

национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ»

Институт физики высоких энергий имени А.А. Логунова Национального исследовательского центра «Курчатовский институт»

Препринт 2023-8

С.Р. Слабоспицкий¹

Редкий распад топ-кварка $t\to b\bar{b}bW^+$

Протвино 2023

¹Sergei.Slabospitskii@ihep.ru

Аннотация

Слабоспицкий С.Р. Редкий распад топ-кварка $t \to b\bar{b}bW^+$: Препринт НИЦ «Курчатовский институт» – ИФВЭ 2023-8. – Протвино, 2023. – 15 с., 8 рис., 4 табл.

В работе рассмотрен редкий распад t-кварка $t \to b \bar{b} b W^+$ в рамках Стандартной модели, а также с учетом вклада заряженного бозона Хиггса. Обсуждается роль фоновых процессов.

Abstract

Slabospitskii S.R. Rare top-quark decay $t \rightarrow b\bar{b}bW^+$: NRC «Kurchatov Institute» – IHEP Preprint 2023-8. – Protvino, 2023. – p. 15, figs. 8, tables 4.

The calculation of the rare t-quark decay $t \to b \bar{b} b W^+$ within the Standard Model as well as the charged Higgs contribution to this decay is presented. The role of possible background processes is discussed.

Введение

Физика топ-кварка является одним из основных направлений изучения в современной физике высоких энергий. Действительно, почти все характеристики процессов с топ-кварком можно вычислять с высокой теоретической точностью. Распад $t \rightarrow bW$ является доминирующим в Стандартной модели (СМ). Все остальные каналы распада имеют очень маленькие вероятности распада. И, как ожидается в рамках СМ, они будут на несколько порядков меньше [1, 2].

С другой стороны, редкие распады t-кварка очень чувствительны к проявлению Новой физики за пределами СМ. Очень хорошо известен пример распада топ-кварка за счет аномальных нейтральных токов с изменением аромата [1].

В этой статье изучается редкий распад топ-кварка:

$$t \rightarrow b W^+ \bar{b} b$$

а также вклад заряженного бозона Хиггса в этот процесс. Показано, что этот распад имеет хорошо идентифицированные конечные состояния и имеет относительно большую вероятность распада, $Br(t \rightarrow b \bar{b} b W^+) \sim \mathcal{O}(10^{-3})$. Таким образом, этот четырех-частичный канал распада дает дополнительную возможность непрямого поиска заряженных H^{\pm} -бозонов.

Заряженные бозоны Хиггса появляются в скалярном секторе нескольких расширений СМ и являются объектами различных исследований на БАК (Большой Адронный Коллайдер в ЦЕРНе), выходящих за рамки Стандартной модели. В статье используется общая модель с двумя дублетами Хиггса (2HDM), которая является одной из простейших расширений СМ с заряженным скаляром [3, 4]. В рамках этого класса моделей вводятся два изоспиновых дублета, нарушающих симметрию $SU(2) \times U(1)$, что приводит к существованию пяти физических бозонов Хиггса, два из которых являются заряженными частицами (H^{\pm}). Последние ограничения допустимого диапазона масс H^{\pm} в зависимости от параметра модели tan β можно найти в [5, 6].

Поиски H^{\pm} -бозонов были выполнены на LEP [7], на ускорителе Тэватрон в Фермилабе [8, 9]. Сотрудничества ATLAS и CMS исследовали несколько H^{\pm} каналов распада, таких как $\tau \nu_{\tau}$, tb, cs, cb (см. [10, 11, 12, 13, 14, 15, 16] и ссылки в этих работах). Отметим, что H^{\pm} -бозон (как и CM Хиггса) имеет константы взаимодействия, пропорциональные фермионным массам.

Большое значение связи $t H^{\pm} b$ приводит к тому, что реакции с участием топкварков используются для поиска образования заряженного бозона Хиггса. В экспериментах исследуют три сценария для поиска заряженного бозона Хиггса. Для "легкого" H^{\pm} -бозона ($M(H^{\pm}) < m_t$) используется канал распада топ-кварка на заряженный бозон Хиггса. Для случая, когда $M(H^{\pm})$ больше массы *t*-кварка, изучается рождение заряженного Хиггса с последующим распадом в $t\bar{b}$. В результате, заряженный бозон Хиггса с массой в интервалах

$$M(H^{\pm}) < 160 \ \Gamma \Im B$$
 и $M(H^{\pm}) > 180 \ \Gamma \Im B$ (1)

и широкой области $\tan \beta$ практически исключен [10, 11, 12, 13, 14, 15, 16].

В третьем сценарии изучается образование бозона Хиггса в ассоциации с топкварком (см. [11]) с последующим распадом $H^{\pm} \rightarrow \tau^{\pm} \nu_{\tau}$. И в этом случае существование заряженного бозона Хиггс исключено в диапазоне масс (90 – 2000) ГэВ и tan $\beta \gtrsim 1$.

Учитывая полученные экспериментальные ограничения (1), в настоящей статье исследуется вклад заряженного H^{\pm} -бозона при следующих массах и значениях параметра tan β :

$$M(H^{\pm}) = (160 \div 180)$$
 ГэВ и $\tan \beta \lesssim 1$ (2)

Во всей статье выражения для вершин и параметров СМ выбираются согласно работе [17]. Для численных вычислений ширин используется C++ версия программы TopReX (см. [18]). Приведенные в статье ошибки в вычисленных значениях ширин распадов отвечают точности численных вычислений.

Статья организована следующим образом. В разделе 1 представлена модель, описывающая взаимодействия заряженного бозона Хиггса. В разделе 2 приведены оценки на возможные значения параметра $\tan \beta$, полученные с использованием ограничений на полную ширину *t*-кварка, а также вероятностей распада топ-кварка. Вычисление ширины редкого распада $t \to b \bar{b} b W$ приведено в разделе 3. В разделе 4 кратко обсуждается распад t-кварка $t \to b \bar{b} b W$ с последующим распадом *W*-бозона на наблюдаемые частицы. В разделе 6 рассматривается вклад H^{\pm} -бозона в редкий распад топ-кварка $t \to bWZ$. Обсуждение фоновых процессов к исследуемому каналу распада приведено в разделе 7. В Заключении приведены полученные результаты.

1. Лагранжиан взаимодействия заряженного бозона Хиггса

Лагранжиан взаимодействия, описывающий взаимодействие H^{\pm} -бозона с фермионами в рамках MSSM-модели, имеет вид (см. [1], [4], [3]):

$$\mathcal{L} = \frac{g}{\sqrt{2}M_W} H^+ \{ V_{ud}\overline{u}(m_u \cot\beta P_L + m_d \tan\beta P_R)d + \overline{\nu}(m_\ell \tan\beta P_R)\ell \}, \quad (3)$$

где $P_{L/R} = \frac{1}{2} (1 \mp \gamma^5)$; символы *и* и *d* описывают "верхние" (u, c, t) и "нижние" (d, s, b) кварки, соответственно; ν и ℓ обозначают нейтрино и заряженный лептон; V_{ud} - элемент матрицы Каббиббо-Кобаяши-Маскава.

На древесном уровне ширины распада H^{\pm} -бозона равны [1]:

$$\Gamma \left(H^{+} \to l\nu \right) = \frac{g^{2}M_{H}}{32\pi M_{W}^{2}} m_{l}^{2} \tan^{2}\beta \tag{4}$$

$$\Gamma \left(H^{+} \to q\bar{q} \right) = \frac{3g^{2}}{32\pi M_{W}^{2}M_{H}} |V_{q\bar{q}}|^{2} \lambda^{1/2} \left(1, \frac{m_{q}^{2}}{M_{H}^{2}}, \frac{m_{\bar{q}}^{2}}{M_{H}^{2}} \right) \times \left[\left(M_{W}^{2} - m_{\pi}^{2} - m_{\pi}^{2} - m_{\pi}^{2} \right) \left(m^{2} \cot^{2}\beta + m_{\pi}^{2} \tan^{2}\beta \right) - 4m^{2}m_{\pi}^{2} \right] \tag{5}$$

$$\left[\left(M_{H}^{2} - m_{\bar{q}}^{2} - m_{q}^{2} \right) \left(m_{q}^{2} \cot^{2} \beta + m_{\bar{q}}^{2} \tan^{2} \beta \right) - 4m_{q}^{2} m_{\bar{q}}^{2} \right]$$

$$\Gamma \left(t \to bH^{+} \right) = \frac{g^{2}}{64\pi M_{W}^{2} m_{t}} \left| V_{tb} \right|^{2} \lambda^{1/2} \left(1, \frac{m_{b}^{2}}{m_{t}^{2}}, \frac{M_{H}^{2}}{m_{t}^{2}} \right) \times$$

$$(5)$$

$$\left[\left(m_t^2 + m_b^2 - M_H^2 \right) \left(m_t^2 \cot^2 \beta + m_b^2 \tan^2 \beta \right) + 4m_t^2 m_b^2 \right]$$
(6)

где

$$\lambda(a, b, c) = a^{2} + b^{2} + c^{2} - 2(ab + ac + bc)$$

Отметим, что при малых значениях $\tan \beta$ дополнительный канал распада с учетом виртуального топ-кварка $(H^+ \to t^* \bar{b} \to W^+ b \bar{b})$ может давать заметный вклад в полную ширину распада заряженного бозона Хиггса [19] (см. диаграмму на Рис. 1).

Рис. 1. Диаграмма, описывающая распад $H^+ \to t^* \bar{b} \to W^+ b \bar{b}$ за счет вклада виртуального t-кварка.

На Рис. 2 представлено поведение вероятностей распада H^{\pm} -бозона по трем кандалам $(c\bar{s}, \tau\nu_{\tau}, b\bar{b}W)$ для четырех значений масс $M(H^+)$ в зависимости от $\tan\beta$. Как видно, при небольших значениях $M(H^+)$ $(M(H^+) \sim 100 \ \Gamma)$ вероятность трехчастичного распада $(H^+ \to b\bar{b}W^+)$ очень мала. Следовательно, для таких значений $M(H^+)$ можно ожидать, что основной модой распада заряженного Хиггса будет $H^+ \to \tau^+ \nu$ (при больших $\tan\beta$) и/или $H^+ \to c\bar{s}$ (при небольших значениях $\tan\beta$).

С другой стороны, при $\tan \beta \leq 2$ и $M(H^+) \geq 150$ ГэВ большая величина массы (или константы связи) *t*-кварка приводит к тому, что $\mathsf{Br}(H^+ \to b\bar{b}W^+)$ превосходит $\mathsf{Br}(H^+ \to c\bar{s})$. Более того, при $\tan \beta < 1$ такой трех-частичный кана распада становится основным [1, 19] (см. Рис. 2).

Рис. 2. Вероятности распадов H^{\pm} -бозона по трем каналам для четырех значений масс $M(H^+)$ в зависимости от tan β .

2. Ограничения на параметры заряженного бозона Хиггса

В этом разделе приведены приближенные оценки пределов допустимой области значений $\tan \beta$. Заряженный бозон Хиггса должен давать вклад в парциальные ширины распада топ-кварка. Следовательно, следует ожидать увеличения полной ширины распада t-кварка, а также изменение вероятностей распадов по различным каналам.

Для оценки ограничений мы используем три экспериментальных параметра (см. "Review of Particle Properties" [2]):

$$\Gamma_t = 1.42^{+0.19}_{-0.15} \Gamma_{9} B \quad \sigma_{\Gamma} = 0.2 \Gamma_{9} B \\ \mathsf{Br}(t \to bq\bar{q}) = (66.5 \pm 1.4)\% \quad \sigma_{qq} = 0.014 \\ \mathsf{Br}(t \to b \tau \nu_{\tau}) = (11.1 \pm 0.9)\% \quad \sigma_{\tau\nu} = 0.09$$
 (7)

Ограничения на tan β могут быть получены из требования, чтобы вклад заряженного бозона Хиггса в эти значения не должен отклоняться от значений (7) более чем на 3σ . Результирующие допустимые диапазоны параметров представлены в Таблица 1 и на Рис. 3.

<u>Таблица 1.</u> Допустимая область параметров заряженного Хиггса. Масса H^{\pm} -бозона в ГэВ.

$M(H^{\pm})$	$\tan\beta$	$M(H^{\pm})$	aneta
110.	$3.6 \div 17.7$	160	$0.57 \div 75.$
120.	$3.1 \div 20.5$	165.	$0.34 \div 103.$
130.	$2.62 \div 24.8$	170.	$0.03 \div 132.$
140.	$1.9 \div 31.6$	175.	$0.026 \div 142.5$
150.	$0.99 \div 44.5$	177.5	$0.018 \div 157.$

Рис. 3. Разрешенная область параметров заряженного бозона Хигтса.

3. Распад топ-кварка $t \rightarrow b W^+ b \bar{b}$

В данной работе рассматривается редкий четырех-частичный распад топ-кварка:

$$t \to bW^+ \ b\bar{b} \tag{8}$$

В рамках СМ этот распад описывается 28 диаграммами Фейнмана. (см. Рис. 4). Диаграмма (a) соответствует трем диаграммам с виртуальным обменом "верхними" кварками ($q_U = u, c, t$). Диаграммы (b) и (c) соответствуют восьми диаграммам с обменом виртуальными B-бозонами ($B = g, \gamma, Z$ или H). Диаграмма (d) описывает три диаграммы с обменом виртуальными V-бозонами ($V = \gamma, Z$ или H). Заметим, что легкие виртуальные кварки (u, c), а также виртуальные: фотон, Z и H бозоны дают очень небольшой вклад в ширину распада $t \to bW^+ b\bar{b}$ и ими можно пренебречь.

Для вычислениях ширины используется Q^2 -масштаб (в $\alpha_s(Q^2)$) равный массе *t*-кварка ($Q^2 = m_t^2$). Величину массы *b*-кварка (при этом же Q^2 -масштабе) выбиралась

Рис. 4. Диаграммы, описывающие распад $t \rightarrow bW^+ b\bar{b}$ в рамках СМ.

равной $m_b(Q^2) \approx 2.6$ ГэВ. Вычисленные ширина и вероятности распада равны:

$$\Gamma(t \to bW^+bb) = (2.41 \pm 0.006) \times 10^{-3} \quad \Gamma \mathfrak{sB} \mathsf{Br}(t \to bW^+b\bar{b}) = (1.70 \pm 0.004) \times 10^{-3}$$
(9)

Отметим, что из-за диаграмм с расщеплением виртуального глюона на пару $b\bar{b}$ -кварков значение ширины распада (9) сильно зависит на величины массы *b*-кварка. Например, при $m_b = 4,8$ ГэВ получается

$$\Gamma(t \to bW^+ b\bar{b}) = (9.3 \pm 0.03) \times 10^{-4} \ \Gamma \Im B$$
 (10)

Чтобы избежать такой зависимости от массы *b*-кварка, в работе рассматривается "приведенное" (fiducial) выражение для ширин распада (8). Т.е. ширина, вычисленная с ограничением на инвариантные массы конечных кварков $(M(b_1b_2), M(b_1\bar{b}), M(b_2\bar{b}) \geq 20 \ \Gamma \Rightarrow B)$

$$\Gamma(t \to bW^+ b\bar{b})_{fid} = (1.404 \pm 0.006) \times 10^{-4} \ \Gamma \Im B, \quad M(bb) \ge 20 \ \Gamma \Im B \mathsf{Br}(t \to bW^+ b\bar{b})_{fid} = (0.989 \pm 0.004) \times 10^{-4}$$
 (11)

Полученные значения имеют существенно меньшую чувствительность к массе *b*кварка. Действительно, значения ширины (11), вычисленные при $m_b = 4.8$ ГэВ или $m_b \approx 10$ МэВ, дают очень близкие значения.

Далее приведено вычисление ширины редкого распада *t*-кварка (8) с учетом вклада заряженного бозона Хиггса. Диаграмма на Рис. 5 соответствует шести диаграммам с обменом заряженным бозоном Хиггса. В результате, полная амплитуда процесса (8) с обменом H^{\pm} состоит из 34 диаграмм (28 из-за СМ и 6 из-за H^{\pm}).

В Таблице 2 представлены результаты для нескольких наборов массы заряженного Хигтса и tan β . Как следует из расчетов, вклады в парциальные ширины распада для трех вариантов параметров ({ $M(H^+) = 160 \ \Gamma \Rightarrow B$, tan $\beta < 0.5$ }, { $M(H^+) =$

Рис. 5. Диаграмма, описывающая вклад заряженного бозона в распад $t \to b W^+ \; b \bar{b}$

165 ГэВ, $\tan \beta < 0.2$ }, и { $M(H^+) = 170$ ГэВ, $\tan \beta < 0.05$ }) превышает значение 0.6 ГэВ. Следовательно, этот диапазон пространства параметра также должен быть исключен из дальнейшего обсуждения.

<u>Таблица 2.</u> Парциальные ширины распада топ-кварка $t \to b\bar{b}bW$ с учетом вклада заряженного H^{\pm} -бозона, вычисленные с ограничением M(bb) > 20 GeV. Все значения ширин (в ГэВ) умножены на фактор 10^4 . "SM" означает, что вклад H^{\pm} -бозона в ширину распада ($\Gamma_{fid} \approx (1.4 \pm 0.006) \times 10^{-4}$ ГэВ) не превышает 10%.

$\tan\beta$	160	165	170	175	180	185
0.1	-	-	125.0 ± 7.3	58.34 ± 0.22	35.7 ± 0.2	23.2 ± 0.13
0.2	-	$704.\pm41$	8.95 ± 0.09	5.26 ± 0.023	3.79 ± 0.025	3.06 ± 0.02
0.35	-	$247.\pm25.$	2.35 ± 0.02	1.88 ± 0.6	1.71 ± 0.02	1.62 ± 0.015
0.5	$555. \pm 67.$	$110. \pm 15.$	1.67 ± 0.15	1.54 ± 0.02	SM	SM
1	$139. \pm 35.$	27.2 ± 0.7	SM	SM	SM	SM
2	15.9 ± 4.4	5.0 ± 0.8	SM	SM	SM	SM

4. Пяти-частичный распад топ-кварка

Так как W-бозон - нестабильная частица и не наблюдается прямым образом, то для 5-частичного распада существует одно замечание относительно вероятности распада W в наблюдаемые частицы $(W \to f \bar{f}')$:

$$t \to b \ \bar{b} b f \ \bar{f}' \tag{12}$$

Из-за вклада диаграмм с W-бозоном, распадающимся на конечную пару фермионов ($W \to f \bar{f}'$), в распределении по инвариантной массе этих фермионов следует ожидать резкого пика вблизи массы W-бозона.

В полной амплитуде процесса (12) можно выделить две части. Первая часть ("резонансный вклад") описывается 28 диаграммами (см. Рис. 4) с заменой конечного (реального) W-бозона виртуальным W*-бозоном, распадающимся на пару фермионов $(W^* \to f \bar{f}')$.

Рис. 6. Диаграммы, описывающие распад $t \to b\bar{b}b \,\ell^+ \nu_\ell$, в которых лептонная пара $\ell^+ \nu_\ell$ образуется не от виртуального W-бозона.

$$t \to b \,\bar{b} \, b \, W^*(\to f \bar{f}') \to b \,\bar{b} \, b \, f \, \bar{f}' \tag{13}$$

Вторая часть амплитуды («нерезонансный вклад») описывается дополнительными диаграммами, где пара $f \bar{f}'$ рождается не из W-бозона (см. Рис. 6 и 7).

Рис. 7. Диаграммы, описывающие распад $t \to b\bar{b}b\,c\bar{s}$, в которых пара $c\,\bar{s}$ образуется не от виртуального W-бозона.

Для распада t-кварка на три b-кварка и лептонную пару "нерезонансная" часть амплитуды дает сравнительно небольшой вклад к ширине распада (из-за малых значений электрослабых констант для виртуального перехода γ, Z, H в $b\bar{b}$ -пару). В этом случае парциальная ширина (при ограничении $M_{bb} \geq 20$ ГэВ) равна

$$\Gamma(t \to b\bar{b}b\,\ell^+\nu)_{fid} = (1.48 \pm 0.09) \times 10^{-5} \ \Gamma \Im B$$

Это значение примерно равно ширине (11) основного канала распада (8), умноженной на вероятность распада $W \to \ell \nu$

$$\Gamma(t \to b\bar{b}b W^+)_{fid} \times \mathsf{Br}(W \to \ell\nu) = (1.4 \times 10^{-4}) \times 11\% \approx 1.5 \times 10^{-5} \ \Gamma \mathfrak{sB}$$

Следовательно, для "полу-лептонного" распада имеем

$$\Gamma(t \to b\bar{b}b\,\ell\nu)_{fid} \approx \Gamma(t \to b\bar{b}b\,W^+)_{fid} \times \mathsf{Br}(W^+ \to \ell^+\nu) \tag{14}$$

Однако, это неверно для распада t-кварка на пять кварков: $t \to b \bar{b} b q \bar{q}'$. Например, для канала распада $t \to b \bar{b} b c \bar{s}$ дополнительные диаграммы ("нерезонансная" часть амплитуды), где пара $c \bar{s}$ рождается не из W-бозона, показаны на Рис. 7.

Как следует из расчетов, вклад в ширину распада этой "нерезонансной" области (т.е. $c\bar{s}$ не из W^* -бозона) примерно совпадает с вкладом $W^* \to q\bar{q}'$. В частности, это видно из Рис. 8, где представлено распределение по инвариантной массе пары $c\bar{s}$ в распаде $t \to b\bar{b}b\,c\bar{s}$.

Рис. 8. Распределение по инвариантной массе пары $c\bar{s}$ в распаде $t \to b\bar{b}b\,c\bar{s}$. Правый резкий пик отвечает распаду виртуального W-бозона на пару $c\bar{s}$ кварков. Левая широкая часть отвечает вкладу, в котором $c\bar{s}$ образуется не от виртуального W-бозона.

Парциальная ширина для этого канала (а также для канала $t \to b\bar{b}b \, u\bar{d}$) равна

$$\Gamma(t \to b\bar{b}b\,c\bar{s})_{fid} = \Gamma(t \to b\bar{b}b\,u\bar{d})_{fid} = (1.10 \pm 0.08) \times 10^{-4} \ \Gamma \Im B \tag{15}$$

Отметим, что вклад других легких кварков (например, $u\bar{s}$, $u\bar{b}$, $c\bar{b}$ в ширину $\Gamma(t \rightarrow b\bar{b}b f\bar{f}')$ очень мал из-за малых значений соответствующих элементов СКМ-матрицы $V_{qq'}$. В результате ширина 5-частичного канала распада топ-кварка равна

$$\Gamma(t \to b\bar{b}b\,f\bar{f}')_{fid} \approx 3\,\Gamma(t \to b\bar{b}b\,\ell^+\nu)_{fid} + \Gamma(t \to b\bar{b}b\,c\bar{s})_{fid} + \Gamma(t \to b\bar{b}b\,u\bar{d})_{fid} = (2.64 \pm 0.19) \times 10^{-4} \ \Gamma \Im B$$
(16)

Как результат, значение ширины распада (16) примерно в два раза больше величины $\Gamma(t \to b\bar{b}b W^+)_{fid} = 1.4 \times 10^{-4} \ \Gamma$ эВ из (11).

5. Распад топ-кварка в $\ell_1^+ \ell_1^- \ell_2^+ \nu_2$

Много лет назад было показано, что распад $t \to b Z W$ имеет некоторое особенности, так как процесс происходит вблизи кинематического порога $(m_t \sim M_Z + M_W + m_b)$ [20, 21, 22, 23, 24, 25, 26]. Краткое обсуждение этого распада приведено, в частности, в обзоре [1]. Заметим, что заряженный Хиггс (при больших значениях tan β) также может дать значительный вклад в ширину такого распада топ-кварка в четыре лептона:

$$t \to b Z^*(\ell_1^+ \ell_1^-) W^{+*}(\ell_2^+ \nu_2) + b Z^*(\ell_1^+ \ell_1^-) \widetilde{H^{+*}}(\ell_2^+ \nu_2)$$
(17)

где $\widetilde{H^{+*}}$ отвечает заряженного Хиггса в обсуждаемый распад $t \to b H^{+*}(\to \ell_1^+ \ell_1^- \ell_2^+ \nu_2), t \to bZ^* H^{+*}(\to \ell_2^+ \nu_2), \ldots$

Результаты расчетов парциальных ширина случая CM, а также с учетом вклада заряженного H^{\pm} -бозона, приведены в Таблице 3. При вычислениях инвариантная масса $\ell_1^+\ell_1^-$ пары полагалась равной или больше: $M(\ell_1^+\ell_1^-) \ge 0.8 M_Z$.

<u>Таблица 3.</u> Ширины распада $t \to b \ell_1^+ \ell_1^- \ell_2^+ \nu_2$ при $M(\mu^+ \mu^- / \tau^+ \tau^-) \ge 0.8 M_Z$. Значения ширин (в ГэВ) умножены на 10⁹.

$M(H^{\pm}), \ \tan\beta$	$\mu^+\mu^-e^+\nu_e$	$\mu^+\mu^-\tau^+ u_{\tau}$	$ au^+ au^- \mu^+ u_\mu$	$\tau^+ \tau^- \tau^+ \nu_\tau$
SM	2.7 ± 0.2	2.3 ± 0.2	2.7 ± 0.2	0.38 ± 0.024
160, 30	2.7 ± 0.2	$35. \pm 3.8$	$29.8 \pm 7.$	$19.8 \pm 2.$
170, 75	2.6 ± 0.2	10.6 ± 0.3	6.8 ± 0.5	3.9 ± 0.2

Как видно из этой таблицы, при больших значениях $\tan \beta$ распад H^{\pm} -бозона на τ -лептоны дает заметный вклад в эту парциальные ширины. Отметим, что вероятность такого распада очень мала для поисков в эксперименте.

6. Фоновые процессы к четырех-частичному распаду топ-кварка

При поиске редкого распада топ-кварка $t \to b\bar{b}bW^+$ (8) в экспериментальных событиях необходимо выделять конечный W-бозон (например в полулептонной моде распада: $W \to \ell \nu$) и три адронных струи от *b*-кварков (*B*-струи). Заметим, струи, возникшие из легких кварков или глюонов, также могут быть распознаны ("мечены") как *B*-струи.

Типичная эффективность мечения *b*-струй от *b*-кварка составляет около 70%, а вероятность ошибочной идентификации струй кварка *c* и легких кварков или глюонов как *B*-струи составляют примерно 10% и 1.%, соответственно (см., например, [27]):

$$\epsilon_b = 0.7, \epsilon_c = 0.1, \epsilon_{q, g} = 0.01 \tag{18}$$

Исходя из этих рассуждений оценим роль возможных фоновых процессов — четырехчастичный распад топ-кварка, который распадается на конечные состояния, отличные от основного канала (8):

$$t \to bW^+ gg \quad \mu \quad t \to bW^+ q\bar{q}', \quad q, q' \neq b$$
(19)

Эти распады могут быть фоновыми процессами в случае ошибочной идентификации. легких кварков или глюонов как *B*-струй. Имеется около 30 каналов распада с конечным состоянием ($W q_1 \bar{q}_2 q_3$) и три канала распада с глюонами: $t \to qggW^+$, q = d, s, b. Большинство из этих распадов имеют очень маленькую ширину распада по сравнению с шириной распада (11) (в частности, из-за малых значений V_{td} и V_{ts} - элементов СКМ-матрицы). Поэтому в Таблице 4 представлены результаты для тех распадов, которые имеют парциальную ширину не менее 10% ширины распада $t \to b W b \bar{b}$.

<u>Таблица 4.</u> Парциальные ширины для различных каналов распада $t \to b W \bar{q}_1 q_2(gg)$, вычисленные с ограничением M(ij) > 20 GeV (инвариантная масса двух кварков или глюонов). Третья колонка соответствует отношению парциальных ширин (с учетом эффективности *b*-мечения из (18)) к парциальной ширине распада $\Gamma(bWb\bar{b})$.

channel	$\Gamma(t \to bW^+ i j)_{fid}$, in GeV	$R_{\Gamma,b-tag}$
$t \to b W^+ \bar{b} b$	$(1.404 \pm 0.006) \times 10^{-4}$	
$t \rightarrow b W^+ g g$	$(1.8 \pm 0.04) \times 10^{-3}$	0.003
$t \to b W^+ \bar{c} c$	$(1.3 \pm 0.3) \times 10^{-4}$	0.02
$t \to b W^+ \bar{s} s$	$(1.3 \pm 0.3) \times 10^{-4}$	0.0002
$t \to b W^+ \bar{d} \ (\bar{u} u)$	$(1.3 \pm 0.3) \times 10^{-4}$	0.0002

Как видно из второго столбца этой таблицы, ширины распада этих каналы сравнимы (или даже больше), чем ширина основного процесса $\Gamma(t \rightarrow b\bar{b}b W^+) = 9.3 \times 10^{-4}$ ГэВ из (9). Однако, учет вероятности идентификации *B*-струй, существенно подавляет вклад от таких каналов распада (см. третий столбец таблицы 4). В нем представлены отношения парциальных ширин с учетом вероятности идентификации *B*-струй:

$$R_{\Gamma,b-tag} = \frac{\Gamma(t \to bW^+ i \, j) \times \epsilon_b \times \epsilon_i \times \epsilon_j}{\Gamma(t \to bW^+ \bar{b} \, b) \times \epsilon_b^3}$$

Как видно, учет идентификации *B*-струй практически полностью подавляет "фон"от четырех-частичных каналов распада (19).

7. Заключение

В данной работе рассмотрен редкий распад топ-кварка $t \to b \bar{b} b W^+$. Относительно большая парциальная ширина распада, $\Gamma(t \to b \bar{b} b W^+)_{fid} = (1, 40 \pm 0, 006) \times$ 10^{-4} ГэВ (и Br($t \to b \bar{b} b W^+$)_{fid} = 0,99×10⁻⁴), делает возможным поиск этого редкого распада *t*-кварка на БАК.

В работе предлагается дополнительный метод поиска H^{\pm} -бозона, который основан на измерении (увеличении) парциальной ширины (или вероятности) распада $t \to b \bar{b} b W^+$ и не предполагает явного выделения заряженного бозона Хиггса.

Вычислен вклад заряженного бозона Хиггса (с массой $M(H^{\pm}) = (160 \div 180)$ ГэВ и tan $\beta \leq 1$) в распады топ-кварков. Показано, что учет H^{\pm} -бозона в $\Gamma(t \to b \bar{b} b W^+)$ с tan $\beta \leq 1$ может увеличить парциальную ширину распада $t \to b \bar{b} b W$ на два порядка (в зависимости от по значениям tan β).

Благодарности

В заключение автор выражает искреннюю благодарность А.М. Зайцеву, П.С. Мандрику, В.Ф. Образцову и Р.Н. Рогалеву за многочисленные и полезные обсуждения.

Список литературы

- M. Beneke et al., Top quark physics, Workshop on Standard Model Physics (and more) at the LHC (First Plenary Meeting), 3 2000, pp. 419–529, arXiv:hep-ph/0003033.
- [2] P. A. Zyla et al., *Review of Particle Physics*, PTEP **2020** (2020), no. 8, 083C01, https://pdg.lbl.gov/.
- [3] Vernon D. Barger and R. J. N. Phillips, *COLLIDER PHYSICS*, vol. 71, Addison-Wesley, 1987.
- [4] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, Marc Sher, and Joao P. Silva, *Theory and phenomenology of two-Higgs-doublet models*, Phys. Rept. **516** (2012), 1– 102, arXiv:1106.0034 [hep-ph].
- [5] A. G. Akeroyd et al., Prospects for charged Higgs searches at the LHC, Eur. Phys. J. C 77 (2017), no. 5, 276, arXiv:1607.01320 [hep-ph].
- [6] A. Arbey, F. Mahmoudi, O. Stal, and T. Stefaniak, Status of the Charged Higgs Boson in Two Higgs Doublet Models, Eur. Phys. J. C 78 (2018), no. 3, 182, arXiv:1706.07414 [hep-ph].
- [7] G. Abbiendi et al., Search for Charged Higgs bosons: Combined Results Using LEP Data, Eur. Phys. J. C 73 (2013), 2463, arXiv:1301.6065 [hep-ex].
- [8] T. Aaltonen et al., Search for Higgs bosons predicted in two-Higgs-doublet models via decays to tau lepton pairs in 1.96-TeV p anti-p collisions, Phys. Rev. Lett. 103 (2009), 201801, arXiv:0906.1014 [hep-ex].
- [9] V. M. Abazov et al., Search for Higgs bosons of the minimal supersymmetric standard model in pp̄ collisions at √s = 1.96 TeV, Phys. Lett. B 710 (2012), 569-577, arXiv:1112.5431 [hep-ex].
- [10] Morad Aaboud et al., Measurements of inclusive and differential fiducial crosssections of $t\bar{t}$ production with additional heavy-flavour jets in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, JHEP **04** (2019), 046, arXiv:1811.12113 [hep-ex].
- [11] Morad Aaboud et al., Search for charged Higgs bosons decaying via H[±] → τ[±]ν_τ in the τ+jets and τ+lepton final states with 36 fb⁻¹ of pp collision data recorded at √s = 13 TeV with the ATLAS experiment, JHEP **09** (2018), 139, arXiv:1807.07915 [hep-ex].
- [12] Georges Aad et al., Search for charged Higgs bosons decaying into a top quark and a bottom quark at $\sqrt{s} = 13$ TeV with the ATLAS detector, JHEP **06** (2021), 145, arXiv:2102.10076 [hep-ex].

- [13] Albert M Sirunyan et al., Measurement of the ttbb production cross section in the all-jet final state in pp collisions at $\sqrt{s} = 13$ TeV, Phys. Lett. B 803 (2020), 135285, arXiv:1909.05306 [hep-ex].
- [14] Albert M Sirunyan et al., Search for a light charged Higgs boson in the H[±] → cs channel in proton-proton collisions at √s = 13 TeV, Phys. Rev. D 102 (2020), no. 7, 072001, arXiv:2005.08900 [hep-ex].
- [15] Albert M Sirunyan et al., Search for a charged Higgs boson decaying into top and bottom quarks in events with electrons or muons in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$, JHEP **01** (2020), 096, arXiv:1908.09206 [hep-ex].
- [16] Albert M Sirunyan et al., Search for charged Higgs bosons decaying into a top and a bottom quark in the all-jet final state of pp collisions at $\sqrt{s} = 13$ TeV, JHEP 07 (2020), 126, arXiv:2001.07763 [hep-ex].
- [17] V. I. Borodulin, R. N. Rogalyov, and S. R. Slabospitskii, CORE 3.1 (COmpendium of RElations, Version 3.1), (2017), arXiv:1702.08246 [hep-ph].
- [18] S. R. Slabospitsky and L. Sonnenschein, TopReX generator (version 3.25): Short manual, Comput. Phys. Commun. 148 (2002), 87–102, arXiv:hep-ph/0201292.
- [19] Ernest Ma, D. P Roy, and Jose Wudka, Enhanced three-body decay of the charged Higgs boson, Phys. Rev. Lett. 80 (1998), 1162–1165, arXiv:hep-ph/9710447.
- [20] Roger Decker, Marek Nowakowski, and Apostolos Pilaftsis, Dominant threebody decays of a heavy Higgs and top quark, Z. Phys. C 57 (1993), 339–348, arXiv:hep-ph/9301283.
- [21] Gregory Mahlon and Stephen J. Parke, Finite width effects in top quark decays, Phys. Lett. B 347 (1995), 394–398, arXiv:hep-ph/9412250.
- [22] Elizabeth Ellen Jenkins, The Rare top decays $t \to bW^+Z$ and $t \to cW^+W^-$, Phys. Rev. D 56 (1997), 458-466, arXiv:hep-ph/9612211.
- [23] Guido Altarelli, L. Conti, and V. Lubicz, The t -> WZ b decay in the standard model: A Critical reanalysis, Phys. Lett. B 502 (2001), 125–132, arXiv:hep-ph/0010090.
- [24] Andreas Papaefstathiou and Gilberto Tetlalmatzi-Xolocotzi, Rare top quark decays at a 100 TeV proton-proton collider: $t \rightarrow bWZ$ and $t \rightarrow hc$, Eur. Phys. J. C 78 (2018), no. 3, 214, arXiv:1712.06332 [hep-ph].
- [25] Peter Onyisi and Aaron Webb, Impact of rare decays $t \rightarrow \ell' \nu b \ell \ell$ and $t \rightarrow qq' b \ell \ell$ on searches for top-associated physics, JHEP **02** (2018), 156, arXiv:1704.07343 [hep-ph].

- [26] Nestor Quintero, J. Lorenzo Diaz-Cruz, and Gabriel Lopez Castro, Lepton pair emission in the top quark decay t → bW⁺ℓ⁻ℓ⁺, Phys. Rev. D 89 (2014), no. 9, 093014, arXiv:1403.3044 [hep-ph].
- [27] A. M. Sirunyan et al., Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV, JINST 13 (2018), no. 05, P05011, arXiv:1712.07158 [physics.ins-det].

Рукопись поступила 14 июля 2023 г.

Препринт отпечатан с оригинала-макета, подготовленного автором.

С.Р. Слабоспицкий Редкий распад топ-кварка $t\to b\bar{b}bW^+.$

Оригинал-макет подготовлен с помощью системы ИТЕХ.

Подписано к печати 14.07.2023 Формат 60 × 84/16. Цифровая печать. Печ.л. 1,25. Уч.-изд.л. 1,6. Тираж 60. Заказ 9. Индекс 3649.

НИЦ «Курчатовский институт» – ИФВЭ 142281, Московская область, г. Протвино, пл. Науки, 1

www.ihep.ru; библиотека http://web.ihep.su/library/pubs/all-w.htm

Индекс 3649

ПРЕПРИНТ 2023–8, НИЦ «Курчатовский институт» — ИФВЭ, 2023