310303	20.70909 25 02401	25 09489	2.307734
116		209	233100.8	448795 2	1044 8558	0.8391920		20.02402	2.40000
117		293	244962.2	470517.1	1087.0043	0.8537872	23.54727	23.54719	2.622066
118	Og	294	251176.1	493990.6	1132.1075	0.8610844	22.80239	22.80231	2.721578

ТАБЛИЦА В возбужденное состояние (n=2)

Z	Ion	А	Eion eV	Ekin eV	ν E18	β1	r1 E-12	r12 E-12	Mloss E-6
1	н	1.008	3.399584	3.399606	0.005164894	0.00364669	21178.47	21166.95	0.007241299
2	He	4.00262	13.60401	13.60437	0.020668403	0.00729635	10584.71	10583.26	0.007298570
3	Li	6.997	30.61133	30.61316	0.046508183	0.01094517	7055.827	7055.274	0.009395097
4	Be	9.012183	54.42236	54.42816	0.082686517	0.01459382	5291.531	5291.209	0.01296880
5	в	10.821	85.03835	85.05251	0.12920674	0.01824246	4232.928	4232.713	0.01687802
6	C	12.0116	122.4603	122.4897	0.18607227	0.02189106	3527.164	3527.003	0.02189755
7	N	14.0067	166.6904	166.7448	0.25328860	0.02553973	3023.002	3022.883	0.02556216
8	0	15.9997	217.7300	217.8228	0.33086060	0.02918841	2644.850	2644.759	0.02923164
9	F	18.9984	275.5817	275.7303	0.41879515	0.03283714	2350.698	2350.630	0.03116023
10	Ne	20.1797	340.2464	340.4731	0.51709738	0.03648577	2115.357	2115.300	0.03622259
11	Ha	22.98977	411.7283	412.0603	0.62577751	0.04013448	1922.776	1922.730	0.03847730
12	Mg	24.307	490.0289	490.4992	0.74484213	0.04378313	1762.272	1762.233	0.04331680
13	Al	26.98154	575.1525	575.8006	0.87430274	0.04743183	1626.438	1626.405	0.04580541
14	Si	28.086	667.1014	667.9734	1.0141677	0.05108047	1509.991	1509.961	0.05104413
15	P	30.97376	765.8806	767.0302	1.1644507	0.05472917	1409.049	1409.024	0.05314354
16	S	32.076	871.4926	872.9814	1.3251612	0.05837782	1320.710	1320.687	0.05840037
17		35.457	983.9434	985.8416	1.4963150	0.06202654	1242.745	1242.725	0.05965464
18	Ar	39.948	1103.237	1105.624	1.6779250	0.06567527	1173.427	1173.411	0.05937376
19		39.0983	1229.375	1232.340	1.8700019	0.06932387	1111.393	1111.377	0.06760978
20	Ca Ca	40.078	1362.367	1366.009		0.07297252	1055.547	1055.533	0.07310227
21		44.95591	1002.217	1500.047		0.07002120		1004.994	0.07180900
22		47.007	1040.930	1004.200		0.08020990	939.0408	959.0558	0.07410080
23	l Va Cr	51 0061	1062.010	1070 530	2.7433434	0.08391803	917.0719	917.0020 878 5741	0.07012300
24	Mn	54 93804	2130 309	2139 227	3 2432829	0.08750750	843 1624	843 1539	0.08125555
26	Fe	55.845	2304.536	2314.976	3.5091368	0.09486465	810.4553	810.4473	0.08882564
27	Co	58,93319	2485.660	2497.810	3.7856113	0.09851334	780.1602	780.1529	0.09080229
28	Ni	58.6934	2673.685	2687.748	4.0727255	0.1021620	752.0192	752.0121	0.09808919
29	Cu	63.546	2868.624	2884.818	4.3705085	0.1058107	725.8085	725.8022	0.09722196
30	Zn	65.38	3070.480	3089.041	4.6789795	0.1094594	701.3360	701.3301	0.1011644
31	Ga	69.723	3279.264	3300.444	4.9981674	0.1131081	678.4329	678.4276	0.1013335
32	Ge	72.63	3494.983	3519.051	5.3280963	0.1167568	656.9525	656.9475	0.1036987
33	As	74.92159	3717.646	3744.891	5.6687939	0.1204054	636.7652	636.7605	0.1069550
34	Se	78.971	3947.263	3977.991	6.0202900	0.1240541	617.7568	617.7525	0.1077618
35	Br	79.904	4183.842	4218.380	6.3826110	0.1277028	599.8266	599.8224	0.1129138
36	Kr	83.798	4427.395	4466.090	6.7557906	0.1313515	582.8843	582.8805	0.1139614
37	Rb	85.4678	4677.930	4721.149	7.1398571	0.1350001	566.8501	566.8464	0.1180873
38	Sr	87.62	4935.458	4983.592	7.5348443	0.1386488	551.6522	551.6487	0.1215591
39	Y	88.90584	5199.990	5253.449	7.9407845	0.1422975	537.2263	537.2229	0.1262556
40		91.224	54/1.53/	5530.757	8.3577133	0.1459462	523.5143	523.5111	0.1295078
41		92.90637	0700.110 6025 701	0810.000 6107.864	8.7800048	0.1495948	310.4042	010.4011	
42		95.95	6228 282	6407 726	9.2240703	0.1552455	490.0200	498.0230	0.1339013
43	Ru IC	101.07	6628 105	6715 206	10 136028	0.1508922	474 8330	480.1017	0.1409900
44	Rh Rh	102 9055	6934 902	7030 311	10.130028	0.1641895	463 0087	474.0304	0.1417023
46	Pd	102.5055	7248 788	7353 094	11 092081	0 1678382	453 6290	453 6267	0.1473351
47	Aσ	107 8682	7569 773	7683 594	11 586971	0 1714869	443 6944	443 6921	0 1518426
48	Cď	112.414	7897.874	8021.856	12.093163	0.1751356	434.1676	434.1654	0.1520669
49	In	114.818	8233.102	8367.923	12.610697	0.1787843	425.0236	425.0215	0.1552546
50	Sn	118.71	8575.474	8721.840	13.139622	0.1824330	416.2394	416.2374	0.1564622
51	Sb	121.76	8925.002	9083.654	13.679981	0.1860816	407.7939	407.7920	0.1588160
52	Te	127.6	9281.703	9453.412	14.231824	0.1897303	399.6675	399.6657	0.1576597
53	I	126.9045	9645.590	9831.161	14.795195	0.1933790	391.8422	391.8405	0.1647999
54	Xe	131.293	10016.68	10216.95	15.370151	0.1970277	384.3011	384.2995	0.1654811
55	Cs	132.9055	10394.99	10610.84	15.956737	0.2006763	377.0289	377.0273	0.1697125
56	Ba	137.327	10780.54	11012.87	16.555009	0.2043250	370.0110	370.0095	0.1704059
57	La	138.9055	11173.33	11423.11	17.165018	0.2079737	363.2341	363.2327	0.1746774
58	Ce	140.116	11573.40	11841.59	17.786819	0.2116224	356.6857	356.6843	0.1794416
59	Pr	140.9077	11980.76	12268.39	18.420470	0.2152710	350.3542	350.3528	0.1847906
60	Nd	144.242	12395.41	12703.56	19.066029	0.2189197	344.2287	344.2273	0.1868451

	т				110	01	1 1 10	10 11 10	
	Ion	A	Eion eV	Ekin eV	ν E18	β1	r1 E-12	r12 E-12	Mloss E-6
61	Рm	145	12817.40	13147.16	19.723552	0.2225684	338.2990	338.2977	0.1922788
62	Sm	150.36	13246.72	13599.25	20.393104	0.2262171	332.5557	332.5545	0.1917182
63	Eu	151.964	13683.40	14059.89	21.074741	0.2298658	326.9899	326.9887	0.1960353
64	Gd	157.25	14127.47	14529.15	21.768530	0.2335144	321.5932	321.5921	0.1956814
65	$^{\mathrm{Tb}}$	158.9254	14578.93	15007.08	22.474533	0.2371631	316.3579	316.3568	0.1998983
66	Dy	162.5	15037.82	15493.77	23.192817	0.2408118	311.2766	311.2755	0.2017489
67	Ho	164.9303	15504.14	15989.26	23.923449	0.2444605	306.3424	306.3413	0.2050380
68	\mathbf{Er}	167.259	15977.93	16493.65	24.666498	0.2481091	301.5487	301.5477	0.2084631
69	Τm	168.9342	16459.19	17006.98	25.422034	0.2517578	296.8895	296.8885	0.2127180
70	Yb	173.045	16947.97	17529.35	26.190131	0.2554065	292.3590	292.3580	0.2139387
71	Lu	174.9668	17444.27	18060.82	26.970860	0.2590552	287.9517	287.9507	0.2178964
72	$_{\rm Hf}$	178.486	17948.12	18601.47	27.764298	0.2627039	283.6624	283.6615	0.2198837
73	Ta	180.9479	18459.55	19151.37	28.570520	0.2663525	279.4864	279.4856	0.2231902
74	W	183.84	18978.57	19710.62	29.389606	0.2700012	275.4191	275.4182	0.2259769
75	Re	186.207	19505.21	20279.28	30.221636	0.2736499	271.4559	271.4551	0.2294205
76	Os	190.23	20039.50	20857.44	31.066693	0.2772986	267.5929	267.5921	0.2308477
77	Ir	192.217	20581.45	21445.20	31.924858	0.2809472	263.8261	263.8253	0.2347724
78	\mathbf{Pt}	195.084	21131.11	22042.62	32.796218	0.2845959	260.1518	260.1511	0.2376358
79	Au	196.9666	21688.48	22649.81	33.680860	0.2882446	256.5665	256.5658	0.2417134
80	Ηg	200.592	22253.61	23266.85	34.578875	0.2918933	253.0668	253.0661	0.2436726
81	Τl	204.38	22826.51	23893.85	35.490353	0.2955419	249.6495	249.6488	0.2454601
83	Bi	208.9804	23995.74	25178.06	37.354069	0.3028393	243.0503	243.0497	0.2526629
84	Ро	209	24592.13	25835.47	38.306499	0.3064880	239.8628	239.8621	0.2590815
85	At	210	25196.41	26503.22	39.272778	0.3101366	236.7464	236.7457	0.2643524
86	\mathbf{Rn}	222	25808.60	27181.43	40.253011	0.3137853	233.6986	233.6980	0.2563022
87	\mathbf{Fr}	223	26428.75	27870.18	41.247290	0.3174340	230.7171	230.7165	0.2614557
88	\mathbf{Ra}	226	27056.87	28569.59	42.255728	0.3210827	227.7997	227.7991	0.2642923
89	Ac	227	27693.00	29279.77	43.278430	0.3247314	224.9441	224.9435	0.2694968
90	Th	232.0377	28337.17	30000.84	44.315511	0.3283800	222.1482	222.1476	0.2699630
91	Pa	231.0359	28989.41	30732.90	45.367076	0.3320287	219.4101	219.4096	0.2775683
92	U	238.0289	29649.76	31476.09	46.433250	0.3356774	216.7279	216.7273	0.2757440
93	Νp	237	30318.24	32230.51	47.514140	0.3393261	214.0997	214.0992	0.2833888
94	Рu	244	30994.90	32996.30	48.609875	0.3429747	211.5239	211.5234	0.2816055
95	Am	243	31679.77	33773.58	49.720569	0.3466234	208.9987	208.9982	0.2892262
96	Cm	247	32372.88	34562.48	50.846354	0.3502721	206.5225	206.5220	0.2909847
97	Bk	247	33074.27	35363.13	51.987353	0.3539208	204.0939	204.0934	0.2975151
98	Cf	251	33783.98	36175.67	53.143701	0.3575694	201.7113	201.7109	0.2992856
99	Es	252	34502.03	37000.23	54.315527	0.3612181	199.3734	199.3729	0.3046715
100	Fm	257	35228.48	37836.97	55.502972	0.3648668	197.0787	197.0783	0.3052745
101	Md	258	35963.36	38686.01	55.706170	0.3685155	194.8261	194.8256	0.3106838
102	NO	259	36706.70	39547.51	57.925266	0.3721641	192.6141	192.6137	0.3161381
103			37458.55	40421.63	59.160405	0.3758128	190.4417	190.4413	0.3191819
104	KI D'	267	38218.95	41308.51	00.411738	0.3794615	188.3077	188.3073	0.3198289
105	Db	270	38987.94	42208.32	01.079412	0.3831102	186.2109	186.2105	0.3229118
106	Sg	269	39765.56	43121.21	62.963581	0.3867588	184.1503	184.1499	0.3308612
107	Bh	270	40551.86	44047.35	04.204407	0.3904075	182 1249	182.1245	0.3364464
108	HS M+	270	41346.87	44986.92		0.3940562	180.1336	180.1332	0.3433455
110	IVIT	278	42100.00	40940.08	00.910084	0.3977049	176 9409	176 9404	0.3402498
110	DS D-	281	42903.23	40907.02			170.2498	174 2550	0.3434171
	ng Cr	281	43/04.0/	4/00/.90	71 094190	0.4000022	179 4016	179 4019	0.3303049
112		280	44010.01	40002.93	11.024180	0.4000009	170 6574	170 6571	0.3322033
113		280	43434.29	49092.29	72 850609	0.4122990	168 0500	160 0510	0.3379740
114	гі Ма	289	40302.37	51054 77	75 200040	0.4109482	167.0751	167 0749	0.3012143
110	IVIC	289	41109.90	53009 20	76.740204	0.4199909	107.0701	165 2951	0.3062393
110	LV To	293	40020.33	54076.07	78 996911	0.4232430	163 6094	163 6030	0.3702078
110	15	293	40901.90	04070.97		0.4208942	161.0052		0.3113931
118	Ug	294	49100.07	99100.98	19.121107	0.4303429	101.9093	101.9090	0.9099011

Рукопись поступила 2 марта 2023 г.

Препринт отпечатан с оригинала-макета, подготовленного авторами.

Соколов С.Н. Релятивистская механическая модель для одноэлектронных ионов.

Оригинал-макет подготовлен с помощью системы ІАТЕХ.

Подписано к печати 13.03.2023 Формат 60 × 84/16. Цифровая печать. Печ.л. 1,1. Уч.-изд.л. 1,4. Тираж 60. Заказ 4. Индекс 3649.

НИЦ «Курчатовский институт» – ИФВЭ 142281, Московская область, г. Протвино, пл. Науки, 1

www.ihep.ru; библиотека http://web.ihep.su/library/pubs/all-w.htm

ПРЕПРИНТ 2023-3, НИЦ «Курчатовский институт» – ИФВЭ, 2023

Индекс 3649